
Current Path Analysis for Electrostatic Discharge
Protection∗

Hung-Yi Liu†, Chung-Wei Lin†, Szu-Jui Chou†, Wei-Ting Tu†, Chih-Hung Liu†, Yao-Wen Chang†‡, and Sy-Yen Kuo†‡

Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan†

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan‡

ABSTRACT
The electrostatic discharge (ESD) problem has become a
challenging reliability issue in nanometer circuit design. High
voltages resulted from ESD might cause high current densi-
ties in a small device and burn it out, so on-chip protection
circuits for IC pads are required. To reduce the design cost,
the protection circuit should be added only for the IC pads
with an ESD current path, which arises the ESD current
path analysis problem. In this paper, we first introduce the
analysis problem for ESD protection in circuit design. We
then model the circuit as a constrained graph, decompose
ESD connected components linked with the pads, and apply
the breadth-first search (BFS) to identify the ESD connected
components in each constrained graph and thus the current
paths. Experimental results show that our algorithm can de-
tect all ESD paths very efficiently and economically. To our
best knowledge, our algorithm is the first point tool available
to the public for the ESD analysis.

1. INTRODUCTION
The phenomenon of electrostatic discharge (ESD) exists ev-

erywhere in our daily life, such as a standing hair or an electric
shock by a doorknob. It occurs when an electrostatic voltage de-
velops and discharges as a current impulse. Although ESD only
induces a little discomfort to human, it can cause severe dam-
age in semiconductor fabrication. In a practical situation, ESD
often occurs between two or more devices with different electro-
static potentials, and the current impulses generated by ESD may
break circuits and burn devices out. For example, for a 0.13um
CMOS device designed for operation at 1.2V, the voltage drop
across a 2Ω power bus exceeds 20V and burns out the ultra-thin
gate oxides [1]. As the process technology enters the nanometer
era, devices size has continued to shrink and the breakdown volt-
age of the thin-oxide devices is usually less than 5V, making the
ESD damage occur easily and difficult to prevent [4]. As a result,
the prevention of ESD becomes one of the major concerns for IC
reliability.

∗This work was partially supported by Incentia Design Systems,
Inc. and NSC of Taiwan under Grant No’s. NSC 94-2215-E-002-
005, NSC 94-2215-E-002-030, and NSC 94-2752-E-002-008-PAE.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06 November 5–9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

There are many solutions to the ESD problem [1], for example,
by using antistatic coatings to prevent static charge generation
in wafers, using shielded materials to prevent ESD resulted from
human handling, and implementing protection circuits within the
chip. For protection circuits, the purpose is to find the discharging
path and protect the I/O pads of a chip. By applying a low-
impedance path to drain the ESD current safely, we can prevent
the relatively high ESD current from destroying the devices. If
ESD occurs between any pair of I/O pads in a chip, we will need
to protect all pairs of pads, requiring n(n−1)/2 protection circuits
for an n-pad chip. However, there might be some pairs of pads
without current paths between them, for which we need not to
protect [1]. Therefore, it is desirable to detect the current paths
and protect only the pads with current paths to save the cost for
circuit design.

As a relatively new design challenge, there is not much EDA
work on ESD protection in the literature (although there are nu-
merous publications on the circuit design for ESD protection [1,
4]). Very recently, Zhan et al. showed how to verify the protection
circuit design considering parasitic and devices at the post-layout
stage [5, 6].

In this paper, we first introduce the current path analysis prob-
lem for ESD protection in circuit design. To detect those pairs
of pads with current paths between them, we model the circuit
as a constrained graph, decompose ESD connected components
linked with the pads, reduce the graph, and apply the breadth-
first search (BFS) to identify the ESD connected components in
each constrained graph and thus the current paths. Experimen-
tal results show that our algorithm can detect all ESD paths
very efficiently and economically. For example, our algorithm
can detect all current paths in a circuit with more than 1.3 mil-
lion vertices in 2.66 seconds and consume only 44 MB memory
on a 1.6 GHz Intel Pentium 4 PC with 2 GB RAM. In contrast,
the well-known Floyd-Warshall all-pairs shortest paths algorithm
needs more than 2,007 seconds and 1,446 MB memory. It should
be noted that to our best knowledge, our algorithm is the first
point tool available to the public for the ESD analysis.

The rest of this paper is organized as follows. Section 2 formu-
lates the ESD current path analysis problem. Section 3 presents
the algorithm to identify all ESD current paths between pads.
Section 4 reports the experimental results. Finally, we conclude
this paper in Section 5.

2. PROBLEM FORMULATION
Given a netlist with the circuit hierarchy, we define a circuit

block and a pad as follows:

Definition 1. A circuit block is a circuit or a sub-circuit con-
taining the following components: resistors, diodes, MOS tran-
sistors, and other circuit blocks. A top-level circuit block is the
topmost block in the circuit hierarchy. A netlist has at least one
circuit block and exactly one top-level circuit block.

510

A

9

VCC

B

GND

11

8

VCC3A

15

20

10

Pad

Non-pad

Figure 1: An example netlist and its ESD paths denoted

by the dotted lines.

It should be noted that it is sufficient to consider MOS transis-
tors, diodes, and resistors for modern ESD protection. A capac-
itor can reduce ESD-induced voltage and thus even alleviate the
ESD effect, and modern digital designs seldom consider inductors
for on-chip ESD protection. Therefore, capacitors and inductors
can be ignored in current practical applications for ESD protec-
tion. Further, our modeling is general and even applicable to
non-MOS circuits, such as BJTs which can be similarly modeled
as those for MOS’s. (See Section 3.2.1 for more detail.)

Definition 2. A pad is an I/O pin of a circuit block.

Our objective is to detect all pairs of pads between which there
is a current path. If a current path between two pads is detected,
a back-to-back diode can be inserted between the two pads to
protect the path. A current path can include any number of
resistors and diodes and propagate between source and drain,
from gate to source, and from gate to drain in a MOS transistor.
Considering practical circuit operation, we further define an ESD
path as follows:

Definition 3. An ESD path is a current path with the fol-
lowing two constraints:

1. An ESD path can propagate between gate-source or gate-
drain at most once. Practically, if an ESD voltage occurs,
even a small voltage, the weakest current paths between
two pads would be burned out and the chip would fail.
Therefore, this constraint tries to detect the weakest cur-
rent paths, i.e., the paths which propagate between gate-
source or gate-drain at most once.

2. An ESD path cannot pass through any other pads except the
two terminal pads of this ESD path. For instance, assuming
that there is a pad, p2, in the path from p1 to p3, the
protection for the path from p1 to p2 and from p2 to p3 will
ensure that the path from p1 to p3 is also protected. Hence,
a current path containing any pad between two terminal
pads is not regarded as an ESD path.

Note that the ESD path is undirected since we can ignore the
direction of current by using a symmetric back-to-back diode to
protect an ESD path.

With the definition above, we can formulate our problem as
follows:

Problem 1. ESD Analysis (ESDA): Given a netlist with
circuit hierarchy, find every pair of pads with an ESD path be-
tween them for ESD circuit protection.

Primitive Circuit Processing

ESD Connected
component decomposition

Constrained graph
construction

Pad matching

NetlistStart

No more
unprocessed circuits?

Circuit block
processing ordering

Yes

ESD pad
pairs

Output ESD pad pairs

End

No

Figure 2: The flowchart of the proposed approach.

For example, as shown in Figure 1, an ESD current can propa-
gate from A to VCC and GND through a MOS transistor. How-
ever, the current cannot propagate from A to B according to the
definition that an ESD path includes at most one gate-source or
gate-drain path. Therefore, there are totally five pairs of pads
between which there is an ESD path: (A, VCC), (A, GND), (B,
VCC3A), (B, GND), and (VCC, GND).

3. ALGORITHM
As shown in Figure 2, a bottom-up approach is proposed to ex-

ploit the circuit hierarchy. For a hierarchical circuit, a high-level
circuit block could embed low-level circuit blocks through circuit
references. Since the low-level circuit blocks may be frequently
referenced, it is inefficient to top-down (recursively) process each
sub-circuit block once it is referenced. Therefore, we shall apply
a bottom-up circuit block processing ordering to speed up the
processing (see Section 3.1).

Definition 4. A primitive circuit block is defined as a cir-
cuit block which references no sub-circuit block, or the sub-circuit
blocks whose ESD paths have been detected.

For a primitive circuit block, detecting its ESD paths is differ-
ent from the traditional reachability problem [3], due to the ESD
path definition (see Definition 3). In this paper, we first model a
primitive circuit block as a constrained graph (see Section 3.2.1).
Given a constrained graph, the ESD connected components in the
graph are decomposed (see Section 3.2.2). After that, the stage
of pad matching detects all ESD paths of the primitive circuit
block (see Section 3.2.3). Finally, we prove the correctness of our
algorithm.

3.1 Circuit Block Processing Ordering
Hierarchical circuit-block references can be represented by a

topology tree. These references form a processing order among
circuit blocks. As shown in Figure 3, where circuit block TOP
references circuit blocks A and B, this example implies that A
and B have to be processed, i.e., be detected their ESD paths,
before TOP. Thus, when detecting the ESD paths of TOP, we
have already known the ESD paths of the blocks referenced by
TOP. Performing post-order traversal (POT) on the topology tree
defines a feasible processing order for the circuit blocks. A pro-
cessing order Pf is feasible if, for each circuit block b in Pf , all
sub-circuit blocks of b have been processed before b in Pf . For
example, the POT order in Figure 3, <F, F, C, D, A, F, F, C,
F, E, B, TOP>, is a feasible processing order, in which {F} is
processed before C, {F, C, D} are processed before A, and so on.

However, since a sub-circuit block can be referenced repeat-
edly, it is not necessary to detect its ESD paths whenever it is

511

TOP

A

C D

F

B

F F F

C

F

E

Figure 3: An example hierarchical-circuit topology tree.

The nodes and edges represent circuit blocks and circuit

block references, respectively. In this example, TOP ref-

erences A and B, A references C and D, and so on. The

dotted line traverses the tree in a post-order, <F, F, C,

D, A, F, F, C, F, E, B, TOP>. The dashed line traverses

the tree in a post-order with redundancy removal, <F,

C, D, A, E, B, TOP>, in which the gray nodes are re-

dundant (already visited).

referenced. As illustrated in Figure 3, performing POT with re-
dundancy removal on the topology tree defines an irredundant
processing order for the circuit blocks. A processing order Pi is
irredundant if Pi is feasible and each circuit block b appears in
Pi exactly once. In the topology tree example, the processing
order, <F, C, D, A, E, B, TOP>, is an irredundant order. To
remove the redundancy during POT, we establish a hash table
saving processed circuit blocks and their ESD paths detected, for
the redundancy check and for the ESD path lookup. Thus we can
efficiently detect all ESD paths bottom-up in the top-level circuit
block.

3.2 Primitive Circuit Processing
A primitive circuit block references no sub-circuit block or sub-

circuit blocks whose ESD paths have been detected (Definition 4).
Hence, we devise the following three stages to process a primitive
circuit block: Constrained Graph Construction models the netlist
describing the primitive circuit block as a constrained graph, ESD
Connected Component Decomposition detects all ESD connected
components linked with pad vertices of the constrained graph,
and Pad Matching pairs the pads bridging the ESD paths accord-
ing to the connection of the detected ESD connected components.

3.2.1 Constrained Graph Construction
A constrained graph models the device interconnection in a

primitive circuit block. Physical device terminals (connections)
are modeled as graph vertices (edges). There are two types of
vertices: pad vertex (p-vertex for short) represents the pad of
the primitive circuit block; non-pad vertex (np-vertex) represents
all the device terminals except the pads. Besides, edges are also
classified into two categories: constrained edge (c-edge) can be
involved in an ESD path at most once; non-constrained edge (nc-
edge) has no occurrence limit appearing in an ESD path.

Using these pre-defined vertices and edges, we construct the
constrained graph according to the device types as follows:

• Resistors and Diodes: Since a current can always prop-
agate through resistors and diodes, two corresponding ver-
tices of terminals of these devices are connected by an nc-
edge, as shown in Figure 4 (a), (b), and (c). Besides, a
vertex is labelled as a p-vertex (np-vertex) if it is (is not) a
pad of the primitive circuit block.

• MOS Transistors: A MOS transistor is referenced with
three terminals: gate, source, and drain. To meet the first
constraint of the ESD path definition (Definition 3), each
gate-source and gate-drain path is modeled by a c-edge. On
the other hand, we use an nc-edge to model a source-drain

Graph Vertex

Non-constrained edge Constrained edge

A B

(c)

G

D

S
(e)(d)

G

D

S

B

(b)
A

(a)

A B

Physical terminal

Figure 4: (a) A resistor with its two terminals. (b) A

diode with its two terminals. (c) The constrained graph

model of a resistor/diode. (d) A MOS transistor with

its three terminals: gate, source, and drain (denoted by

G, S, and D, respectively). (e) The constrained graph

model of a MOS transistor.

path. Figure 4 (d) and (e) show the graph modeling for a
MOS. Also, a vertex is labelled as a p-vertex (np-vertex) if
it is (is not) a pad of the primitive circuit block.

• Sub-Circuit References: A primitive circuit block ref-
erences blocks whose ESD paths have been detected (see
Definition 4). Assume that there are two terminals, t1 and
t2, in a primitive circuit block and their corresponding ver-
tices in the constrained graph are v1 and v2. If t1 and t2 are
connected to two pads of a referenced block, p1 and p2, re-
spectively, we can determine the connection types of v1 and
v2 by looking up the connection types of p1 and p2 through
the access to the hash table established in Section 3.1. All
cases are listed below:

1. If p1 and p2 are connected by an ESD path involving
no c-edge, add an nc-edge between v1 and v2.

2. If p1 and p2 are connected by an ESD path involving
one c-edge, add a c-edge between v1 and v2.

3. If p1 and p2 are not connected by any ESD path, do
nothing.

Finally, label v1 (and v2) as a p-vertex if it is also a pad of
the primitive circuit block; label it as an np-vertex, other-
wise.

An example constrained graph is given in Figure 5, which is
constructed from the netlist shown in Figure 1, using the con-
struction methods presented in this subsection.

3.2.2 ESD Connected Component Decomposition
In this section, we propose an ESD Connected Component De-

composition (ECCD) algorithm (see Figure 6) which decomposes
ESD connected components linked with p-vertices from a con-
strained graph.

Definition 5. Let G = (V, E) be a constrained graph, where
V and E are the vertex set and the edge set, respectively. Let
Vnp ⊆ V be the non-pad vertex set and Ec ⊆ E be the constrained
edge set. An ESD connected component is a vertex set C ⊆ Vnp.
∀vi, vj ∈ C, i �= j, there is a path between vi and vj and this path
involves no edge e ∈ Ec.

By the definition, an ESD connected component (ECC) of a
constrained graph contains only np-vertices, and for each np-
vertex in the ECC, there is always a path leading to every other

512

15 20

10

11

8 9

Non-pad vertex Pad vertex

Non-constrained edge Constrained edge

A

BVCC

GND

VCC
3A

Figure 5: The constrained graph constructed from the

netlist in Figure 1, using the construction methods pre-

sented in Section 3.2.1.

np-vertices in the ECC by nc-edges. Following the definition, our
objective in this stage is to find in a constrained graph:

1. all the ECCs linked with p-vertices in the constrained graph,

2. p-vertices linked to each ECC by c-edges or nc-edges, and

3. precedent neighboring ECCs linked to each ECC by c-edges.

Among them, we define the precedent neighboring ESD con-
nected components below:

Definition 6. Assume the ECCD algorithm decomposes ESD
connected components in the following order PECC =< ECC1,
ECC2, . . . , ECCn >, where ECCi is an ESD connected com-
ponent, 1 ≤ i ≤ n. The precedent neighboring ESD connected
components of ECCi is a set Si

PN = {ECCj | ECCj ∈ PECC ,
j < i, and ECCj is linked to ECCi by at least one constrained
edge}.

Using the constrained graph in Figure 5 as an example, we ex-
plain the ECCD algorithm described in Figure 6 to decompose
the ESD connected components linked with p-vertices. After the
initialization steps in lines 1–4 of the ECCD algorithm, we assume
that the p-vertex enumeration order in line 5 is <GND, VCC3A,
B, VCC, A>. Starting from the p-vertices, vp is GND in the
beginning. In line 6, we have an np-vertex vi being the vertex
15 and vertex 15 is not visited. Now a new ESD connected com-
ponent ECC1 is ready to expand using the breadth-first search
(BFS); see lines 15–27. In lines 18–19, vertex 15 collects GND
and VCC as the p-vertices linked to ECC1 using nc-edges, and
collects A using a c-edge. However, vertex 15 does not link to
any np-vertex by nc-edges. Therefore, the first-run BFS finishes,
resulting in the ECC1 listed in the first row of Table 1. Now, the
set of ESD connected components, SECC , has the first element,
ECC1 (line 28).

Back to line 6, vi has another choice, vertex 20, expanding
another ESD connected component, ECC2. During the BFS of
ECC2, vertex 20 collects GND as the p-vertex linked to ECC2

using an nc-edge, and collects B using a c-edge. In addition,
vertex 20 collects a precedent neighboring ESD connected com-
ponent, ECC1, through visiting vertex 15 (lines 20–22). On the
other hand, vertex 20 also visits the np-vertex, vertex 11, trying
to expand ECC2 and to collect more p-vertices and more prece-
dent neighboring ESD connected components. After the second
BFS run finishes, the resulting ECC2 is united to the set, SECC .
To this point, the p-vertex, GND, cannot further expand.

Similar to the aforementioned steps, VCC3A, B, and VCC de-
tect the ESD connected components, ECC3, ECC4, and ECC5,
respectively. However, the p-vertex, A, detects no ESD connected
component, since all the np-vertices have been visited. Finally,
the ECCD algorithm returns the set of the ESD connected compo-
nents detected from the given constrained graph. In this example,

Algorithm: ECCD(Cp, H, G, SECC)
Input: Cp /* primitive circuit block ID */

H /* global hash table */
G = (V, E) /* constrained graph of Cp */

Output: SECC

/* set of ESD connected components */
1 Clear SECC

2 Clear ESD connected component C(id, Vp, SPN)
/* id: ID of C */
/* Vp: set of p-vertex linked to C */
/* SPN: set of precedent neighboring ESD */
/* connected components of C */
3 Clear queue Q
4 Component count n = 0
5 for each p-vertex vp ∈ V
6 for each vertex vi adjacent to vp

7 if vi is a p-vertex /* a trivial ESD path */
8 H(Cp) ← H(Cp) ∪ {path(vi, vp)}
9 Go to line 6

/* to find an ESD connected component */
10 if vi is not visited
11 n++ /* find a new component */
12 C.id = vi.componentID = n
13 vi.visit = true
14 Q.push(vi)
15 while Q is not empty /* BFS starts */
16 vj = Q.first()
17 for each vk adjacent to vj

18 if vk is a p-vertex
19 C.Vp ← C.Vp ∪ {(vk, edge(vj , vk))}
20 else if vk is visited

/* vk here is an np-vertex */
21 if edge(vj , vk) is a c-edge
22 C.SPN ← C.SPN∪

{vk.componentID}
23 else if edge(vj , vk) is an nc-edge

/* vk here is not visited */
24 vk.visit = true
25 vk.componentID = n
26 Q.push(vk)
27 Q.pop() /* BFS ends */
28 SECC ← SECC ∪ {C}
29 Clear C
30 Return SECC

Figure 6: The ESD Connected Component Decomposi-

tion (ECCD) algorithm.

SECC = {ECC1, ECC2,
ECC3, ECC4, ECC5}, and all the related information is listed in
Table 1.

Since all the np-vertices in the constrained graph, G = (V, E),
are visited no more than once—an np-vertex surrounded by sev-
eral levels of c-edges may never be visited—the ECCD algorithm
performs all the needed BFS’s in O(|V |
+ |E|) time. During one of the BFS’s, the ECCD collects p-
vertices in O(p) time for each visited p-vertex (see lines 18–19),
where p is the average number of the visited p-vertices of an
ESD connected component, and collects precedent neighboring
ESD connected components in O(nPN) time for each visited np-
vertex via c-edges (see lines 20–22), where nPN is the average
number of precedent neighboring ESD connected components of
an ESD connected component. Let Vp be the visited p-vertex set
and Vnpc be the set of np-vertices visited by c-edges. The time-
complexity of the ECCD algorithm is O(p |Vp| + nPN |Vnpc| +
|V \ Vp \ Vnpc| + |E|). From the fact that p ≤ |V |, |Vp| ≤ |V |,
nPN ≤ |V |, |Vnpc| ≤ |V |, and |E| = O(|V |2), the time complexity
of the ECCD algorithm is O(|V |2).

Note that the ECCD algorithm decomposes ESD connected

513

ESD Connected Vertex P-vertex Linked P-vertex Linked Precedent Neighboring
Component by NC-Edge by C-Edge ESD Connected Component

ECC1 15 GND, VCC A -
ECC2 11, 20 GND B ECC1
ECC3 9 VCC3A - -
ECC4 8 B VCC3A ECC2, ECC3
ECC5 10 VCC - ECC2

Table 1: The ESD connected components decomposed from the constrained graph in Figure 5 using the ECCD

algorithm, assuming the decomposition order is < ECC1, ECC2, ECC3, ECC4, ECC5 >.

Connected
component

Pad vertex

Non-constrained edge Constrained edge

(a)

(c)

(d)
Pad 1 Pad 2

(b)
Pad 1 Pad 2

Pad 1 Pad 2

Pad 1 Pad 2

Pad 1 Pad 2or

Figure 7: The four feasible connection types of an ESD

path.

components linked with p-vertices only, instead of all ESD con-
nected components. This is why we check only p-vertices in line
5 in the ECCD algorithm. To test the effect of the p-vertex iden-
tification on the efficiency of the ECCD algorithm, we also imple-
mented a version of the ECCD algorithm without p-vertex iden-
tification (Algorithm ECCD-WPI), which decomposes all ESD
connected components from a constrained graph, for compara-
tive study (see Section 4).

Theorem 1. The ESD paths detected by ECCD (which de-
composes ESD connected components linked with p-vertices only)
are identical to those detected by ECCD-WPI (which decomposes
all ESD connected components).

Proof: For an ESD path between two pads, there are four
possible combinations of the two pads as follows:

1. The two pads are linked to the same ESD connected com-
ponent via nc-edges, as shown in Figure 7(a).

2. The two pads are linked to two different ESD connected
components via nc-edges, and the two components are linked
via a c-edge, as shown in Figure 7(b).

3. One of the pads is linked to an ESD connected component
via an nc-edge, and the other pad is linked to the compo-
nent via a c-edge, as shown in Figure 7(c).

4. The two pads are directly linked to each other, as shown in
Figure 7(d).

For all connected components shown in Figure 7, they are all
linked with p-vertices. Hence, only the connected components
linked with p-vertices need to be decomposed. For this reason,
ECCD can indeed handle these four cases, and the ESD paths
detected by ECCD are the same as those detected by ECCD-
WPI.

3.2.3 Pad Matching
After the ESD connected component decomposition stage, four

feasible connection types between two pads are constructed as
those mentioned in the proof of Theorem 1. Among them, the
type-4 ESD path is detected in the ECCD algorithm (lines 7–8).
Therefore, in this stage, we do not need to match the pads of this
type. Besides, the type-1 path has a higher priority than all the

(a)

A
(b)

0 B
1

S

Vertex
D

G 0

1

Figure 8: Graph connections used in the FW algorithm.

(a) a resistor or a diode. (b) a MOS transistor (the gate,

source and drain are denoted by G, S and D, respec-

tively).

other connection types. That is, a path, P1, involving no c-edge
is given a higher priority than a path, P2, involving one c-edge,
for that P1 can conduct more ESD paths in a higher-level circuit
blocks than P2.

Given the ESD connected components returned from the ECCD
algorithm, we can match the pads according to the feasible con-
nection types. For example, in Figure 5 and Table 1, we have
detected the ESD connected components using the ECCD algo-
rithm. Now for each ESD connected component, we match its
p-vertices according to the type-1 connection: (GND, VCC), and
the type-3 connection: (A, GND), (A, VCC), (GND, B), and (B,
VCC3A). In addition, for each ESD connected component and
its precedent neighboring ESD connected components, we match
their p-vertices according to the type-2 connection: (GND, VCC),
(GND, B) and (B, VCC3A). There are also type-4 connections
having been detected in the ECCD algorithm: (A, GND) and
(A, VCC). Considering the path priority, the resulting matching
is type-1: (GND, VCC), type-2: (GND, B) and (B, VCC3A), and
type-3: (A, GND) and (A, VCC).

Finally, these paths are saved in the hash table for the sub-
circuit references mentioned in Section 3.2.1. In the above exam-
ple, (GND, VCC) is saved as the first reference case, while the
others are saved as the second one.

4. EXPERIMENTAL RESULTS
We implemented our algorithms, ECCD and ECCD-WPI, in

the C/C++ language on a 1.6 Ghz Intel Pentium 4 PC with 2
GB memory under Linux 2.6 operating system. There are ten in-
dustrial circuits from a leading design service company as shown
in Table 2. As shown in the last three columns, the number of
ESD paths needed to be protected may just be a small portion
of all pad pairs; the percentage of ESD paths ranges from 0.8%
to 37%. The data reveal that we can save significant circuit over-
heads by identifying the potential ESD paths and protecting only
those paths.

We compare our algorithms with one based on the Floyd-Warshall
all-pairs shortest paths algorithm [2]. The comparative algorithm,
called FW, transfers the circuit to a weighted undirected graph
by the following rules:

1. A resistor or a diode is transferred into an edge with weight,
0, as shown in Figure 8 (a).

2. A MOS transistor is transferred to three edges as shown in
Figure 8 (b). The source-drain edge is with weight, 0; the
gate-source or gate-drain edge is with weight, 1.

514

Number of ESD Path %
Circuit Pads Circuit Blocks Vertices References of Circuit Blocks ESD Paths (A) All Paths (B) (A/B)
Ind. 1 261 73 4060 917 601 33930 1.77
Ind. 2 542 317 17129 43424 1234 146611 0.84
Ind. 3 15 436 56267 56635 39 105 37.14
Ind. 4 26 604 63026 59675 65 325 20.00
Ind. 5 28 263 102603 829859 55 378 14.55
Ind. 6 28 295 156306 797381 53 378 14.02
Ind. 7 69 840 424202 1675863 95 2346 4.05
Ind. 8 69 1411 735271 3394388 95 2346 4.05
Ind. 9 69 2193 1016038 5036407 102 2346 4.35
Ind. 10 69 2601 1339677 5176763 136 2346 5.63

Table 2: The parameters of the ten industrial circuits. The number of vertices represents the total vertices of the

flattened circuit if we expand all sub-circuits in the netlist.

FW ECCD-WPI ECCD
Circuit CPU Time (s) Memory (MB) CPU Time (s) Memory (MB) NDECC CPU Time (s) Memory (MB) NDECC
Ind. 1 8.88 62 3.02 1 3164 0.03 1 916
Ind. 2 9.37 63 3.61 1 9178 0.04 1 2368
Ind. 3 13.39 72 4.87 1 28894 0.07 1 11528
Ind. 4 14.58 86 5.59 1 33446 0.09 1 13291
Ind. 5 93.11 646 67.46 47 15042 1.10 26 1601
Ind. 6 96.36 638 67.55 46 15175 1.06 26 1633
Ind. 7 164.20 699 80.56 53 42547 1.43 26 6095
Ind. 8 333.21 805 102.15 66 76176 2.03 25 10189
Ind. 9 1559.44 937 125.30 78 130432 2.61 28 24461
Ind. 10 8550.29 1097 133.11 80 221389 2.78 44 68515

Table 3: Comparison of the three algorithms. NDECC is the abbreviation of “number of decomposed ESD connected

components.”

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400

C
P
U

T
i
m
e

(
s
e
c
o
n
d
)

Number of Vertices (thousand)

FW
ECCD-WPI

ECCD

Figure 9: The number of vertices versus CPU time of

the three algorithms.

Based on this model, the ESD path detection problem is re-
duced to a graph-search problem to examine if there is a path
with its total weight being 0 or 1 between two pads. This is done
by the Floyd-Warshall all-pairs shortest paths algorithm.

The three algorithms (ECCD, ECCD-WPI, and FW) detect
the same ESD paths for all test circuits. Table 3 shows the CPU
time and memory usages of the three algorithms. In Figure 9,
the CPU time (in logarithmic scale) is plotted as a function of
the number of vertices for each of the three algorithms. As shown
in Table 3 and Figure 9, ECCD is about 50X faster than ECCD-
WPI, and ECCD-WPI is significantly faster than FW (the larger
the circuit, the bigger the runtime difference). For example, when
the number of vertices in the circuit reaches 1,339,677 (Ind. 10),
ECCD still completes the computation in 2.78 seconds, while the
ECCD-WPI requires more than 133 seconds and FW needs more
than 8,550 seconds. Besides, ECCD is much more economical in
memory usage than ECCD-WPI and FW.

It is also shown in Table 3 that the number of decomposed
ESD connected components of ECCD is much smaller than that
of ECCD-WPI. Taking the largest circuit (Ind. 10) for example,
the ECCD decomposes 68,515 ESD connected components while
the ECCD-WPI decomposes 221,389 ones. Therefore, our ECCD
algorithm is very efficient and economical. This difference in the
number of decomposed ESD connected components also indicates

that the connected relations between vertices are often sparse in
a real circuit. It also implies that the ESD protection for all pads
is really extravagant, and the ESD path detection in this work
can indeed reduce the design cost.

5. CONCLUSIONS
We have proposed the first ESD detection algorithm in circuit

design to efficiently detect all pads in danger of an ESD viola-
tion. Experimental results have shown that our algorithm is very
efficient and economical. Along with the back-to-back diode pro-
tection, a circuit is more well-protected from the ESD threat and
more reliable.

6. ACKNOWLEDGEMENTS
We thank Mr. Chih-Yang Peng and Dr. Yu-Wei Chen of Fara-

day Technology Corporation for their patient and valuable con-
sultation on the industrial ESD practices.

7. REFERENCES
[1] A. Amerasekera and C. Duvvury, ESD in Silicon

Integrated Circuits, 2nd edition, John Wiley & Sons, 2002.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,
Introduction to Algorithms, 2nd edition, The MIT Press,
2001.

[3] E. Nuutila, “Efficient Transitive Closure Computation in
Large Digraphs,” Ph. D. dissertation, Mathematics and
Computing in Engineering Series, no. 74, Helsinki, 1995.

[4] B. P. Wong, A. Mittal, Y. Cao, and G. Starr, Nano-CMOS
Circuit and Physical Design, John Wiley & Sons, 2005.

[5] R. Zhan, H. Feng, Q. Wu, H. Xie, X. Guan, G. Chen, and
A. Wang, “ESDInspector: A New Layout-Level ESD
Protection Circuitry Design Verification Tool Using a
Smart-Parametric Checking Mechanism,” IEEE Tran.
Computer-Aided Design, vol. 23, no. 10, pp. 1421–1428,
2004.

[6] R. Zhan, H. Xie, H. Feng, and A. Wang, “ESDZapper: A
New Layout-level Verification Tool for Finding Critical
Discharging Path Under ESD Stress,” Proc. ASPDAC, pp.
79–82, 2005.

515

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

