
Counterflow Pipelining: Architectural Support for Preemption
in Asynchronous Systems using Anti-Tokens

Manoj Ampalam and Montek Singh
Dept. of Computer Science

Univ. of North Carolina, Chapel Hill, NC 27599, USA
Chapel Hill, NC 27599, USA
{manoj,montek}@cs.unc.edu

ABSTRACT
This paper introduces a novel approach to efficiently implement
several useful architectural features in asynchronous application-
specific ICs (ASICs). These features include speculation, preemp-
tion, and eager evaluation, which have so far only been available on
CPUs, and have not been adequately investigated for custom ASICs.

For the efficient implementation of the new architectural features,
a radically new approach inspired by Sproull’s counterflow pipe-
lines [7] is proposed. The key idea is to allow special commands,
called anti-tokens, to be propagated in a direction opposite to that
of data, allowing certain computations to be killed before they are
completed, if their results are no longer required.

The net impact is a significant improvement in the throughput of
a certain class of systems—e.g., those involving conditional compu-
tation—where a bottleneck pipeline stage can often be preempted if
its result is determined to be no longer needed. Experimental results
indicate that our approach can improve the system throughput by a
factor of up to 2.2x, along with an energy savings of up to 27%.

1. INTRODUCTION
This paper presents a novel approach to implementing the useful

architectural features of preemption, speculation and eager evalua-
tion in asynchronous pipelined ASICs. These features have so far
been only available on CPUs, but are critical for the efficient im-
plementation of many custom dataflow systems. In particular, pre-
emption allows a data item in a computation pipeline to be destroyed
before the computation is complete, if it has been determined to be
no longer required, thereby saving energy consumption. Speculation
builds upon this idea to allow both branches of a computation to be
launched concurrently, while the outcome of the condition is awaited;
once the outcome is known, the incorrect branch is preempted. Fi-
nally, eager evaluation allows a function block to generate its output
using a subset of its inputs when possible, followed by preemption
of the inputs that were determined to be not required. All of these
architectural features have significant performance and energy bene-
fits.

Our approach is based on a novel form of counterflow pipelining,
which allows special commands, called anti-tokens, to be propagated
in a direction opposite to that of data. Our counterflow approach
is a radical reworking of the earlier counterflow work by Sproull

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICCAD ’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

et al. [7], which introduced a processor architecture where instruc-
tions and data flow in opposite directions. While the benefit of their
approach is the ease of satisfying data dependencies, a significant
limitation is its implementation complexity. In particular, their ap-
proach uses two distinct pipelines conveying data and instructions in
opposite directions, which require arbitration at every stage to ensure
synchronization between the data and the instruction streams. In ad-
dition, their approach is specifically targeted to processor design, and
not directly applicable to other application-specific architectures.

Another related work is by Brej et al. [2, 1], who first proposed
an approach to preemption using anti-tokens. This approach can also
be classified as “counterflow” because anti-tokens flow in a direction
opposite to the flow of data tokens. When an anti-token meets a data
token, it cancels the data computation in that stage, and no output is
produced. This work also has significant limitations. In particular, it
does not address metastability issues that can arise when a data item
and an anti-token reach a pipeline stage near simultaneously. More-
over, their circuit implementation can glitch under certain timing sce-
narios, and it must therefore rely on certain timing assumptions for
correct behavior.

This paper makes two key contributions. First, it introduces a
novel counterflow pipeline style that is significantly more efficient
than prior work. The pipeline style is based on a novel two-phase
counterflow protocol that avoids the need for the complex arbitration
of Sproull et al. [7], correctly addresses metastability issues, and un-
like Brej et al. [2, 1], guarantees correct operation regardless of the
arrival times of data tokens and anti-tokens. Our second contribu-
tion is a set of architectural templates that are the building blocks
for implementing preemption, speculation and eager evaluation in
asynchronous pipelined systems. Detailed experimental evaluation
is provided for each of these constructs. Results indicate promis-
ing performance benefits: a throughput increase by up to a factor of
2.2x. In addition, the saved computation also translates into reduced
energy consumption, with up to 27% energy savings.

The rest of the paper is organized as follows. First, Section 2
provides motivation behind our approach, and briefly reviews prior
work. Section 3 then introduces our new counterflow pipeline style,
including its formal protocol, implementation, and timing analysis.
Then, Section 4 introduces several architectural constructs that are
useful for implementing systems with the capabilities of preemption,
speculation and eager evaluation. Experimental results are given in
Section 5, and finally Section 6 gives conclusions.

2. MOTIVATION AND PREVIOUS WORK

2.1 Motivation
Consider the following example: a simple specification consisting

of an if-then-else statement.

611

if

cond

else

Figure 1: A pipelined dataflow implementation of an “if-then-
else” construct

if cond then
easy operation

else
complex operation

end if
There are two conventional approaches to handling such conditional
constructs in asynchronous hardware, and each has its limitations.
One approach, which does not use speculation, is simply to first eval-
uate the Boolean condition, and then execute the correct branch of
computation. This approach has the drawback of reduced concur-
rency, and thereby slower performance.

The second approach, conventional speculation, is to compute
both of the branches of the computation concurrently, in parallel
with the evaluation of the Boolean condition itself. Once the out-
come is known, the result from the correct branch is used; the other
result is discarded. While this conventional speculation approach
has higher concurrency, and therefore higher performance, is still
has two significant drawbacks. First, computation of both branches
must finish before the final result is selected. Thus, if the incorrect
branch involves a complex long-latency operation, a significant
performance bottleneck will be introduced. Second, since both
branches of the computation are always executed, much additional
energy is consumed.

A variation on the conventional speculation approach above uses
pipelining to somewhat increase concurrency, but the overall per-
formance remains quite limited. In particular, often all the three
operations—i.e., evaluation of the Boolean condition, the if-branch
computation, and the else-branch computation—can be pipelined
into multiple stages, as shown in Figure 1. However, this pipelined
implementation of speculation still suffers from a performance
bottleneck: the final (i.e. rightmost) stage typically must wait for
all three of its inputs to be available, even though in some situa-
tions waiting for either the if-branch or the else-branch would be
unnecessary.

Figure 2(a) illustrates this performance bottleneck in conventional
speculation. In this example, the if-computation is pipelined into
two stages, the Boolean condition evaluation is performed in a single
stage, and the else-computation is pipelined into four stages. The six
rows represent six successive snapshots of the system’s state. The
solid blue circles indicate the arrival of an input request (token) at
that point in the pipeline. Thus, the top picture represents the in-
stant a new request is fed into the system (i.e., a new execution of the
if-then-else construct), and the bottom picture represents the comple-
tion of this round of computation. Since the condition requires only
one stage for completion, its output is available in the second time
step. Similarly, the results of the if and else branches of computa-
tion are available in the third and fifth time steps, respectively. If the
condition is evaluated to be true, only the results of the if branch
are actually needed in the algorithm, and all information required
for generating the output is available at the third step. However,

(a)

(b)

Figure 2: Implementing speculation: (a) traditional approach
(without antitokens), and (b) our approach (with antitokens)

in order to preserve the consistency of the asynchronous request-
acknowledge handshake protocol, the rightmost stage cannot truly
complete this cycle of computation until the result from the else-
computation branch is also available. Thus, a slow else-computation
branch can slow the entire system down, even in situations when the
result of the else branch would be rarely utilized.

Figure 2(b) illustrates how our counterflow approach is applied
to implement speculation much more efficiently. Once again, sup-
pose that the Boolean condition evaluates to true in the second time
step. Thus, it is determined by the end of the second time step that
the result of the else-computation branch is to be discarded. Our
counterflow approach introduces the capability to inform the else-
computation branch that its result is not required anymore. As a re-
sult, the rightmost stage is now freed up to immediately relay the
result of the if-computation branch to the output environment, and
a complete new cycle of computation can begin without waiting for
the else-computation to be completed. In the figure, the hollow circle
indicates an antitoken flowing opposite to the flow of data in the else
branch. This new approach to speculation has a significant perfor-
mance benefit. In particular, since the output from the if branch is
available in the third step, the final output is produced in the fourth
step itself. Thus, this strategy has reduced the latency of a single
computation from 6 time units to 4 units.

In general, our counterflow approach is useful for three key appli-
cations:

• Speculation: We saw above how the counterflow approach
makes the implementation of speculation much more efficient.
Similarly, switch/case statements and multiplexers can also be
efficiently handled.

• Preemption: Preemption is useful for providing architectural
support for handling exceptions and interrupts: pending oper-
ations must be killed before handling the exception.

612

• Early Output: This feature, also called “eager evaluation”
or “short-circuit evaluation,” allows a pipeline stage to gener-
ate a result before all of the inputs to that stage are available,
provided the result can be computed from only the available
inputs. For instance, if a multiplier function block receives
an operand with value zero, a zero output can be immediately
generated, without waiting for the other operand to arrive.

The idea of issuing an antitoken along the unwanted branch is use-
ful in two ways. First, it aids in increasing the throughput by reduc-
ing the cycle time. Second, it aids in power saving by preventing the
unwanted requests flowing through the pipeline and hence unwanted
computations.

2.2 Previous Work
Counterflow Pipeline Processor (CFPP). The notion of coun-

terflow was first introduced by Sproull et al. for the design of the
Sun Counterflow Pipeline Processor [7]. Unlike our proposed ap-
proach, which focuses on application-specific architectures, the Sun
approach was applicable only to CPU architecture. In particular,
their counterflow processor uses two distinct pipelines to carry two
different information streams in opposite directions, and introduces
interlocks to allow the two streams to interact. One stream carries
CPU instructions, and the other carries data fetched from registers
and memory. The key benefit is that inter-instruction data dependen-
cies are efficiently handled by this counterflow arrangement: if an
instruction modifies a data value flowing counter to it, the modified
value is immediately available to the subsequent instruction.

There are two key limitations of the Sproull approach. First,
the Sproull approach belongs to a completely different problem
domain—CPU architecture—and is not applicable to the design
of custom architectures. Second, their approach has a critical
drawback: arbitration is required between the two pipelines—one
arbiter per pipeline stage—to ensure that corresponding tokens in
the two streams do not “skip past” each other, leading to significant
implementation complexity and loss of performance, and also to
non-determinism in the system’s operation. In contrast, our pro-
posed approach achieves counterflow within a single pipeline, by
“piggybacking” control tokens on top of the acknowledge signals
already required for asynchronous handshaking, and thereby does
not suffer from these drawbacks.

Early Output Logic (Brej and Garside). Brej and Garside at-
tempted to solve the problem of preemption [1, 2], but their approach
had significant drawbacks. In particular, their approach did not ap-
propriately address a metastability issue: the handshake control in
a pipeline stage can become metastable if the stage receives a data
token and an anti-token nearly simultaneously. As a result, their cir-
cuits have hazards (i.e., glitches), and therefore, their approach can-
not be guaranteed safe without making timing assumptions. In ad-
dition, their approach incurs significant area and power consumption
overheads.

Counterflow Pipelined Multiplier (Hensley et al.) Hensley et
al. [4, 5] introduced a counterflow pipelined asynchronous radix-4
booth multiplier, with a novel counterflow organization: the data bits
flow in one direction and the Booth commands piggyback on the ac-
knowledgments flowing in the opposite direction. This design shares
with CFPP the idea of data and instructions flowing in opposite direc-
tions. However, this counterflow pipeline uses only one pipeline as
both requests and acknowledgments carry information. The design
allowed overlapped execution of multiple iterations of the Booth al-
gorithm. Also the modularity and bit-level pipelining enable the mul-
tiplier to be scaled to arbitrary operand widths without requiring gate
resizing or cycle time overheads.

Fi−1 Fi

Bi Bi+1

datai datai+1datai−1

Stagei
Stagei+1

Fi+1

Bi+2

Figure 3: Signal notation in counterflow pipelines

3. THE NEW COUNTERFLOW PIPELINE
APPROACH

This section introduces our new counterflow pipeline approach.
The new pipeline uses two-phase communication, and a bundled
data representation [3]. Events in the new pipeline are coordinately
according to a protocl that shares some ideas with MOUSETRAP
pipelines [6]; hence we call the new pipeline style “Counterflow
Mousetrap.”

After introducing some notation, we will describe the protocol
used in the new pipeline style, followed by its circuit-level imple-
mentation and details of its operation. Finally, we will discuss how
metastability is avoided by our counterflow pipeline, and then pro-
vide an analysis of its performance.

3.1 Notation
In the MOUSETRAP pipeline and in other asynchronous pipelines

in general, the signal wires are named based on the type of signal they
carry. In particular, all of the forward flowing signals carry requests,
and are hence named req. Similarly, all of the reverse flowing sig-
nals carry acknowledgments, and are hence named ack. However,
in the counterflow pipeline we are about to present, these wires can
assume different meanings (i.e., reverse their roles) depending on
whether a data token is being passed forward, or if an anti-token is
being relayed backward. Therefore, to avoid any confusion, instead
of referring to a wire as a req or ack, we will simply refer to it by the
direction in which it carries information—forward or backward—
and by the index of the stage associated with it. That is, as shown in
Figure 3, all the forward flowing signals are named Fi and backward
flowing signals Bi. Since data flows in the forward direction only
(left to right), the data input to a stage is datai−1 and its data output
is datai. In addition, each stage generates two control signals, one
in the forward direction (Fi), and the other in the backward direction
(Bi).

We will use the term token to denote a data item and its associated
request flowing in the forward direction. On the other hand, an anti-
token refers to control information flowing in the reverse direction.
For the approach presented in this paper, there is no need for any data
values to be transmitted in the reverse direction; anti-tokens simply
represent control events.

A pipeline stage is said to be in an “idle” state if it is not processing
any tokens or antitokens at that moment, and all previous handshake
cycles have been completed. Since we are using transition signaling
(2-phase), the idle state corresponds to all of the control signals (i.e.,
inputs Fi−1 and Bi+1 and outputs Fi and Bi) being in the same state
(either all zero or all one).

We now relate the processing of tokens and antitokens with the
states of the stage’s control signals:

• A stage i in an idle state is said to have received a token (re-
quest from previous stage) if the input Fi−1 signal toggles.
When this happens, the state of the input Fi−1 signal will be

613

fb

l

d

f b

Figure 4: Petri net for a simplified version of a counterflow
stage’s protocol

different from all the other three signals. The stage can then
acknowledge the token by toggling Bi signal and forward the
same to the next stage by toggling the Fi signal.

• A stage in an idle stage is said to have received an antitoken
(request from the next stage) if the Bi+1 signal toggles. When
this happens, the stage of the input Bi+1 signal will be dif-
ferent from all the other three signals. The stage can then ac-
knowledge the antitoken by toggling the Fi signal and forward
the antitoken to the previous stage by toggling the Bi signal.

It is important to note that toggling a signal wire may imply dif-
ferent actions. Specifically,

• When a stage toggles its Fi signal, it either means forwarding a
token or acknowledging an antitoken, depending upon whether
the stage is responding to a token or an antitoken.

• When a stage toggles its Bi signal, it either means forward-
ing an antitoken or acknowledging a token, depending upon
whether the stage is responding to an antitoken or a token.

With this notation and setup, we now describe the counterflow
pipeline’s protocol in detail, followed by its circuit-level implemen-
tation.

3.2 Pipeline Protocol
The protocol works as follows. In an idle state, a stage can receive

either a token or an antitoken. If the first case, it acknowledges the
token and simultaneously forwards it to the next stage. Similarly,
if it receives an antitoken, it acknowledges it and forwards it to the
previous stage. After forwarding a token or an antitoken, a stage
cannot accept a new token or an antitoken until an acknowledgment
corresponding to the forwarded token or the antitoken is received.
When a stage receives a token and an antitoken simultaneously, it
can consider one of the following:

• The received antitoken is the acknowledgment to the token to
be forwarded

• The received token in the acknowledgment to the antitoken to
be forwarded

We constructed a Petri net conforming to the protocol rules. How-
ever, the specification turned out to be too concurrent to be easily
drawn or understood. To address this problem, we decided to con-
strain the protocol by assuming the following restriction on the envi-
ronment of the stage: a stage in a non-idle state will not receive a new

C C

C

C
l

f bFi-1

FiBi

Bi+1

~d

Figure 5: Implementation of a counterflow stage’s controller

token or a new antitoken until it has completely processed the exist-
ing token or antitoken, i.e. until it has received the acknowledgment
associated with the previous token or antitoken that it transmitted.
This restriction on the environment greatly simplifies the specifica-
tion of the stage’s control, although the controller implementation
will now need to embedded in a “wrapper” before it can be safely
embedded in the actual environment (as discussed in the next sub-
section).

Figure 4 shows the simplified specification of stage’s controller. f
and b are the inputs to the Petri net and l the output. d is an extra
variable required to keep track of the state of the Petri net. The tran-
sitions labeled f indicate receiving a token (or an acknowledgment
to an antitoken) and the transitions labeled b indicate receiving a an-
titoken (or an acknowledgment to a token). From the given stage in
the Petri net, either the left transition or the right transition may fire.
If the left transition fires first, it means f has toggled first - a token
has been received. This will enable both transitions b and l to fire. In
this context, firing l would mean acknowledging the previous stage
and forwarding the token the next stage. After an acknowledgment
has been received from the next stage (firing b), the Petri net will
come back to its start stage. The same explanation can be extended
to the case when left transition fires first from the start stage.

3.3 Pipeline Implementation
Each stage of the pipeline consists of a controller and a data latch.

The controller controls the outgoing requests and acknowledgments
through which the stages communicated. It also controls the enable
signal to the data latch controlling the data flow through the pipeline.

3.3.1 Controller
We implemented the controller based on the Petri net description

of the protocol. The circuit-level implemented is shown in Figure 5.
The subcircuit shown in the shaded area represents exactly the Petri
net we discussed above. Since the Petri net above assumed a re-
striction on the environment’s behavior, we need to add a “wrapper”
around the stage controller to allow it to be safely embedded in the
actual environment. This wrapper consists of what we call guarding
C-elements, as shown in the figure. The shaded subcircuit has two
inputs f and b and an output l, implemented by the logic equations:

• d:
set : f x b x l
reset : f̃ x b̃ x l̃

• l:
set : d̃ x (f + b)
reset : d x (f̃ + b̃)

614

Table 1: States of a counterflow pipeline stage

One State Other State Stage of Controller

r,a,l,d - idle
a,l,d r accepted a token
a,d l,r waiting for token ack
r,l,d a accepted an antitoken
r,d l,a waiting for antitoken ack
r,a l,d token antitoken clashed

The guarding C-elements are provided on all the inputs to the con-
troller. They ensure that a new incoming token or antitoken is not
accepted until acknowledgment to the previously forwarded token or
antitoken has been received. In specific, a change in d indicates com-
pletion of a cycle. Until then any new incoming F or B are blocked.
As evident from the Petri net, the states of these four signals indicate
a specific state of the controller. This mapping is tabulated in Table 1.
The first column represents the subset of the signals which are in a
particular state (0 or 1). The second column has the other set.

3.3.2 Pipeline Operation
Let us first consider the flow of tokens through the pipeline. Ini-

tially, when the pipeline is empty, all the stages are in idle state and
all the signals are low. When the first token (data item) flows through,
it flips the signal wires to high as it flows through the pipeline from
right to left. When the token is at some intermediate stage, all the
signals associated with pipeline stages prior to this stage are high
and all the signals associated with later stages are low. When the
token arrives at the other end of the pipeline, all the stages are high.
When a second token flows through, all the signals are toggled back
to low again. When tokens are fed in the start of the pipeline one
continuously, the signal values of the pipeline stages alternate along
the pipeline.

The flow of antitokens will cause exactly the same kind of behav-
ior as in the case of tokens but from the other end of the pipeline. If
an antitoken is injected in an empty pipeline, it toggles all the sig-
nal lines as it flows through the pipeline from right to left. Once it
reaches the other end of the pipeline, all signals are toggled to one.
A second flowing antitoken will toggle all the signals back to zero.

Now consider injecting a token and an antitoken simultaneously
into the left and the right end of the pipeline, respectively. As the
token and antitoken travel towards each other, they leave all the sig-
nals toggled in their trail. Finally as they crash at some intermediate
stage, they cancel each other and all the signals will be at level one.
Injecting a second token-antitoken pair will bring back all the sig-
nals to zero after they crash at some intermediate stage. A stage
is said to have encountered a token antitoken crash if the following
happens: An antitoken is received in response to a forwarded token.
In this case the antitoken is considered an acknowledgment to the
forwarded token.

In a more general implementation than considered in this paper, to-
kens and antitokens may both carry data packets. In our counterflow
protocol, however, we consider tokens as data carrying requests and
antitokens merely as request killers. Hence, antitokens are not asso-
ciated with any data; they merely kill the first token they encounter
along their path, killing themselves in the process. Therefore, the
latch needs to be enabled only when a token is passing through. In
general, however, counterflow pipeline can be designed to support
data flow in either direction, as was done for the counterflow Booth
multiplier in [4, 5].

3.3.3 Data Latch
The flow of data through a stage’s latch is coordinated by the

latch’s “enable” signal. We now discuss possible implementation of
this enable signal.

In the traditional MOUSETRAP pipeline, the latches are normally
transparent, and become opaque as soon as data passes through [6].
Once opaque, the latch is reenabled only when an acknowledgment
from the next stage is received. This behavior is simply implemented
by the following logic equation:

enable = (l XNOR b)

While keeping latches normally open has the advantage of reduced
latencies and shorter cycle times, it also has a disadvantage: garbage
data (i.e., transients on the data wires, with no associated request)
can flow through the pipeline, thereby wasting energy. Ideally, the
latches should be made transparent only when there is an impending
request (token). This behavior can be obtained by modifying the
logic equation above, to enable the latch when not only a previously
transmitted token by the stage has been acknowledged by the next
stage, but also a new token has been produced by the previous stage:

enable = (l XNOR b) & (f XOR l)

The above logic equation is still not complete, however. In partic-
ular, it does not consider antitokens. When a stage is processing an
antitoken, there is no need to open the latch at all. So, we need to
make sure the latch is not opened when F toggles in response to a
sent antitoken. The final logic equation for the enable signal is thus
as follows:

enable = (l XNOR b) & (f XOR l) & (d XNOR b) (1)

Interestingly, the above logic implementation of the latch enable
may glitch in a particular scenario; however, those glitches are com-
pletely harmless. In particular, when an idle pipeline stage (with
its latch disabled) receives an antitoken from its right neighbor, the
current stage’s latch may temporarily become enabled (for a certain
combination of gate and wire delays), even though it is ideally sup-
posed to stay disabled. This glitch, however, is harmless since it
merely affects the data path, and has no impact on the handshak-
ing signals. In particular, the only impact of this glitch may be a
slight unnecessary consumption of energy if the contents of the latch
change as a result of this glitch. Since the implementation of the
handshake control (see Section 3.3.1, Figure 5) is guaranteed to be
glitch-free, the operation of the pipeline is guaranteed to be correct.

3.4 Metastability Avoidance
A fundamental challenge in counterflow pipelining is to handle

metastability, which can result when a pipeline stage receives a data
token and an anti-token nearly simultaneously. In particular, if the
data token arrives first, the stage is supposed to process it; if the anti-
token arrives first, the data token must be destroyed; however, if both
arrive close together, the stage’s control may become metastable.

Prior counterflow approaches handle metastability quite subopti-
mally. In particular, the approach of Sproull et al. [7] requires the
addition of arbiters in every pipeline stage to coordinate the move-
ment of forward and backward tokens through stage boundaries. This
solution introduces significant complexity into the design, causing
substantial area as well as performance overheads. In contrast, Brej
et al. [1, 2], do not appropriately address the metastability issue. As
a result, their circuits have potential hazards due to metastability, and
therefore, their approach cannot be used reliably without making tim-
ing assumptions.

Our Approach: Protocol Symmetrization. Our implementation
avoids the problems related to metastability by making the handshake
controller react in an identical manner irrespective of whether the
stage received a token first or an antitoken first. That is, we remove

615

the burden of deciding whether the token or the antitoken arrived
first, by specifying the reactions to both events as being identical.
We refer to this idea as protocol symmetrization.

The symmetry in the protocol of our counterflow pipeline is ev-
ident from the Petri net description in Figure 4. Starting from the
initial state, either the left or the right transition may fire, depending
upon whether a token or an antitoken is received. If both the token
and the antitoken are received concurrently, the Petri net could ex-
hibit two different firing sequences—fire f then fire b, or fire b then
fire f—but in either case, the protocol immediately reaches the same
state. As viewed from the left and right neighbors of a stage, the
stage’s external behavior is identical in both scenarios. As a result,
the circuit-level implementation of this protocol can avoid metasta-
bility altogether.

Therefore, the handshake protocol of our counterflow pipeline
works correctly in all timing scenarios, including when a data token
and an anti-token arrive at a stage nearly simultaneously.

3.5 Timing Analysis
Cycle time in a pipeline is the sum of forward latency and reverse

latency. Forward latency in our case is defined as the time taken by
a token to reach from the start of a particular stage to the start of the
next stage. In our counterflow pipeline, the forward latency equals
the delay of two C-elements plus the delay through the stage’s func-
tion logic. Reverse latency is the time taken by an acknowledgment
to move from one stage to its previous stage. In our pipe this latency
is four C-elements. The total cycle time is hence the delay of six
C-elements plus the matched delay of logic.

In traditional MOUSETRAP [6], the total cycle time equals the la-
tency of two latches and one XNOR gate, plus the delay through the
stage’s function logic. If we assume similar latencies for a C-element
and a latch, then our counterflow pipeline has a cycle time that is four
C-element latencies greater than that of traditional MOUSETRAP.
We will see in the results section how this overhead somewhat re-
duces the throughput improvements obtained when our counterflow
approach is applied to the implementation of preemption, speculation
and eager evaluation.

4. ARCHITECTURAL TEMPLATES FOR
PREEMPTION

In the previous section we introduced a novel counterflow pipeline
approach that supports data requests flowing along one direction and
antitokens (i.e. ignore/kill requests) along the other. For simplic-
ity of presentation, the discussion focused on linear pipeline stages,
i.e. stages with a single left neighbor and a single right neighbor.
However, in order to apply our approach to implement preemption,
speculation and eager evaluation, more sophisticated stages must be
designed, i.e. those that can handle forks and joins.

This section presents the design of three special types of counter-
flow pipeline stages: fork stage, join stage, and if-then-else stage.

4.1 Fork Controller
A fork stage in a MOUSETRAP pipeline simply forks off its out-

put and the associated request to two or more destinations. It waits
till all the acknowledgments are returned before accepting any new
request.

In the counterflow pipeline, fork is slightly more complex: it
should also be able to deal with antitokens. For simplicity, let us
call the stage from which tokens arrive to the fork stage as the input
stage; assume there is only one input stage. Let us call the stages
to which the fork stage transmits tokens as the output stages. There
can be two or more output stages. When transmitting a token, its

C C

C

C
l

f b

Fi-1

Bi

~d

C
Fi,1

Fi,2

Bi+1,1

Bi+1,2C

Figure 6: Counterflow Fork Controller

C

C

C
l

b

Fi

Bi+1

~d

C

C
DATA

Fi-1,1

Fi-1,2

Bi,1

Bi,2

C

C
O

M
P

LE
T

IO
N

D
E

T
E

C
T

O
R s

f

fi-1,1

fi-1,2

Figure 7: Counterflow Join Controller

behavior is similar to that of MOUSETRAP fork. On the other hand,
when it receives antitokens, it must wait until it has received an
antitoken from each of its output stages before sending an antitoken
to its inputs stage.

Figure 6 shows our implementation of the counterflow pipeline
fork stage. The implementation is quite similar to the basic stage
controller (Figure 5), but with the following differences: (i) each
incoming B signal requires a separate C-element to condition it, and
(ii) one extra C-element is required to combine all of conditioned B
signals together.

4.2 Join Controller
The join controller is a key component in a counterflow system,

since it is this stage that generates the antitokens. In particular, the
join stage has multiple inputs, and has the ability to decide when
some of those inputs are not required; those inputs are then pre-
empted.

In order to generate the antitokens, the join stage needs logic to
determine if/when the inputs received are sufficient to compute the
output. Thus, a special type of completion detector, called a “suffi-
ciency detector,” is used on the input side of the join stage.

The implementation of the join controller is best understood by
relating it to the implementation of the basic stage controller of Fig-
ure 5. In particular, the basic stage controller can be regarded as a
degenerate case of a join, i.e. a basic stage is a one-way join. Thus,
in the basic controller, the f signal (which is a conditioned version
of the F input) is effectively a sufficiency signal: it indicates when
the sole input to the 1-way join is ready and, therefore, sufficient.

Therefore, in order to implement the join controller, the logic

616

f b
C

C

(fcn x ~dcn x fif)
+ (fcn x dcn x fel)

(fcn + dcn + fif)
x (fcn + ~dcn + fel)

C

C

(dcn x fcn)
+ (~dcn x l)

(~dcn + fcn)
x (dcn + l)

(~dcn x fcn)
+ (dcn x l)

(dcn + fcn)
x (~dcn + l)

Fif

Bif

Fcn

Bcn

Fel

Bel

dcn

fcn

fif

fel

l

F

B

s

Figure 8: An “If-Then-Else” Join Controller

Table 2: Determining the completion detector logic

fcn dcn fif fel s

0 0 0 - 0
1 0 1 - 1
0 1 - 0 0
1 1 - 1 1

equations of the basic controller are simply modified to replace the
f signal by a new sufficiency signal s:

• d:
set : f x b x l
reset : f x b x l

• l:
set : d x (s + b)
reset : d x (s + b)

The sufficiency signal s itself is generated using a sufficiency de-
tector, the implementation of which would be specific to any given
application (the next subsection provides an example).

Figure 7 shows our implementation of the join controller. The
main addition is the logic to determine sufficiency - shown as com-
pletion detector. This logic takes as input fi,1, fi,2, d, and the data
input from both the input streams. A toggle along the output indicates
sufficiency. Once sufficiency is determined, the controller generates
the outgoing token, acknowledgments along the input lines received
and antitokens along the other lines. The completion detector logic
depends on the specific logic implemented by the join stage. In the
next subsection, we present one such example.

4.3 If-Then-Else Controller
The join controller for if-then-else cases is a special kind of join

where an extra optimization can be applied. The antitoken along the
unwanted branch can be generated even before token to the next stage
is generated. This is because, once the condition bit is evaluated, the
join can immediately send an antitoken along the unwanted branch.
It however has to wait till the input arrives on the right branch be-
fore it can produce an outgoing token. This optimization does not
necessarily save time but it helps in killing computation along the
unwanted Branch by producing an early antitoken.

Figure 8 shows our implementation of the if-then-else join. Some
circuit details evident in the previous described general join stage
are deleted for clarity. The if-then-else join has 3 input channels - if
branch (with Fif and Bif control signals); else branch (with Fel and
Bel control signals); and the condition evaluation branch (with Fcn

and Bcn control signals). The join also has the condition bit d + cn

Table 3: Effectiveness with varying “if branch taken” probability

Probif Time Energy Normalized Energy
(%) (µsec) (104) units Throughput Savings (%)

5 3.36 35.94 0.95 -8.90
10 3.29 35.30 0.98 -6.96
20 3.17 34.62 1.01 -4.92
30 3.05 33.91 1.05 -2.77
40 2.91 33.06 1.10 -0.17
50 2.72 31.88 1.18 3.40
60 2.49 30.52 1.29 7.51
70 2.26 29.15 1.42 11.66
80 1.97 27.32 1.63 17.21
90 1.67 25.45 1.93 22.87
95 1.45 24.10 2.22 26.98

as input, used in the completion detector logic. For this specific join,
the completion detector can be implemented as follows. We first
draw a truth table specifying the output s for a given set of inputs .
The inputs in this case are fcn, dcn, fif and fel. Table 2 summarizes
the different cases. The cases in the truth table with s = 1, constitute
the minterms that set s. Other entries with s = 0reset s. The logic
can be implemented using a C-Element with input set and reset.

To generate logic that produce early antitokens, the same of ap-
proach described above can be used. The two C-Elements used to
compute Bif and Belse constitute the logic that resulted in the pro-
cess.

5. RESULTS
This section presents experimental results to demonstrate the ef-

fectiveness of our counterflow approach for implementing preemp-
tive architectures.

Experimental Setup. Several circuit examples were designed
and simulated to quantify the benefit of our approach. Each ex-
ample was implemented in two different ways: (i) using traditional
MOUSETRAP pipelines, to serve as the base case for comparison;
and (ii) using the proposed counterflow pipeline approach. All de-
signs were implemented in structural Verilog, and simulated using
the Verilog-XL switch-level simulator from the Cadence tool suite.
A simple delay and energy model was used: each C-element and each
single-bit latch was assumed to have a unit delay latency (= 1ns), and
unit energy consumption per transition. Function logic blocks were
modeled at a behavioral level.

Application I: Speculation. The first application considered is
an example consisting of a single if-then-else statement. The if-
computation branch was assumed to be relative low latency, with
only two pipeline stages. On the other hand, the else-computation
branch had a higher latency, with eight pipeline stages. The Boolean
condition was evaluated using a single pipeline stage. Each pipeline
stage had function logic with a fixed latency of five delay units.

The first set of experiments was aimed at observing the throughput
and energy benefits of our approach as the branch probability was
varied. At each branch probability, a total of 1000 distinct data items
were evaluated.

Table 3 summarizes the results. The first column lists Probif, the
probability that the if-branch is taken, for each simulation. This prob-
ability was varied from 5% to 95%. The second column indicates the
total time taken by the counterflow pipelined implementation to ex-
ecute the simulation run containing 1000 distinct data items. The
third column lists the total energy consumed. By comparison, the

617

Table 4: Effect of varying if-/else-computation latencies

Nif Nelse Normalized
Throughput

2 2 0.86
2 4 1.12
2 6 1.29
2 8 1.42
2 10 1.51

baseline MOUSETRAP implementation obtained an execution time
of 3.2µsec and energy consumption of 33 × 104 units; these num-
bers do not vary with the branch probability because this baseline
implementation does not use the new approach of this paper, and
therefore cannot preempt wasteful computation. Finally, the last two
columns present the throughput and energy numbers for the counter-
flow approach relative to the baseline implementation: normalized
throughput (i.e. speedup), and %age energy savings.

Discussion. As the probability of the if-computation branch being
taken increases, the benefit of the counterflow approach increases.
This is because the likelihood increases that the relatively expen-
sive else-computation will not be needed (and can therefore be pre-
empted). At very low probabilities (5–10%), however, the overheads
of the counterflow approach erode any potential benefit achieved, re-
sulting in a marginal decrease in throughput (up to 5%), and a slight
increase in energy consumption (up to 9%). At higher probabilities,
especially greater than 50%, the benefits of our approach are signifi-
cant: an increase in throughput by a factor of up to 2.22x, and up to
27% savings in energy consumption.

Another experiment was performed to study the impact of if-
computation and else-computation latencies on the effectiveness of
our approach. Table 4 summarizes the results of this experiment.
For these simulations, the if-computation latency (Nif) was fixed
at 2 pipeline stages, while the else-computation latency (Nelse) was
varied from 2 to 10 pipeline stages. The branch probability was fixed
at 70% for all cases. Once again the throughput of our counterflow
approach is presented normalized to the baseline MOUSETRAP
implementation. The results show that, as expected, the effective-
ness of the counterflow approach improves as the else-computation
blocks increases in its latency.

Application II: Eager Evaluation. The second application con-
sidered is an example consisting of a stage that is capable of ea-
ger evaluation, i.e. it can sometimes produce an output even when
one of its two inputs are not available. In particular, there are two
pipelines—one low-latency and the other high-latency—feeding into
the “eager” stage. The eager stage always requires input from the
low-latency pipeline to generate an output, but it may or may not
require input from the high-latency pipeline to compute the output.
Let Probeager represent the probability that input from the low-latency
pipeline alone is sufficient to compute the result (i.e., the result can
be “eagerly” computed). In our experiment, the low-latency pipeline
had 2 pipeline stages; the high-latency pipeline had 5 pipeline stages
with one of those five stages in turn containing a complex high-
latency logic function block. All pipeline stages had 5 units latency,
except for the complex function block which had 40 units of latency.
Simulations were performed at different Probeager. At each Probeager,
a total of 1000 distinct data items were evaluated in a simulation run.

Table 5 summarizes the results of this experiment. The first col-
umn lists Probeager, the probability that the result can be “eagerly”
evaluated. The next two columns present the total execution times
and energy consumption for the counterflow approach. By compar-

Table 5: Early output logic using counterflow protocol

Probeager Time Energy Normalized Energy
(µsec) (104 units) Throughput Savings (%)

5 4.37 31.74 0.92 -6.17
10 4.31 31.41 0.93 -5.04
20 4.18 31.37 0.96 -4.93
30 4.03 30.10 1.00 -0.67
40 3.83 29.52 1.05 1.28
50 3.60 28.82 1.11 3.61
60 3.36 28.15 1.19 5.84
70 3.10 27.49 1.29 8.05
80 2.83 26.83 1.41 10.27
90 2.57 26.23 1.56 12.28
95 2.40 25.80 1.67 13.71

ison, the baseline MOUSETRAP implementation obtained an exe-
cution time of 4.0µsec and consumed 30 × 104 units of energy, ir-
respective of the value of Probeager. The final two columns present
throughput and energy benefits of the counterflow approach relative
to the baseline MOUSETRAP approach.

Discussion. The results indicate a throughput improvement of up
to 1.67x and 13.7% improvement in energy usage at very high rates
of Probeager, i.e only the smaller branch input is sufficient most of the
time to compute the output. However, when eager evaluation is less
likely (especially less than 60%), the counterflow protocol is much
less beneficial.

6. CONCLUSION
This paper introduced a new conterflow pipeline style based on a

novel protocol that allows anti-tokens to flow backward through the
pipeline and preempt or cancel data tokens in the pipeline. Building
upon this pipeline style, a whole set of architectural templates were
introduced to enable the design of asynchronous pipelined systems
with useful features such as speculation, preemption and eager eval-
uation. Experimental analysis suggests promising throughput im-
provements and energy benefits.

7. REFERENCES
[1] C. Brej. Early Output and Anti-Tokens. PhD thesis, Department

of Computer Science, University of Manchester, 2005.
[2] C. Brej and J. Garside. Early output logic using anti-tokens. In

International Workshop on Logic Synthesis, 2003.
[3] A. Davis and S. M. Nowick. An introduction to asynchronous

circuit design. Technical Report UUCS-97-013, Dept. of
Computer Science, University of Utah, Sept. 1997.

[4] J. Hensley, A. Lastra, and M. Singh. An area- and
energy-efficient asynchronous booth multiplier for mobile
devices. In Proc. Int. Conf. Computer Design (ICCD), 2004.

[5] J. Hensley, A. Lastra, and M. Singh. A Scalable
Counterflow-Pipelined Asynchronous Radix-4 Booth
Multiplier. In Proc. Int. Symposium on Advanced Research in
Asynchronous Circuits and Systems, Mar. 2005.

[6] M. Singh and S. M. Nowick. MOUSETRAP: Ultra-high-speed
transition-signaling asynchronous pipelines. In Proc. Int. Conf.
Computer Design (ICCD), pages 9–17, 2001.

[7] R. F. Sproull, I. E. Sutherland, and C. E. Molnar. The
counterflow pipeline processor architecture. IEEE Design &
Test of Computers, 11(3):48–59, Fall 1994.

618

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

