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ABSTRACT
Manufacturing process variations lead to circuit timing variability
and a corresponding timing yield loss. Traditional corner analysis
consists of checking all process corners (combinations of process
parameter extremes) to make sure that circuit timing constraints
are met at all corners, typically by running static timing analysis
(STA) at every corner. This approach is becoming too expensive
due to the exponential increase in the number of corners with
modern processes. As an alternative, we propose a linear-time
approach for STA which covers all process corners in a single
pass. Our technique assumes a linear dependence of delay on
process parameters and provides tight bounds on the worst-case
circuit delay. It exhibits high accuracy (within 1-3%) in practice
and, if the circuit has m gates and n relevant process parameters,
the complexity of the algorithm is O(mn).

1. INTRODUCTION
The continuous scaling of VLSI technology has led to an in-

crease in the impact that manufacturing process variations can
have on circuit delays. These process variations can include die-
to-die and within-die process variations, and more generally they
can include supply voltage and temperature variations.

One traditional approach to timing verification, at least for
ASIC’s, is to make sure that a circuit passes its timing require-
ments at every process corner, using static timing analysis (STA).
We will refer to this as traditional corner analysis. A loose defini-
tion of a “process corner” is that it is a vector of extreme values of
all process parameters under consideration. However, such tech-
niques, which involve performing STA over all corners, can be
time consuming as the number of corners can be exponential in
the number of process parameters under study. Moreover, such
methods usually do not allow for the incorporation of within-die
variations into the timing analysis of a circuit.

With the increase in the number of interesting process vari-
ables in modern processes, the increased cost of traditional cor-
ner analysis has become a concern. One alternative approach has
been statistical static timing analysis (SSTA) [5, 4, 7, 1, 10, 6].
In SSTA, process parameters are considered to be random vari-
ables (RV’s), and they lead to other RV’s that model cell delays
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and signal arrival times. However, SSTA has certain problems of
its own. For one thing, it depends on knowledge of correlations
among within-die features, which are not easily available. Also,
it is not necessarily very cheap, especially when one needs to use
principal components analysis to resolve the within-die correla-
tions issue.

In this paper, we propose a novel technique for all-corner anal-
ysis in a single-shot, with an approach that looks very much like
a single run of STA. This is achieved by using linear models of
delay (in terms of underlying parameters) and propagating sen-
sitivities through the circuit. The computational complexity of
the algorithm will be seen to be O(mn), where m is the number
of gates or cells in the circuit and n is the number of process
parameters under consideration. Compare this with the cost of
traditional corner analysis, which is O(m2n). Our approach is
not ideal, it does incur some over-estimation of the worst case
delay, for example, but the over-estimation is negligible, in the
1-3% range for the circuits we have tested.

The rest of this paper is organized as follows. An overview
is given in section 2, which conveys the salient features of our
technique including the delay model and the scope of the work.
A description is then given in section 3, which is the core of the
paper, of the propagation technique through a single logic gate,
cell, or stage. Section 4 is a brief description of circuit level prop-
agation and section 5 describes implementation issues. Finally,
section 6 presents empirical validation results and concluding re-
marks are given in section 7.

2. OVERVIEW
The general idea of our approach is very similar to traditional

STA, except that instead of using specific values of arrival times
and delays, we represent them as affine linear functions of the
underlying process parameters.

2.1 Linearity
Linearity is not too strong an assumption, as one may easily

verify by circuit simulation on a modern process, and it has been
widely adopted recently in the context of SSTA (e.g., in [10]).
At face value, propagating linear functions in a timing graph, in
the context of STA, would seem problematic because, while the
summation of two linear functions is also a linear function, this
is not true when one considers the “max” operation which must
be applied at every node of the timing graph. For instance, in
the simplest case when delay depends linearly on a single param-
eter, such as in Fig. 1, the max of two intersecting straight line
segments ab and cd is a broken line aed. In our work, instead of
the true maximum of two planes, which is not a plane, we will use
a new plane which is an upper bound on the delay at all points.
Thus, in Fig. 1, we would use the dashed line ad in place of the
true maximum aed. We will only be concerned with the accuracy
(tightness of this upper bound) at the process corners and not at
any nominal mid-range points. The trick is to do this efficiently,
and with good accuracy. It looks easy in the 1-D case, but it is
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Figure 1: A simple 1-D case

not so simple in general.
As a final comment on the linearity question, we should men-

tion that, even if the linear dependence of gate delay on process
parameters is not strictly valid, one can still apply the proposed
technique by first constructing a linear expression which is an
upper bound on whatever non-linear surface one may have for
describing the true dependence of delay on these parameters, and
then use that linear expression in place of the true delay, in our
algorithm.

2.2 Delay Model
All delays and all arrival times in the logic circuit will be cap-

tured as affine linear functions of normalized process parame-
ters, whose values range between −1 and +1. We will refer to
these functions as delay hyperplanes; if there are n process pa-
rameters under consideration, these functions represent planes in
(n + 1)-dimensional space. Normalizing a process parameter is a
trivial operation, which can be illustrated with a simple example.
Suppose that the delay of a logic gate depends linearly on one
process parameter, say Vt, according to D = α0 + s∆Vt, where
−0.05V ≤ ∆Vt ≤ 0.05V and s has units of sec/Volt. This process
parameter can be normalized, i.e., made to vary between −1 and
+1, by simply multiplying s by 0.05V , leading to a new sensi-
tivity coefficient α = (0.05V )s whose units are sec. If a unitless
variable X, which varies between −1 and +1, is used to represent
the normalized threshold voltage, then the gate delay can now be
written as D = α0 + αX.

In general, having normalized all process parameters, a delay
hyperplane is captured by a linear expression, as follows:

D = α0 + α1X1 + α2X2 + · · · + αnXn (1)

where the Xi are the normalized process parameters, α0 is the
nominal delay, and αi are the sensitivities of delay D to the dif-
ferent normalized process parameter variations. A corner C is
defined as a set of values of all the normalized process parame-
ters, where each of the parameters takes a value of either −1 or
+1. Therefore C = (X1, X2, · · · , Xi, . . . , Xn), where Xi = ±1
for 1 ≤ i ≤ n. If the total number of process parameters under
consideration is n, then the total number of corners is 2n.

The delay of a hyperplane at a corner is the value obtained
by substituting values of the coordinates of the corner in the
equation of the hyperplane. Thus, if for a certain hyperplane the
delay at corner C is DC , then the point (C, DC) belongs to this
plane in (n+1)-dimensional space. We also use the notation D(C)
to refer to the delay of hyperplane D at corner C. Finally, we will
use the terminology “height of a point” in a hyperplane to refer
to the delay of that point. This will help provide some intuition
for the various operations that we will perform on hyperplanes.

2.3 Scope of the Work
In traditional corner analysis, one is typically concerned with

global die-to-die variations, not with within-die variations. The
true reason for this is the exponential complexity of traditional
corner analysis. It becomes too expensive to enumerate combi-
nations of within-die variations. However, due to the linear time
complexity of our approach, as will be seen below, it is actually
possible to apply it to within-die variations as well. Indeed, the
only requirement on our variables Xi in (1) is that their vari-
ous combinations be meaningful process corners that one cares

about. Some of them may be physical, some may be voltage or
temperature, some may be global, some local, etc. In the paper,
we will simply refer to the Xi as process parameters and to their
combinations as process corners, without regard to exactly what
type of parameters they are.

Due to space limitations, and for clarity of the presentation,
the description of the technique in this paper will be somewhat
limited. For one thing, we will focus on combinational circuits,
which are the crux of the problem, and we will only discuss the
problem of estimating the largest circuit delay. In other words, we
focus on set-up constraints. However, the work is applicable as-is
to hold constraints, and we will show a couple of charts at the end
that illustrate our results on estimation of the minimum circuit
delay (required to check for hold time violations). Furthermore,
if one includes within-die variables, then the technique becomes
useful for checking the margins that one needs to leave for clock
skew and other mismatch related effects.

3. METHOD AT LOGIC STAGE LEVEL
In this section, we present a method for finding the delay hy-

perplane at the output of a single logic stage, given the delay
hyperplanes for all arrival times at its inputs. A logic stage is
defined as a cell and its output interconnect structure. The out-
put hyperplane becomes an input for the analysis of downstream
stages. We assume that the logic cell and its output interconnect
have already been characterized, so that the delay hyperplanes for
the timing arcs of the cell delay itself are also available. Given a
cell with u inputs, let its input arrival time hyperplanes be:

D1 = s
(1)
0 + s

(1)
1 X1 + s

(1)
2 X2 + · · · + s

(1)
n Xn

D2 = s
(2)
0 + s

(2)
1 X1 + s

(2)
2 X2 + · · · + s

(2)
n Xn

·
· (2)

·
Du = s

(u)
0 + s

(u)
1 X1 + s

(u)
2 X2 + · · · + s

(u)
n Xn

Considering the additional delay and variability introduced by
the cell itself, each cell can have two delay hyperplanes associated
with each of its timing arcs (a rising delay hyperplane and a falling
delay hyperplane). The manner in which these hyperplanes are
used to account for cell delay can vary. If one is interested in,
say the output arrival time of the cell for a rising output, then
for every cell input pin, the timing arc rise delay hyperplane is
added to the input arrival time hyperplane, leading to a new set of
u delay hyperplanes. If one simply wants the worst-case output
arrival time irrespective of signal direction, then we create two
delay hyperplanes for each input, obtained by simply adding each
input arrival time hyperplane to, respectively, the arc rise delay
hyperplane and the arc fall delay hyperplane, leading to a total
of 2u delay hyperplanes. In any case, and in order to show a
generic analysis, we will assume that one has obtained k input
hyperplanes, where k could either be u or 2u, as follows:

D1 = α
(1)
0 + α

(1)
1 X1 + α

(1)
2 X2 + · · · + α

(1)
n Xn

D2 = α
(2)
0 + α

(2)
1 X1 + α

(2)
2 X2 + · · · + α

(2)
n Xn

·
· (3)

·
Dk = α

(k)
0 + α

(k)
1 X1 + α

(k)
2 X2 + · · · + α

(k)
n Xn

We refer to these hyperplanes as the input delay hyperplanes,
keeping in mind of course that they are the result of adding the
hyperplanes of the cell input signal arrival times to the hyper-
planes of the cell timing arc delays.

Let P be the largest delay over all corners of these input delay
hyperplanes, i.e.:

P =
k

max
i=1

[
2n

max
j=1

(Di(Cj))

]
(4)

218



We refer to P as the peak delay of the input delay hyperplanes.
Let the peak delay occur at corner Cp = (X∗

1 , X∗
2 , · · · , X∗

n), on
hyperplane Dp, where Dp is one of the k input delay hyperplanes,
so that:

Dp(Cp) = P (5)

We will call Dp the peak plane, Cp the peak corner, and the
point (Cp, P ) the peak point of the k input hyperplanes.

3.1 The Output Hyperplane
If we consider the largest delay at every corner (over all the

input delay hyperplanes evaluated at that corner), then the re-
sulting set of 2n points obviously need not lie on a single hy-
perplane. For example, in Fig. 2, the four maximum delay points
are (−1,−1, 10), (−1, +1, 10), (+1,−1, 16), and (+1, +1, 14), and
they are not co-planar. Yet, in order to maintain computational
efficiency, we will insist on modeling all delays and all arrival times
with delay hyperplanes. Thus, we seek to find an output delay
hyperplane DF that acts as a ceiling to the k input hyperplanes
at all corners, never under-estimating the delay at any corner but
possibly over-estimating it at some. We are, indeed, interested
in an output hyperplane that has minimal over-estimation. The
problem of finding an optimal such hyperplane, which minimizes
say the average over-estimation error at all corners, can be for-
mulated as a linear program (LP). However, such an LP would
be of exponential complexity, which is not acceptable.

Instead, in this work we propose a linear time algorithm for
finding a “good” output delay hyperplane that is a ceiling on all
the k input hyperplanes without being too pessimistic. In this
respect, we will first specify certain criteria that the output delay
hyperplane should satisfy and will then describe our algorithm.
These criteria are meant to reduce the over-estimation error, and
to make sure that the output hyperplane never under-estimates
the maximum delay at any corner.

3.1.1 Output Hyperplane Criteria
We require the output delay hyperplane DF to satisfy the fol-

lowing criteria:

1. For every corner Cj , for 1 ≤ j ≤ 2n, we require:

DF (Cj) ≥ k
max
i=1

(Di(Cj)) (6)

so that the output hyperplane should never under-estimate
the value of the maximum delay at any corner.

2. For every corner Cj , for 1 ≤ j ≤ 2n, we require:

DF (Cj) ≤ P (7)

where P is the peak delay defined above. The purpose of
this criterion is to limit the over-estimation of delays.

3. Given that the peak point defined above is (Cp, P ), we also
require:

DF (Cp) = P (8)

so that the output hyperplane does not over-estimate the
delay at the peak corner.

In order to find an output hyperplane that meets these crite-
ria, our approach consists of four major tasks to be performed:
1) finding the peak point over all input hyperplanes, 2) chang-
ing the origin, 3) raising the input hyperplanes, and finally
4) covering the raised hyperplanes with the output hyper-
plane. In what follows, we explain each of these operations, and
explain the procedures that we use to achieve these tasks. We also
prove that these procedures indeed achieve the required tasks, and
that the combination of these four tasks results in a hyperplane
that satisfies the criteria specified above.

3.2 Finding the Peak Point
Recall that the peak point (Cp, P ) is such that P is the highest

value of delay in the k input hyperplanes at all the corners, and
Cp = (X∗

1 , X∗
2 , · · · , X∗

n) is the corner at which this delay occurs.
This point belongs to the peak plane Dp. An example of a peak
point is the point (+1,−1, 16) in Fig. 2.

Peak Point

DO = 10 + 2X1 + 2X2

DP = 11 + 3X1 - 2X2

-1

-0.5

0

0.5

1

X1

-1 -0.5 0 0.5 1

X2

6

8

10

12

14

16

Delay (ns)

Figure 2: Peak Point of Two Hyperplanes

In order to find the peak point, the highest delay of every
hyperplane and its corresponding corner are first found for each
of the k input delay hyperplanes. For a given plane Di, its highest
delay pi can be found using:

pi = α
(i)
0 +

n∑
j=1

|α(i)
j | (9)

The corner cpi corresponding to this delay can be easily found by

setting Xj = +1 if α
(i)
j > 0, and Xj = −1 if α

(i)
j < 0. We then

find:

P =
k

max
i=1

(pi) (10)

and the peak corner Cp is simply the corner corresponding to the
highest delay among all the pi values.

Finding the highest point of every hyperplane is of complexity
O(n), and doing this for all k input delay hyperplanes is O(kn).
Finding the maximum of all these points is O(k), so that the
overall complexity of finding the peak point is O(kn).

3.3 Changing the Origin
The next step is to change the origin of the system of coor-

dinates in (n + 1)-dimensional space such that the new origin is
at the point (Cp, 0). We also want to change the directions of
some of the coordinate axes so that the new normalized process
parameters in this system (Yi) vary between 0 and 2. This trans-
formation of the coordinate system is not absolutely required, but
is cheap and will make subsequent steps of the algorithm clearer
and more understandable. Let us call the peak corner in the new
system of coordinates C′

p, where C′
p = (0, 0, · · · , 0), thus, the peak

point in the modified system of coordinates becomes (C′
p, P ).

Let the transformed equations of the input delay hyperplanes,
after modifying the system of coordinates, be as follows:

D′
1 = β

(1)
0 + β

(1)
1 Y1 + β

(1)
2 Y2 + · · · + β

(1)
n Yn

D′
2 = β

(2)
0 + β

(2)
1 Y1 + β

(2)
2 Y2 + · · · + β

(2)
n Yn

·
· (11)

·
D′

k = β
(k)
0 + β

(k)
1 Y1 + β

(k)
2 Y2 + · · · + β

(k)
n Yn

Modifying the system of coordinates is a simple exercise in
analytical geometry and it can be shown that one can achieve it
by replacing Xj with −X∗

j (Yj − 1) for 1 ≤ j ≤ n, in each of the

k input delay hyperplanes equations. It is also easily shown that
substituting Xj with −X∗

j (Yj−1) in the equation of a hyperplane
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Figure 3: Raising a Hyperplane

Di in (3) results in:

β
(i)
0 = α

(i)
0 +

n∑
j=1

α
(i)
j X∗

j (12)

and, for 1 ≤ j ≤ n, we have:

β
(i)
j = −α

(i)
j X∗

j (13)

These relations are used to find the expressions for the k input
delay hyperplanes in the modified system of coordinates. For a
single hyperplane, the complexity of this operation is O(n), and
thus for all the k hyperplanes the complexity is O(kn).

3.3.1 Remarks
Without loss of generality, if the peak hyperplane is D′

k, then

it is easily shown that β
(k)
0 = P and that β

(k)
j ≤ 0 for 1 ≤ j ≤ n.

To see this, recall that C′
p is the corner at the origin in the new

coordinate system, i.e., C′
p = (0, 0, · · · , 0), so that the value of

the constant term of the peak plane must be P . Moreover, if any

β
(k)
j > 0, for some 1 ≤ j ≤ n, then we can always find a point

higher than (C′
p, P ) by setting the value of Yj to 2. This is a

contradiction since no point has a delay higher than P among all
of the input hyperplanes.

Likewise, if for a hyperplane D′
i other than the peak plane the

highest point also corresponds to the peak corner C′
p then, by the

same reasoning, each β
(i)
j ≤ 0 for 1 ≤ j ≤ n. And in the case

when the highest point of a hyperplane D′
i corresponds to a corner

other than C′
p, then at least one β

(i)
j ≥ 0. If this were not true,

then the highest point in such a hyperplane would correspond to
the peak corner C′

p.

3.4 Raising the Hyperplanes
We then perform an operation that we call “raising hyper-

planes” on all of the input delay hyperplanes. Intuitively, the
purpose of this step is to raise some corners of every hyperplane,
by as little as possible, but by just enough to make it pass through
the peak point at the peak corner. This will greatly facilitate the
subsequent step of choosing an output hyperplane. As an exam-
ple of this operation, one of the planes (DO) of Fig. 2 is shown
in both its original form and in its “raised” form in Fig. 3. Then,
Fig. 4 shows both the peak plane DP and the new raised plane
DR; both planes now pass through the peak point at the peak
corner.

Raising a hyperplane is the most crucial and involved step in
our algorithm. The three required criteria of section 3.1.1, lead
to three related criteria that our “raised” hyperplanes must meet.

Peak Point
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Figure 4: Raised Planes

Some aspects of these criteria are not unique, in the sense that a
suitable output delay hyperplane may be found by using slightly
different choices. However, there are good intuitive reasons be-
hind the choices we have made, as will be pointed out below as
they arise, and we have verified empirically that they lead to
good results. For a hyperplane D′

i in (11), let the corresponding
“raised” hyperplane be D′′

i , given by:

D′′
i = γ

(i)
0 + γ

(i)
1 Y1 + γ

(i)
2 Y2 + · · · + γ

(i)
n Yn (14)

3.4.1 Raised Hyperplane Criteria
For any hyperplane D′

i in (11), the criteria for its “raised”
hyperplane D′′

i in (14) are as follows:

1. For every corner C′
j , for 1 ≤ j ≤ 2n, we require that

D′′
i (C′

j) ≥ D′
i(C

′
j) (15)

so that a “raised” hyperplane never under-estimates the
delay at any corner.

2. For every corner C′
j , for 1 ≤ j ≤ 2n, we require that

D′′
i (C′

j) ≤ P (16)

where P is the peak delay of the k input hyperplanes. The
purpose of this criterion is to limit the over-estimation of
corner delays.

3. Given that the peak point in the modified system of coor-
dinates is (C′

p, P ), then we require that

D′′
i (C′

p) = P (17)

so that every “raised” hyperplane passes through the peak
point.

It is easy to see that (17) leads to the requirement that the con-
stant term in the equation of any “raised” hyperplane be P , since
C′

p = (0, 0, · · · , 0), so that, for all 1 ≤ i ≤ k, we have as a first
result:

γ
(i)
0 = P (18)

3.4.2 Procedure
Given the remarks in section 3.3.1, we can classify our input

delay hyperplanes into three classes. The first class contains only
one hyperplane: the peak plane. The second class contains planes,
other than the peak plane, whose highest points happen to be at
the peak corner C′

p. The third class consists of those remaining
hyperplanes whose highest points are at corners other than the
peak corner. The steps taken to “raise” a hyperplane differ from
one class to another, as considered in the following three cases.
In each case, we will describe without proof the procedure applied
in our algorithm. We then give a section in which the validity of
all the steps is rigorously proven.
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3.4.2.1 Case 1.
This is the case when the hyperplane belongs to the first class,

i.e., it is the peak plane. In this case, we select:

γ
(i)
0 = β

(i)
0 = P (19)

and, for 1 ≤ j ≤ n,

γ
(i)
j = β

(i)
j (20)

Thus, the hyperplane remains unchanged.

3.4.2.2 Case 2.
This is the case when the hyperplane belongs to the second

class, i.e., the highest point in this plane is achieved at the peak

corner C′
p. In this case, and as shown in section 3.3.1, β

(i)
j ≤ 0,

for 1 ≤ j ≤ n. For this case, in order to “raise” hyperplane D′
i,

our procedure is to only change the value of its constant term

and of only one of its sensitivity coefficients β
(i)
j , 1 ≤ j ≤ n.

There is some flexibility in the choice of exactly which coefficient
to change. Best empirical results are obtained by choosing the
largest coefficient, i.e., the least negative one. Assume, without

loss of generality, that β
(i)
1 = maxn

j=1(β
(i)
j ). Then, the “raised”

hyperplane is obtained according to the following construction:

γ
(i)
0 = P (21)

and

γ
(i)
1 =

−P + β
(i)
0 + 2β

(i)
1

2
(22)

and, for 2 ≤ j ≤ n,

γ
(i)
j = β

(i)
j (23)

Since the original plane D′
i ≤ P at all corners, then the corner

(2, 0, 0, . . . , 0) yields β
(i)
0 + 2β

(i)
1 ≤ P and, therefore, γ

(i)
j ≤ 0, for

1 ≤ j ≤ n.

3.4.2.3 Case 3.
This is the case when the hyperplane belongs to the third class,

i.e., the highest point of this plane corresponds to a corner other
than the peak corner C′

p. In this case, and as we saw in sec-

tion 3.3.1, at least one β
(i)
j ≥ 0, for 1 ≤ j ≤ n. In this case, in

order to “raise” a plane D′
i, we change the value of the constant

term, and of all the sensitivities with positive values in the ex-
pression for that hyperplane. Assume, without loss of generality,

that β
(i)
j ≥ 0 for 1 ≤ j ≤ n̂, where n̂ is the number of posi-

tive sensitivities of D′
i. In this case, we formulate the “raised”

hyperplane according to:

γ
(i)
0 = P (24)

and, for 1 ≤ j ≤ n̂,

γ
(i)
j =

−P + β
(i)
0 +

∑n̂
l=1 2β

(i)
l

2n̂
(25)

and, for n̂ + 1 ≤ j ≤ n,

γ
(i)
j = β

(i)
j (26)

As in the previous case, since D′
i ≤ P at all corners, then by

a judicious choice of a specific corner we easily find that −P +

β
(i)
0 +

∑n̂
j=1 2β

(i)
j ≤ 0. Thus, in this case as well, γ

(i)
j ≤ 0, for

1 ≤ j ≤ n.

3.4.3 Proof of Correctness
We will now prove that, for each of the three cases under con-

sideration, the “raised” hyperplane meets the criteria specified
in section 3.4.1. Notice that, in all three cases, the “raised” hy-

perplane D′′
i has a constant term γ

(i)
0 = P , and γ

(i)
j ≤ 0, for

1 ≤ j ≤ n. Recall also that the peak corner is at the origin
C′

p = (0, 0, · · · , 0), thus for each of these cases:

D′′
i (C′

p) = γ
(i)
0 = P (27)

Therefore, the “raised” hyperplane D′′
i satisfies the third criterion

of section 3.4.1 for all the three cases.
Moreover, given that for all three cases, γ

(i)
j ≤ 0, and since

0 ≤ Yj ≤ 2, for 1 ≤ j ≤ n, then it is also straightforward to see,
from (14), that for all corners Ct, 1 ≤ t ≤ 2n:

D′′
i (Ct) ≤ γ

(i)
0 = P (28)

Thus, the “raised” hyperplane D′′
i satisfies the second criterion

of section 3.4.1 for all the three cases in section 3.4.2.
It remains to prove that, for all three cases of section 3.4.2, the

“raised” hyperplane D′′
i satisfies the first criterion of section 3.4.1.

Recall that this criterion is the requirement that the delay of the
“raised” hyperplane D′′

i , at any corner, be no less than the delay
of the original hyperplane D′

i at the same corner.
We start with case 1. In this case, the hyperplane D′

i is the
peak plane and it is not changed. Thus, the first criterion of
section 3.4.1 is trivially satisfied for this case.

We now consider case 2. In this case, only one of the sensi-
tivities of D′

i is changed to find D′′
i and we assumed, without

loss of generality, that β
(i)
1 is the sensitivity term to be changed.

Also, the constant term of the hyperplane, β
(i)
0 , was changed, by

increasing its value to γ
(i)
0 = P . Notice that the original value

β
(i)
0 ≤ P because this is not the peak plane. Thus, it is impossible

for the “raised” plane to under-estimate the delay at a corner C′
t

which has Y1 = 0. Therefore it is enough to prove that D′′
i does

not under-estimate the delay at any corner C′
t, where Y1 = 2.

Given such a corner C′
t = (2, Y2, · · · , Yn), we have:

D′′
i (C′

t) = P + 2γ
(i)
1 + γ

(i)
2 Y2 + · · · + γ

(i)
n Yn (29)

which, using (22) and (23), can be written as:

D′′
i (C′

t) = P + 2

(
−P + β

(i)
0 + 2β

(i)
1

2

)
+

n∑
j=2

β
(i)
j Yj (30)

which easily reduces to:

D′′
i (C′

t) = β
(i)
0 + 2β

(i)
1 +

n∑
j=2

β
(i)
j Yj = D′

i(C
′
t) (31)

Therefore, the first criterion of section 3.4.1 is satisfied for every
corner C′

t in this case.
We finally consider case 3. In this case, all the positive sensitiv-

ities of D′
i are changed in order to arrive at D′′

i and we assumed,
without loss of generality, that the only positive sensitivities are

β
(i)
j ≥ 0 for 1 ≤ j ≤ n̂. In addition, the constant term of the

hyperplane expression (β
(i)
0 ) is changed and its value is increased

to P . Thus, it is impossible for the “raised” hyperplane to under-
estimate the delay at a corner C′

t which has Yj = 0, for 1 ≤ j ≤ n̂.
Therefore, it is enough to prove that D′′

i does not under-estimate
the delay at any corner C′

t for which at least one Yj = 2, for
1 ≤ j ≤ n̂.

Actually, it would suffice to prove that D′′
i does not underes-

timate the delay at corners C′
t, where all Yj = 2 for 1 ≤ j ≤ n̂.

This is because, with γ
(i)
j ≤ 0 and β

(i)
j ≥ 0 for 1 ≤ j ≤ n̂, if for

such a corner C′
t, D′′

i (C′
t) ≥ D′

i(C
′
t), then changing any Yj for

1 ≤ j ≤ n̂ from 2 to 0 would only increase the value of D′′
i (C′

t)
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and decrease the value of D′
i(C

′
t), thus maintaining the inequal-

ity. Now, given such a corner C′
t, where Yj = 2 for 1 ≤ j ≤ n̂, we

have:

D′′
i (C′

t) = P + 2
n̂∑

j=1

γ
(i)
j +

n∑
j=n̂+1

γ
(i)
j Yj (32)

which, using (25) and (26), can be written as:

D′′
i (C′

t) = P + 2
n̂∑

j=1

(
−P + β

(i)
0 + 2

∑n̂
l=1 β

(i)
l

2n̂

)

+
n∑

j=n̂+1

β
(i)
j Yj (33)

which easily reduces to:

D′′
i (C′

t) = β
(i)
0 + 2

n̂∑
j=1

β
(i)
j +

n∑
j=n̂+1

β
(i)
j Yj = D′

i(C
′
t) (34)

Therefore, the first criterion in section 3.4.1 is satisfied for any
corner C′

t in this case 3.

3.4.4 Complexity
“Raising” one hyperplane requires examining each of its sen-

sitives and might involve the modification of these sensitivities
according to pre-specified equations. Thus “raising” one hyper-
plane is of complexity O(n), and performing this operation for all
the k input delay hyperplanes is O(kn).

3.5 Covering the Raised Hyperplanes
We now have a set of raised hyperplanes shown in (35). These

hyperplanes satisfy the three criteria for raised hyperplanes in
section 3.4.1 and our goal now is to find an output hyperplane
that satisfies the criteria of section 3.1.1.

D′′
1 = P + γ

(1)
1 Y1 + γ

(1)
2 Y2 + · · · + γ

(1)
n Yn

D′′
2 = P + γ

(2)
1 Y1 + γ

(2)
2 Y2 + · · · + γ

(2)
n Yn

·
· (35)

·
D′′

k = P + γ
(k)
1 Y1 + γ

(k)
2 Y2 + · · · + γ

(k)
n Yn

Let the expression for the desired output delay hyperplane be
as shown:

D′
F = λ0 + λ1Y1 + λ2Y2 + · · · + λnYn (36)

Our algorithm finds the output plane based on:

λ0 = P (37)

and, for 1 ≤ j ≤ n,

λj =
k

max
i=1

(γ
(i)
j ) (38)

3.5.1 Proof of Correctness
We will prove that the output delay hyperplane found above

satisfies the criteria set in section 3.1.1. In our discussion, D′
F

refers to the equation of the output delay hyperplane in the mod-
ified system of coordinates, while DF refers to the equation of
this hyperplane in the original system.

First of all, since λ0 = P , it follows that D′
F (C′

p) = P , and

equivalently DF (Cp) = P , thus the third criterion of section 3.1.1

is satisfied. Since γ
(i)
j ≤ 0, 1 ≤ j ≤ n, for all raised hyper-

planes, then λj ≤ 0 for 1 ≤ j ≤ n. Given that 0 ≤ Yj ≤ 2, for
1 ≤ j ≤ n it is easy to see that for any corner C′

t in the modified
system of coordinates, 1 ≤ t ≤ 2n, D′

F (C′
t) ≤ P and equivalently

DF (Ct) ≤ P for any corner Ct in the original system of coor-
dinates. Thus, the output delay hyperplane satisfies the second
criterion of section 3.1.1.

It remains to prove that the output delay hyperplane satisfies
the first criterion of section 3.1.1. Recall that this criterion is that
the output delay hyperplane should not under-estimate the maxi-
mum delay at any corner. From the first criterion of section 3.4.1,
we know that for any “raised” plane D′′

i and at any corner C′
t in

the modified system of coordinates we have D′′
i (C′

t) ≥ D′
i(C

′
t),

where D′
i is the hyperplane that was “raised” in order to create

D′′
i . From (37), (38), and the fact that 0 ≤ Yj ≤ 2, for 1 ≤ j ≤ n,

we can deduce that for all corners (C′
t), 1 ≤ t ≤ 2n, in the modi-

fied system of coordinates:

D′
F (C′

t) ≥
k

max
i=1

(D′′
i (C′

t)) (39)

thus, by using the first criterion for “raised hyperplanes” of sec-
tion 3.4.1, we can easily deduce that:

D′
F (C′

t) ≥
k

max
i=1

(D′
i(C

′
t)) (40)

and equivalently that for all corners (Ct), 1 ≤ t ≤ 2n, in the
original system of coordinates:

DF (Ct) ≥ k
max
i=1

(Di(Ct)) (41)

Therefore, the output delay hyperplane also satisfies the first cri-
terion of section 3.1.1.

3.5.2 Complexity
Finding each value of λ takes a time linear in k, and thus finding

all n values is of complexity O(nk).

3.6 Interconnect Handling
After finding the equation of the output delay hyperplane in

the modified system of coordinates, we change our system back
to the original one. This can be easily done by reversing the
transformations performed above. This yields the equation of the
delay hyperplane at the output of the cell of the logic stage. In
order to be able to propagate a delay hyperplane to subsequent
logic stages, we must first account for the delay and variability in-
troduced by the interconnect structure of the current logic stage.
This can be done by simply adding the delay hyperplane of the in-
terconnect structure to the delay hyperplane at the output of the
cell, to get the hyperplane at the output of the logic stage. In the
case of multiple fanout nets, the interconnect structure may have
a distinct delay hyperplane for each of the fanouts. In this case,
the interconnect delay hyperplane corresponding to each fanout
is added to the delay hyperplane at the output of the cell to get
the delay hyperplane at this output of the logic stage. This is a
simple operation of complexity O(fn), where f is the number of
fanout points of the logic stage.

3.7 Overall Complexity for a Logic Stage
An investigation of all the operations that our method performs

at a logic stage shows that the total complexity for a single logic
stage is O(kn + fn), where as we stated before, k could either
be the equal to the number of inputs of the cell u, or twice that
number, f is the number of fanout nets, and n is the number of
process parameters being considered. Thus the complexity of our
method at the logic stage can be written as O(un+fn). Since, for
obvious technology reasons, both u and f are bounded by some
small fixed number, such as perhaps 10, and since they do not
scale with the size of the problem, then the overall complexity for
analysis of one logic stage is O(n).

4. METHOD AT CIRCUIT LEVEL
As stated earlier, our approach is quite similar to traditional

STA at the circuit level. Thus, in order to find the maximum
delay of the circuit under process variations, we apply our method
to logic stages whose input delay information (hyperplanes) is
available and then propagate the resulting delay hyperplanes to
subsequent logic stages. This process is repeated until we get the
delay hyperplanes at the primary output nodes of the circuit. The
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Figure 5: Max. Delays for Smaller Circuits

0

4

8

12

16

20

24

28

32

36

40

C
ir

cu
it 

D
el

ay
 (

ns
)

c2670 c3540 c5315 c6288 c7552

Corner Approach: largest max delay

Our Approach: Max Delay

Corner Approach: smallest max delay

Figure 6: Max. Delays for Larger Circuits

circuit delay for each corner is the maximum of the various output
node delays at that corner. This “max” operation is identical
to the “max” operation for a single stage, and our algorithm is
applicable one final time in that case to give a single hyperplane
for the overall circuit delay. It is then straightforward to find
the maximum value of delay that this plane can produce. The
complexity of this step is O(zn), where z is the number of primary
output nodes of the circuit.

It should be mentioned that, once the delay hyperplane is avail-
able at the circuit primary outputs, it provides more information
than simply the worst-case corner and delay. It provides informa-
tion on sensitivity of overall circuit delay to the various parame-
ters. This can be useful to diagnose problems with circuits that
may be too sensitive to specific sources of variations.

If a circuit has m stages in total, and since the analysis of a
single stage is O(n), and since z ≤ m, then the overall complexity
of STA for the whole circuit, covering all 2n process corners, is
only O(mn). Thus, for a given fixed circuit size m, the complexity
grows linearly with the number of variable process parameters n.

5. IMPLEMENTATION
As is to be expected, our algorithm requires a pre-characterized

cell library and some variational model of interconnect delay.

5.1 Logic Cells Characterization
We constructed and characterized a small CMOS cell library in

90nm technology, and these cells were used as a standard library
for our testing. For every input arc in every logic cell, the rise and
fall delays of the cell were computed, using HSPICE, for a number
of input slew (slope) rates and load capacitances. The results
were stored in tables called nominal delay tables, where, given an

Table 1: Our Approach vs. Corner Approach.

ISCAS-85 Corner Our Percentage
Circuit Approach Approach Error

Max. Delay Max. Delay (%)
c432 10.42 ns 10.73 ns 3.04%
c499 4.86 ns 4.90 ns 0.78%
c880 6.08 ns 6.20 ns 1.89%
c1355 5.93 ns 6.00 ns 1.24%
c1908 9.00 ns 9.08 ns 0.88%
c2670 8.95 ns 9.11 ns 1.74%
c3540 13.65 ns 13.81 ns 1.18%
c5315 10.62 ns 10.77 ns 1.39%
c6288 36.93 ns 37.73 ns 2.15%
c7552 9.03 ns 9.23 ns 2.30%

input and its slew rate (slope), and the load capacitance on the
cell, the delay can be computed through interpolation between
appropriate values from the delay tables. This is the standard
modern approach for modeling the delay of logic cells [9].

Then, the sensitivities of the delays were found for variations
in four process parameters: the NMOS threshold voltage (∆Vtn),
the NMOS channel length (∆Ln), the PMOS threshold voltage
(∆Vtp), and the PMOS channel length (∆Lp). The sensitivities
to every process parameter were found by fixing all other process
parameters at their nominal values, choosing a number of val-
ues for this parameter, and finding the delay of the cell in each
case using HSPICE. After that, linear regression was performed
on the resulting delays to find the un-normalized sensitivities of
cell delays to the process parameter. The sensitivities were then
normalized so that the parameters vary between −1 and 1.

For every input arc, this characterization is performed for a
transition in the input which causes a rise in the output signal,
and a transition which causes a fall in the output signal. Thus,
every input arc has a rise delay hyperplane that uses rise sensi-
tivities and a fall delay hyperplane that uses fall sensitivities. It
is worth noting that median values were chosen for the input slew
rates and the load capacitances in the characterization process,
and that we keep a record of the nominal delay of the cell for
these slews and load capacitance values. The significance of this
point will become clear shortly.

5.2 Interconnect Characterization
For the characterization of interconnect, the technique described

in [2] was applied. An interconnect fanout structure is described
as a tree of lumped resistances and capacitances, i.e., an RC-tree.
One is also given the sensitivities of every resistor and capacitor
to the relevant process parameters. From this, one finds the nom-
inal delay at every node of the tree, as well as the sensitivities
of the delay at every node to the same process parameters. The
process parameters of interest in our work, as in [2], are the metal
width (∆W ), metal thickness (∆T ), and the interlayer dielectric
thickness (∆H). For the test cases considered in this paper, we
limited the effect that a process parameter can have on the value
of a resistor or a capacitor to no more than 10%.

5.3 Circuit Modeling
It is worth noting that, for every logic cell, we use the method

in [8] to compute the effective capacitance seen at the output
of this cell. This is a standard method that allows us to use
the precharacterized nominal delay tables to find the nominal
delays of the hyperplanes of a particular cell in the circuit [9].
Notice that the sensitivities to physical parameters which were
measured during cell characterization (with some median input
slope and output load applied) need to be modified according to
the context of the cell in the given circuit, i.e., according to the
actual slope and load presented to the cell in the circuit. This is
a subtle point, which we have found can be overcome with good
accuracy by scaling the characterized sensitivities by the ratio of
the nominal delay of the cell in the context of the circuit to its
nominal delay during characterization.
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6. RESULTS
We ran our algorithm on all circuits of the ISCAS-85 bench-

mark suite [3], mapped to our 90nm cell library. In order to test
the accuracy of our approach, we compared the maximum delay
of every circuit as computed by our algorithm to the true maxi-
mum delay computed by finding the delay of the circuit at every
process corner. The results and comparison between the two ap-
proaches are shown in Table 1, which shows that our approach
predicts the maximum delay of these circuits quite accurately.
The bar diagrams in Fig. 5 and Fig. 6 show these same results,
with three bars for every circuit. The first bar is found by run-
ning traditional STA for every process corner and recording the
smallest value found (over all corners) for the maximum delay of
the circuit. The second bar shows the largest value found (over all
corners) for the maximum delay of the circuit. The third shows
the worst-case delay reported by our approach. It is notewor-
thy that i) there is a significant difference between the first and
second bars, indicating that process variations cause a significant
delay spread for these circuits, and ii) our approach finds, in lin-
ear time, a tight upper-bound on the worst-case delay. Finally,
as mentioned earlier, our approach is applicable to the min delay
case as well, for checking hold time violations. In this respect,
Figs. 7 and 8 show similar data for the min delay case.

We also recorded the run-times of our approach for these cir-
cuits and compared it with the run-times of the corner approach.
As expected, the results in Table 2 show that our approach achieves
a speed-up of approximately 20 times when compared to the cor-
ner approach. While our approach is O(mn) (for a circuit with
m gates and n relevant process parameters), the computational
complexity of the corner approach is O(m2n), hence the observed

Table 2: Run-time Comparison.

ISCAS-85 Corner Our Speed-up
Circuit Approach Approach (×)

Run Time Run Time
c432 4.23 s 0.22 s 19.23
c499 10.38 s 0.53 s 19.58
c880 18.39 s 0.82 s 22.43
c1355 34.02 s 1.57 s 21.67
c1908 45.76 s 2.24 s 20.43
c2670 6.99 s 0.36 s 19.42
c3540 23.9 s 1.09 s 21.92
c5315 3.5 s 0.18 s 19.44
c6288 53.59 s 2.4 s 22.33
c7552 71.22 s 3.19 s 22.33

speed-up. Moreover, as the number of process parameters being
considered increases with future technology, this speed-up will
become even more dramatic.

7. CONCLUSION
All-corner timing analysis in linear time has been the “holy

grail” in timing analysis for some time. In this paper, a linear-
time approach has been presented which does this with negligi-
ble error (1-3%). The error is always conservative, so that one
will never under-estimate the maximum circuit delay and never
over-estimate the minimum circuit delay. This technique uses
standard/traditional timing models for cells and interconnect and
hence is very easy to integrate into today’s design methodology.
It is hoped that this work will lead to practical techniques for
handling variability in VLSI design.
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