
A Novel Sequential Circuit Optimization with
Clock Gating Logic

Yu-Min Kuo Shih-Hung Weng Shih-Chieh Chang

Department of CS, National Tsing Hua University, Hsinchu, Taiwan
{ymkuo, shweng, scchang}@cs.nthu.edu.tw

Abstract—

To save power consumption, it has been shown that the
clock signal can be gated without changing the functionality
under certain clock-gating conditions. We observe that the
clock-gating conditions and the next-state function of a
Flip-Flop (FF) are correlated and can be used for sequential
optimization. We show that the implementation of the
next-state function of any FF can be just an inverter if the
clock signal is appropriately gated. By exploiting the
flexibility between the clock-gating conditions and the next-
state function, we propose an iterative optimization
technique to minimize the overall timing.

1. Introduction

A sequential circuit consists of combinational elements
to compute next states and sequential elements such as
Flip-Flops (FF) to store the current states. When a clock
pulse arrives, a circuit re-evaluates the states. Normally,
clock signals are delivered to all FFs periodically; however,
it has been shown that it is not necessary to deliver a clock
pulse to an FF in every clock cycle. Techniques such as
clock gating [1][2][3][4][5][6][7][8][9][10][11][12] shut off
clock signals when a circuit is in idle state or when FFs
need not change their states so as to save the power
consumption.

In this paper, we propose novel flexibility for sequential
optimization using the concept of clock gating, the novel
flexibility of which is completely different from traditional
sequential don’t cares. The new structure is shown in Figure
1 where the clock of an FF is gated when the clock-gating
function is asserted and the next-state function provides the
next-state value of the FF. In addition, a CG Cell consisting
of a latch and an AND gate is used to avoid glitches. There
should also be logic circuits computing the primary outputs
which are omiited in the figure.

We illustrate how the new architecture works by a 3-bit
counter. Figure 2 shows the state transition table of a 3-bit
counter where a is the 3rd bit and FFa is the corresponding
storage element. When the current state (a,b,c) is (0,0,0),
the next state will be (0,0,1) and the state of FFa will not
change its value. According to the state transition table in
Figure 2, when the current state (a,b,c) is equal to one of
states in S = {(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,0,1),
(1,1,0)}, the state of FFa does not change. Since FFa does
not change its value for those current states in S, a clock

Figure 1: Basic Structure of a Sequential Circuit with the
Clock Gating

CLK

CG Cell

L

FFaNext-State
Function (FNS(a))

 INPUT

Clock-Gating
Function (FCG(a))

a

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Current State Next State

a b c a b c

Figure 2: State Transition Table of a 3-Bit Counter

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 230

pulse dose not need to arrive at FFa and can be gated. We
can derive a Boolean function b'+c' to characterize current
states in S. Since no clock pulse is delivered to FFa when
the condition b'+c' is true, we can randomly assign the
output of the next-state function for those conditions; in
other words, we can use b'+c' as the don’t-care function to
minimize the original next-state function ab'+ac'+a'bc. The
result of minimization is an inverter, a'.

Still, the Boolean conditions to determine when there
should be a clock pulse can be complicated for some
sequential circuits. In this paper, we present theoretical
foundations and efficient heuristics for building sequential
circuits consisting of the clock-gating functions and the
next-state functions. Conceptually, our algorithm transforms
some combinational logics to the clock-gating function.
And in many cases, the transformation can improve the
overall efficiency of a circuit. We have performed our
experiments on a set of benchmark circuits and obained on
the average 13.99% timing improvement in TSMC 0.13 μm
library.

The remainder of this paper is organized as follows.
Section 2 shows the overall algorithm and the process flow.
Section 3 presents the experimental results. Section 4
concludes this paper.

2. Logic Synthesis Using the Clock Gating
Function

2.1 Basic definitions and key facts

We first present two simple but very important facts
about the relationship between the clock-gating function
and the next-state function for a single FF. The facts form
the foundations of all following equations and heuristics.
Note that the clock of an FF is shut off when the
clock-gating function is asserted in Figure 1.

FACT1: When the clock of an FF is gated, the next state
of the FF remains the same regardless of whether
the next-state function is zero or one. Therefore,
the on-set of the clock-gating function can be the
don’t-care set for the next-state function [13].

FACT2: When the next state and the current state value of
the FF are the same, the FF remains its state
value regardless of whether the clock is gated or
not. Therefore, the conditions when the next-

state value is equal to the current state of the FF
can be the don’t-care set for the clock-gating
function.

In the following, we use FCG to denote the clock-gating
function and use FNS to denote the next-state function. Let
us consider FFa in Figure 1 where FNS(a) is the next-state
function and FCG(a) is the clock-gating function of FFa. In
addition, signal a is the output of FFa as well as an input of
the FNS(a) and FCG(a). To describe the facts precisely, we
present them in mathematical form.

FACT1: When FCG(a) = 1, FNS(a) can be 0 or 1. Thus, the
on-set of FCG(a) is the don’t-care set for FNS(a).

FACT2: When (a≡FNS(a)) = 1, FCG(a) can be 0 or 1.
Thus, the on-set of (a≡FNS(a)) is the don’t-care
set for FCG(a) where the symbol “≡” represents
the Boolean operator XNOR.

2.2 The simplest implementation of FNS and FCG

We can use don’t-care conditions in FACT1 and FACT2
to minimize FNS and FCG respectively. In the following, we
discuss a very efficient implementation for FNS and FCG. To
distinguish between the original next-state function and the
newly generated next-state function, we use FORI-NS to
denote the original implementation of the next-state
function without the clock gating.

Without going into a complicated proof, it is easy to
show that the simplest implementation of FCG is that FCG =
0, because there exists a legal solution that the clock is not
gated at all. When FCG = 0, according to FACT1, there is no
don’t care for FNS, so that FNS = FORI-NS.

Now, we are interested in finding the simplest
implementation of FNS. The following theorem shows that
FNS(a) after the optimization is a simple literal a'.

Theorem 1: Let the on-set be FORI-NS(a) and the don’t-care
set be (a≡FORI-NS(a)). There exists a don’t-care assignment
such that the implementation of FNS(a) is a'.

Proof: Omitted.

We have shown that the simplest implementation for
FCG is 0 and an implementation for FNS can be just an
inverter. However, if the simplest implementation for one of
them is chosen, there will be no flexibility for the other

231

function.

2.3 Heuristic minimization for FNS and FCG

In the traditional design flow, we always choose the
simplest implementation of FCG = 0. Therefore, the next-
state function FORI-NS(a) does not have any don’t cares. In
this section, we would like to explore other alternatives of
implementations for FNS and FCG. According to FACT1 and
FACT2, both FNS and FCG are correlated. Choosing one
implementation may affect the don’t-care set of the other.

Our idea is to use an iterative approach to simplify both
functions. Before describing our iterative procedure, we
rewrite FACT1 and FACT2 by the following two equations.

FNS*(a) <= {on-set = FNS(a), dc-set = FCG(a)} EQ(1)

FCG*(a) <= {on-set = FCG(a), dc-set = (a≡FNS(a))} EQ(2)

where FNS*(a) is the simplified next-state function and
FCG*(a) is the simplified clock-gating function.

Our iterative optimization requires initial Boolean
functions of FNS and FCG. Since we have the initial next-
state function FNS = FORI-NS(a), we need to find an
appropriate initial clock-gating function FCG = FINI-CG. How
FINI-CG is determined will be described later. Let us assume
FINI-CG is available. According to EQ(1), we can use FNS =
FORI-NS as the on-set and FCG = FINI-CG as the don't-care set
to obtain a simplified FNS*. In other words,

FNS*(a) <= {on-set = FORI-NS(a), dc-set = FINI-CG(a)}.

Once the simplified next-state function FNS* is determined,
according to EQ(2), we can use FCG = FINI-CG as the on-set
and (a≡FNS*(a)) as the don’t-care set to obtain simplified
FCG*.

FCG*(a) <= {on-set = FINI-CG(a), dc-set = (a≡FNS*(a))}.

After that, we can assign FCG = FCG* and FNS = FNS* and
then use EQ(1) and EQ(2) to iteratively simplify both
functions again.

The above iterative process requires an initial clock-
gating function. We now describe our selection for the
initial function of FCG called FINI-CG. In our heuristic, we
choose either of the following two Boolean functions.

FINI-CG(a) = a' * ((a≡FORI-NS(a))| a = 0). EQ(3)

FINI-CG(a) = a * ((a≡FORI-NS(a))| a = 1). EQ(4)

where the symbol “|” denotes the cofactor operator. In our
heuristic, if the number of fanouts of variable a' in FNS is
larger than the number of fanouts of variable a, we choose
EQ(3); otherwise, we choose EQ(4). It is because EQ(3) has
better chance to minimize equations containing a' while
EQ(4) is better for a.

The iterative heuristic method can be extended to
simplify a whole circuit for the timing optimization. First,
we perform a trial run of delay optimization to obtain the
critical FFs whose inputs or outputs are in the “long” paths.
The long paths can be defined as those paths whose path
delay is less than 20% of the delay of a longest path. We
then choose several FFs that are the end points of the
critical paths and then apply our iterative heuristic method
to these FFs for at most k times of iteration loops where k is
chosen to be 5 in our experiments.

3. Experimental Results

We implemented the method in Section 2.3 and applied
it to iscas89 sequential benchmark circuits. We use TSMC
0.13μm library as the technology libraries and Synopsys
Design Compiler® for timing optimization. Table 1 shows
the results of TSMC library. Columns 1 and 2 show the
name and the number of FFs of a benchmark circuit.
Column 3 shows the longest delay after using SIS
script.delay. Column 4 shows the longest delay of the whole
circuit. Column 5 shows the longest delay of only the
next-state functions FNS, and column 6 shows the longest
delay of only the clock-gating function FCG. In addition to
FNS and FCG, our resulting circuit also consists of logics
computing primary outputs. Therefore, the longest delay of
the whole circuit in column 4 may be larger than the longest
delay of FNS and FCG. Column 7 shows the ratio of timing
improvement. Columns 8 and 9 show the area results before
and after timing optimization, respectively. Column 10
shows the ratio of area penalty. The run time of our
algorithm is shown in the last column. On average, the
timing improvement is about 13.99% in the TSMC library.
In addition, a circuit also consists of logic to compute
primary outputs. If critical paths of a circuit are located in
the paths to primary outputs, our timing optimization
technique will not be efficient. It is because our technique

232

can only reduce the delay to FFs.

4. Conclusions

In this paper, we first propose the flexibility provided by
the concept of the clock gating. Then, we present the
theoretical facts and efficient heuristics to optimize a
sequential circuit consisting of the clock-gating functions
and the next-state functions. On average, the timing of
sequential benchmark circuits can be reduced about 13.99%
in the TSMC library.

REFERENCES

[1] P. Babighian, L. Benini, and E. Macii, “A Scalable Algorithm
for RTL Insertion of Gated Clocks Based on ODCs
Computation,” IEEE Trans. on CAD, vol. 24, no. 1, Jan 2005.

[2] M. Alidina, J. Monteiro, S. Devadas, and A. Ghosh,
“Precomputation-Based Sequential Logic Optimization for
Low Power,” Proc. of ICCAD, pp. 74-81, 1994.

[3] L. Benini, and G. De Micheli, “Automatic Synthesis of
Low-Power Gated-Clock Finite-State Machines,” IEEE
Trans. on CAD, vol. 15, no. 6, Jun. 1996.

[4] M. Müch, B. Wurth, R. Mehra, J. Sproch, and N. When,
“Automating RT-Level Operand Isolation to Minimize Power
Consumption in Datapaths,” Proc. of DATE, pp. 624-633,
2000.

[5] V. Tiwari, S. Malik, and P. Ashar, “Guarded Evaluation:
Pushing Power Management to Logic Synthesis/Design,”
Proc. of ISPLED, pp. 221-226, 1995.

[6] H. Kapadia, L. Benini, and G. De Micheli, “Reducing
Switching Activity on Datapath Buses with Control-Signal
Gating,” IEEE J. of Solid-State Circuits, vol. 34, no. 3, March
1999.

[7] M. Onishi, A. Yamada, H. Noda, and T. Kambe, “A Method
of Redundant Clocking Detection and Power Reduction at RT
Level Design,” Proc. of ISLPED, pp. 131-136, 1997.

[8] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R.
Scarsi, “Symbolic Synthesis of Clock-Gating Logic for
Power Optimization of Synchronous Controllers,” ACM
Trans. on Design Automation Electronic Systems, vol. 4, no.
4, pp. 351-375, 1999.

[9] G. Lakshminarayana, A. Raghunathan, K. S. Khouri, N. K.
Jha, and S. Dey, “Common-Case Computation: A High-Level
Technique for Power and Performance Optimization,” Proc.
of DAC, pp 56-61, 1999.

[10] Y. Luo, J. Yu, J. Yang, and L. Bhuyan, “Low Power Network
Processor Design Using Clock Gating,” Proc. of DAC, pp.
13-17, 2005.

[11] H. M. Jacobson, “Improved Clock-Gating through
Transparent Pipelining,” Proc. of ISLPED, pp. 26-31, 2004.

[12] N. Banerjee, K. Roy, H. Mahmoodi, and S. Bhunia, “Low
Power Synthesis of Dynamic Logic Circuits Using
Fine-Grained Clock Gating,” Proc. of DATE, pp. 6-10, 2006.

[13] A. P. Hurst, “Automatic Synthesis of Clock Gating Logic
with Controlled Netlist Perturbation,” Proc. of DAC, pp.
654-657, 2008

Timing (ns) Area (μm2)
Optimized Circuit # FFs

Original
Whole FNS FCG

Improvement
(%) Original Optimized Overhead

(%)

Runtime
(sec.)

s27 3 0.11 0.10 0.10 0.10 9.09 156.16 151.07 -3.26 7.1
s820 5 0.88 0.66 0.63 0.61 25.00 4877.13 5302.35 8.73 58.0
s832 5 0.89 0.69 0.63 0.61 22.47 5103.24 5229.24 2.48 57.9

s1494 6 1.38 1.22 1.19 1.01 11.59 3829.33 4114.50 7.45 22.3
s510 6 0.75 0.67 0.46 0.67 10.67 3951.76 3805.40 -3.70 47.9
s208 8 0.61 0.55 0.02 0.25 9.84 1111.02 758.42 -31.74 37.2
s344 15 1.17 0.91 0.89 0.83 22.22 909.81 1351.13 48.51 60.9
s349 15 1.14 0.90 0.89 0.78 21.05 906.41 1378.29 52.06 71.3
s641 19 0.83 0.75 0.67 0.59 9.64 6879.00 7770.47 12.96 89.1
s526 21 0.59 0.53 0.48 0.42 10.17 3206.65 2780.87 -13.28 95.3

s526n 21 0.59 0.53 0.48 0.42 10.17 3206.65 2780.87 -13.28 95.2
s1423 71 3.61 3.02 2.68 2.18 16.34 3846.31 4056.79 5.47 1341.3
s9234 211 1.94 1.87 1.83 1.73 3.61 11124.76 12092.28 8.70 961.3
AVG 13.99 6.24

Table 1: Results using Synopsys Design Compiler® with TSMC 0.13 μm library

233

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

