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Abstract— 

To save power consumption, it has been shown that the 
clock signal can be gated without changing the functionality 
under certain clock-gating conditions. We observe that the 
clock-gating conditions and the next-state function of a 
Flip-Flop (FF) are correlated and can be used for sequential 
optimization. We show that the implementation of the 
next-state function of any FF can be just an inverter if the 
clock signal is appropriately gated. By exploiting the 
flexibility between the clock-gating conditions and the next- 
state function, we propose an iterative optimization 
technique to minimize the overall timing. 

1. Introduction 

A sequential circuit consists of combinational elements 
to compute next states and sequential elements such as 
Flip-Flops (FF) to store the current states. When a clock 
pulse arrives, a circuit re-evaluates the states. Normally, 
clock signals are delivered to all FFs periodically; however, 
it has been shown that it is not necessary to deliver a clock 
pulse to an FF in every clock cycle. Techniques such as 
clock gating [1][2][3][4][5][6][7][8][9][10][11][12] shut off 
clock signals when a circuit is in idle state or when FFs 
need not change their states so as to save the power 
consumption. 

In this paper, we propose novel flexibility for sequential 
optimization using the concept of clock gating, the novel 
flexibility of which is completely different from traditional 
sequential don’t cares. The new structure is shown in Figure 
1 where the clock of an FF is gated when the clock-gating 
function is asserted and the next-state function provides the 
next-state value of the FF. In addition, a CG Cell consisting 
of a latch and an AND gate is used to avoid glitches. There 
should also be logic circuits computing the primary outputs 
which are omiited in the figure.  

We illustrate how the new architecture works by a 3-bit 
counter. Figure 2 shows the state transition table of a 3-bit 
counter where a is the 3rd bit and FFa is the corresponding 
storage element. When the current state (a,b,c) is (0,0,0), 
the next state will be (0,0,1) and the state of FFa will not 
change its value. According to the state transition table in 
Figure 2, when the current state (a,b,c) is equal to one of 
states in S = {(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,0,1), 
(1,1,0)}, the state of FFa does not change. Since FFa does 
not change its value for those current states in S, a clock 

Figure 1: Basic Structure of a Sequential Circuit with the 
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Figure 2: State Transition Table of a 3-Bit Counter 
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pulse dose not need to arrive at FFa and can be gated. We 
can derive a Boolean function b'+c' to characterize current 
states in S. Since no clock pulse is delivered to FFa when 
the condition b'+c' is true, we can randomly assign the 
output of the next-state function for those conditions; in 
other words, we can use b'+c' as the don’t-care function to 
minimize the original next-state function ab'+ac'+a'bc. The 
result of minimization is an inverter, a'.  

Still, the Boolean conditions to determine when there 
should be a clock pulse can be complicated for some 
sequential circuits. In this paper, we present theoretical 
foundations and efficient heuristics for building sequential 
circuits consisting of the clock-gating functions and the 
next-state functions. Conceptually, our algorithm transforms 
some combinational logics to the clock-gating function. 
And in many cases, the transformation can improve the 
overall efficiency of a circuit. We have performed our 
experiments on a set of benchmark circuits and obained on 
the average 13.99% timing improvement in TSMC 0.13 μm 
library. 

The remainder of this paper is organized as follows. 
Section 2 shows the overall algorithm and the process flow. 
Section 3 presents the experimental results. Section 4 
concludes this paper. 

2. Logic Synthesis Using the Clock Gating 
Function 

2.1 Basic definitions and key facts 

We first present two simple but very important facts 
about the relationship between the clock-gating function 
and the next-state function for a single FF. The facts form 
the foundations of all following equations and heuristics. 
Note that the clock of an FF is shut off when the 
clock-gating function is asserted in Figure 1. 

FACT1: When the clock of an FF is gated, the next state 
of the FF remains the same regardless of whether 
the next-state function is zero or one. Therefore, 
the on-set of the clock-gating function can be the 
don’t-care set for the next-state function [13]. 

FACT2: When the next state and the current state value of 
the FF are the same, the FF remains its state 
value regardless of whether the clock is gated or 
not. Therefore, the conditions when the next- 

state value is equal to the current state of the FF 
can be the don’t-care set for the clock-gating 
function. 

In the following, we use FCG to denote the clock-gating 
function and use FNS to denote the next-state function. Let 
us consider FFa in Figure 1 where FNS(a) is the next-state 
function and FCG(a) is the clock-gating function of FFa. In 
addition, signal a is the output of FFa as well as an input of 
the FNS(a) and FCG(a). To describe the facts precisely, we 
present them in mathematical form.  

FACT1: When FCG(a) = 1, FNS(a) can be 0 or 1. Thus, the 
on-set of FCG(a) is the don’t-care set for FNS(a). 

FACT2: When (a≡FNS(a)) = 1, FCG(a) can be 0 or 1. 
Thus, the on-set of (a≡FNS(a)) is the don’t-care 
set for FCG(a) where the symbol “≡” represents 
the Boolean operator XNOR. 

2.2 The simplest implementation of FNS and FCG 

We can use don’t-care conditions in FACT1 and FACT2 
to minimize FNS and FCG respectively. In the following, we 
discuss a very efficient implementation for FNS and FCG. To 
distinguish between the original next-state function and the 
newly generated next-state function, we use FORI-NS to 
denote the original implementation of the next-state 
function without the clock gating.  

Without going into a complicated proof, it is easy to 
show that the simplest implementation of FCG is that FCG = 
0, because there exists a legal solution that the clock is not 
gated at all. When FCG = 0, according to FACT1, there is no 
don’t care for FNS, so that FNS = FORI-NS. 

Now, we are interested in finding the simplest 
implementation of FNS. The following theorem shows that 
FNS(a) after the optimization is a simple literal a'. 

Theorem 1: Let the on-set be FORI-NS(a) and the don’t-care 
set be (a≡FORI-NS(a)). There exists a don’t-care assignment 
such that the implementation of FNS(a) is a'. 

Proof: Omitted. 

We have shown that the simplest implementation for 
FCG is 0 and an implementation for FNS can be just an 
inverter. However, if the simplest implementation for one of 
them is chosen, there will be no flexibility for the other 
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function.  

2.3 Heuristic minimization for FNS and FCG 

In the traditional design flow, we always choose the 
simplest implementation of FCG = 0. Therefore, the next- 
state function FORI-NS(a) does not have any don’t cares. In 
this section, we would like to explore other alternatives of 
implementations for FNS and FCG. According to FACT1 and 
FACT2, both FNS and FCG are correlated. Choosing one 
implementation may affect the don’t-care set of the other.  

Our idea is to use an iterative approach to simplify both 
functions. Before describing our iterative procedure, we 
rewrite FACT1 and FACT2 by the following two equations.  

FNS*(a) <= {on-set = FNS(a), dc-set = FCG(a)}    EQ(1) 

FCG*(a) <= {on-set = FCG(a), dc-set = (a≡FNS(a))} EQ(2) 

where FNS*(a) is the simplified next-state function and 
FCG*(a) is the simplified clock-gating function.  

Our iterative optimization requires initial Boolean 
functions of FNS and FCG. Since we have the initial next- 
state function FNS = FORI-NS(a), we need to find an 
appropriate initial clock-gating function FCG = FINI-CG. How 
FINI-CG is determined will be described later. Let us assume 
FINI-CG is available. According to EQ(1), we can use FNS = 
FORI-NS as the on-set and FCG = FINI-CG as the don't-care set 
to obtain a simplified FNS*. In other words, 

FNS*(a) <= {on-set = FORI-NS(a), dc-set = FINI-CG(a)}. 

Once the simplified next-state function FNS* is determined, 
according to EQ(2), we can use FCG = FINI-CG as the on-set 
and (a≡FNS*(a)) as the don’t-care set to obtain simplified 
FCG*.  

FCG*(a) <= {on-set = FINI-CG(a), dc-set = (a≡FNS*(a))}. 

After that, we can assign FCG = FCG* and FNS = FNS* and 
then use EQ(1) and EQ(2) to iteratively simplify both 
functions again.  

The above iterative process requires an initial clock- 
gating function. We now describe our selection for the 
initial function of FCG called FINI-CG. In our heuristic, we 
choose either of the following two Boolean functions.  

FINI-CG(a) = a' * ((a≡FORI-NS(a))| a = 0).     EQ(3) 

FINI-CG(a) = a * ((a≡FORI-NS(a))| a = 1).     EQ(4) 

where the symbol “|” denotes the cofactor operator. In our 
heuristic, if the number of fanouts of variable a' in FNS is 
larger than the number of fanouts of variable a, we choose 
EQ(3); otherwise, we choose EQ(4). It is because EQ(3) has 
better chance to minimize equations containing a' while 
EQ(4) is better for a.  

The iterative heuristic method can be extended to 
simplify a whole circuit for the timing optimization. First, 
we perform a trial run of delay optimization to obtain the 
critical FFs whose inputs or outputs are in the “long” paths. 
The long paths can be defined as those paths whose path 
delay is less than 20% of the delay of a longest path. We 
then choose several FFs that are the end points of the 
critical paths and then apply our iterative heuristic method 
to these FFs for at most k times of iteration loops where k is 
chosen to be 5 in our experiments.  

3. Experimental Results 

We implemented the method in Section 2.3 and applied 
it to iscas89 sequential benchmark circuits. We use TSMC 
0.13μm library as the technology libraries and Synopsys 
Design Compiler® for timing optimization. Table 1 shows 
the results of TSMC library. Columns 1 and 2 show the 
name and the number of FFs of a benchmark circuit. 
Column 3 shows the longest delay after using SIS 
script.delay. Column 4 shows the longest delay of the whole 
circuit. Column 5 shows the longest delay of only the 
next-state functions FNS, and column 6 shows the longest 
delay of only the clock-gating function FCG. In addition to 
FNS and FCG, our resulting circuit also consists of logics 
computing primary outputs. Therefore, the longest delay of 
the whole circuit in column 4 may be larger than the longest 
delay of FNS and FCG. Column 7 shows the ratio of timing 
improvement. Columns 8 and 9 show the area results before 
and after timing optimization, respectively. Column 10 
shows the ratio of area penalty. The run time of our 
algorithm is shown in the last column. On average, the 
timing improvement is about 13.99% in the TSMC library. 
In addition, a circuit also consists of logic to compute 
primary outputs. If critical paths of a circuit are located in 
the paths to primary outputs, our timing optimization 
technique will not be efficient. It is because our technique 
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can only reduce the delay to FFs.  

4. Conclusions 

In this paper, we first propose the flexibility provided by 
the concept of the clock gating. Then, we present the 
theoretical facts and efficient heuristics to optimize a 
sequential circuit consisting of the clock-gating functions 
and the next-state functions. On average, the timing of 
sequential benchmark circuits can be reduced about 13.99% 
in the TSMC library.  
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Timing (ns) Area (μm2) 
Optimized Circuit # FFs 

Original 
Whole FNS FCG 

Improvement 
(%) Original Optimized Overhead 

(%) 

Runtime
(sec.) 

s27 3 0.11 0.10 0.10 0.10 9.09 156.16 151.07 -3.26 7.1 
s820 5 0.88 0.66 0.63 0.61 25.00 4877.13 5302.35 8.73 58.0 
s832 5 0.89 0.69 0.63 0.61 22.47 5103.24 5229.24 2.48 57.9 

s1494 6 1.38 1.22 1.19 1.01 11.59 3829.33 4114.50 7.45 22.3 
s510 6 0.75 0.67 0.46 0.67 10.67 3951.76 3805.40 -3.70 47.9 
s208 8 0.61 0.55 0.02 0.25 9.84 1111.02 758.42 -31.74 37.2 
s344 15 1.17 0.91 0.89 0.83 22.22 909.81 1351.13 48.51 60.9 
s349 15 1.14 0.90 0.89 0.78 21.05 906.41 1378.29 52.06 71.3 
s641 19 0.83 0.75 0.67 0.59 9.64 6879.00 7770.47 12.96 89.1 
s526 21 0.59 0.53 0.48 0.42 10.17 3206.65 2780.87 -13.28 95.3 

s526n 21 0.59 0.53 0.48 0.42 10.17 3206.65 2780.87 -13.28 95.2 
s1423 71 3.61 3.02 2.68 2.18 16.34 3846.31 4056.79 5.47 1341.3
s9234 211 1.94 1.87 1.83 1.73 3.61 11124.76 12092.28 8.70 961.3 
AVG  13.99  6.24  

Table 1: Results using Synopsys Design Compiler® with TSMC 0.13 μm library 
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