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ABSTRACT
Decap (decoupling capacitor) is an effective technique for
suppressing power supply noise. Nevertheless, over-usage of
decap usually causes excessive power dissipation. Therefore,
the total decap area needs to be minimized subject to power
supply noise constraints. This is a complicated nonlinear
optimization problem that may have as many as millions of
variables. We propose an algebraic multigrid (AMG) based
method to handle the high complexity. An error compen-
sation scheme is developed to compensate the accuracy loss
during the AMG reduction. A charge based back-mapping
method and a few other techniques are suggested to further
improve the computation efficiency. Our method is flexible
to use and can be easily integrated with other existing decap
allocation works. When compared to several previous works,
the results from our method are usually the closest to the
optimum. Our method also runs fast and can solve circuits
with up to 1 million nodes in about 11 minutes. In addition,
it has better scalability than the previous works.

1. INTRODUCTION
A stable power supply voltage is a fundamentally neces-

sary condition for integrated circuits to maintain desired op-
erating performance. This condition becomes increasingly
difficult to reach when the VLSI technology scaling results
in increasing power supply noise on one hand and decreas-
ing noise margins on the other hand. The power noise can
be alleviated by placing on-chip decoupling capacitors (de-
cap), which behave like local charge reservoirs to cushion any
ditch or overshoot of power supply level [1]. However, impru-
dent usage of decap may cause exorbitant power dissipation,
especially leakage power[2]. Therefore, the area of decaps
needs to be minimized while the constraint on power supply
noise is satisfied. This is a difficult nonlinear optimization
problem that may have as many as millions of variables.

Because of its importance and difficulty, the decap alloca-
tion problem has attracted many attentions recently. In [3,
4], a charge based model is proposed to approximately esti-
mate the decap size for each circuit module. Other works [5,
6, 7, 8, 9] use adjoint sensitivity technique to guide the solu-
tion search in nonlinear optimization. Even though the num-
ber of transient simulations is greatly decreased by merged
adjoint method [6, 7] or greedy search [7, 8], the sheer size
of the problem still implies a huge computation cost. A rel-
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atively direct approach is to reduce the problem size. In [8],
the problem size reduction is achieved by divide-and-conquer
assuming that the boundary voltages of each partition do not
change during the decap optimization. The work of [9] uses
geometric multigrid technique [10, 11] to reduce the prob-
lem size. However, the effectiveness of geometric multigrid
is mainly restricted to regular power grids [12, 13]. Conse-
quently, the method in [9] is not applicable for more general
cases of irregular power grids [12, 13].

In this paper, we propose a fast decap allocation method
based on algebraic multigrid (AMG) [14]. It first coarsens
the original fine grid to a coarse grid that has manageable
size. Then, a nonlinear programming is performed to ob-
tain a decap allocation solution on the coarse grid. Last, the
coarse solution is back-mapped to the original fine grid. The
main contributions of this paper are summarized as follows.
(1) We propose to utilize AMG based problem reduction
that can be applied to either regular or irregular power grids.
It is flexible to use and can be easily combined with other
techniques such as the charge based technique [3, 4], con-
jugate gradient method [6, 7, 8] or the partitioning based
approach [8].
(2) We find the necessary condition that the solution on
the coarse grid can lead to nonlinear programming solution
on the fine grid. Based on this condition, an error compensa-
tion technique is developed and integrated with the nonlinear
programming formulation on the coarse grid. This technique
ensures that the solution on the coarse grid is still feasible
after being mapped on the fine grid.
(3) A new back-mapping scheme is proposed. Compared
to previous work of linear programming based back-mapping
[9], our charge based back-mapping method considers power
noise and is much more scalable.
(4) We introduce a few customized techniques to speed up
sequential quadratic programming (SQP) which is employed
to solve the nonlinear programming on the coarse grid. The
technique such as violation aware decap pre-allocation could
also possibly be applied to the other nonlinear optimizer.

2. REVIEW OF MULTIGRID METHOD
Multigrid is a technique to accelerate the convergence of

solving differential equations numerically. The key idea of
multigrid is to coarsen the original problem so that the low
frequency errors appear to have high frequency and therefore
can be quickly eliminated [10, 14]. The multigrid method can
be categorized to geometric multigrid (GMG) and algebraic
multigrid (AMG). GMG is based on geometric structure of
the problem, preferably regular structures, while AMG is
more flexible on handling general structures that may be
irregular. Recently, AMG has been applied for fast power
grid analysis [12, 13, 15].

3. PROBLEM FORMULATION
Power grid is usually a metal mesh where each edge can be

modeled as a resistor. Each node of the mesh connects to a
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ground capacitance that represents the decap and parasitic
capacitance. Active devices are modeled as timing varying
current sources connected to the mesh. Through the power
pad nodes, power grid is connected to the package, which
could be modeled as voltage sources [16], or more compli-
cated RLCK model.

The decap allocation problem is formulated as the follow-
ing nonlinear programming problem, where Ch is the decap
vector, Ch

i is the ith element of Ch, lb and ub represent the
lower and upper bound for allowed decap size, respectively.
Decap Allocation (DA):

Minimum
�

i∈PGh

Ch
i (1)

Subject to : ceq(Ch) =
�

i∈PGh

si = 0 (2)

lb < Ch < ub (3)

where si =
� T

0
|min(Vi(t) − Vth, 0)|dt =

� t2

t1
(Vth − Vi(t))dt

and [t1, t2] is the time interval in which the violation occurs.
This voltage drop noise metric is adopted from [5].

4. AMG BASED DECAP ALLOCATION
Since the size of a power grid is usually very large, some-

times with millions of nodes, solving the nonlinear program-
ming of DA directly is extremely difficult. Therefore, we
propose to reduce the problem size using the AMG tech-
nique. The reduced problem on the coarse grid is solved
directly and the solution is mapped back to the original fine
grid. Similar as other literatures, we use h to indicate fine
grid and H for coarse grid.

4.1 Power Grid Reduction
For a power grid PGh, by applying the modified nodal

analysis (MNA), we may obtain the following equation[11]:

GV(t) + C0
dV(t)

dt
= I(t) + U(t) (4)

where V(t) is the node voltage vector, G is the conductance
matrix, C0 is the capacitance matrix, I(t) is the current vec-
tor and U(t) indicates the items from the voltage sources.

In our AMG, we use G as the system matrix Ah to obtain
the interpolation operator in the same method as in [12,
15]. Here, the interpolation operator is denoted as P h

H . The
reduction operator can be obtained easily as RH

h = (P h
H)T .

Then, the system Ah on the original fine grid can be reduced
to a coarser grid as AH = RH

h AhP h
H . This procedure is

repeated till the matrix is sufficiently small for direct solve.
Once the interpolation operators are obtained, the current

source vector on the coarse grid can be obtained by:

IH(t) = RH
h Ih(t) (5)

where Ih(t) is the current source vector on the fine grid.
Correspondingly, the bounds for decap sizes are also updated
to lHb < CH < uH

b , where lHb = RH
h lb and uH

b = RH
h ub [9].

In our AMG, the voltage source nodes are retained. The
parasitic capacitance is used as the lower bound of decap
optimization instead of being stamped in the capacitance
matrix for the convenience of computation. Alternatively,
the capacitance on the coarse grid can also be obtained by:

CH = RH
h Ch (6)

4.2 Error Compensation
Obviously, the power grid reduction causes some informa-

tion loss that is an inevitable price paid in change for the

improved computation speed. The question is how credible
the solution obtained from the coarse grid is. For example,
if we obtain an optimal solution on the coarse grid, does it
imply an optimal solution on the fine grid? We will intro-
duce a lemma and a theorem showing that the credibility of
a coarse solution depends on the discrepancy between the
transient response on the coarse grid and that on the fine
grid. Based on that, we propose a compensation technique
to reduce the error due to this discrepancy.
Lemma 1:The sum of any row in the interpolation operator
P h

H(an n × m matrix and n>m) is 1.
Proof: Omitted due to the page limit.
Theorem 1: Suppose V(t) is the transient analysis result on
the fine grid PGh, and VH(t) is the transient analysis result
on the coarse grid PGH . If the equation V(t) = P h

HVH(t)
holds, then the nonlinear programming DA on the fine grid is
equivalent to the nonlinear programming DA-Coarse on the
coarse grid which is:
DA-Coarse:

Minimum
�

i∈PGH

CH
i (7)

Subject to : ceqH(CH) =
�

i∈PGH

sH
i = 0 (8)

lHb < CH < uH
b (9)

where sH
i =

� t2

t1
(Vth − V H

i (t))dt
Proof: Omitted due to the page limit.

When the nonlinear programming is carried out on the
coarse grid as DA − Coarse, the corresponding transient
analysis of the power grid is also performed on the coarse
grid. Performing transient analysis on the coarse grid and
directly mapping the result back to the original fine grid is
equivalent to performing multigrid without the smoothing
step. Omitting the smoothing often results in significant
errors [12], i.e., the condition V(t) = P h

HVH(t) does not
hold, especially when the current is not evenly distributed.

t

V

t1 t2t3 t4

h
HP VH(t)

V(t)

Vth

(a)

Vth

t

V

t1 t2t3 t4
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h
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V(t)
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(b)

Figure 1: (a) Voltage drop noise metrics of V(t) and
P h

HVH(t) (b) The raise of the threshold voltage

Figure 1(a) shows an example of the transient simulation
results from V(t) and P h

HVH(t). It can be seen that the
voltage P h

HVH(t) interpolated from the transient result on
the coarse grid underestimates the voltage drop. We pro-
pose a compensation technique: raise the threshold voltage
for the interpolated voltage by a constant δ such that its
violation area is roughly equal to ceq(Ch). For example, in
Figure 1(b), we raise the threshold voltage for the interpo-
lated voltage from Vth to Vth1 to make S1 ≈ S2. Thus, we
have:

ceq(Ch) =
�

i∈PGh

� t2

t1

(Vth − Vi(t))dt

≈
�

i∈PGh

� t6

t5

(Vth + δ − (P h
HVH(t))i)dt

(10)

In order to avoid voltage drop violation or let Equation (10)
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be zero, we just need to make P h
HVH(t) > Vth + δ, which is

equivalent to requiring VH(t) > Vth + δ.
Hence, the nonlinear programming on the coarse grid with

error compensation is:
DA-Compensated:

Minimum
�

i∈PGH

CH
i (11)

Subject to : ceqH(CH) =
�

i∈PGH

sH
i = 0 (12)

lHb < CH < uH
b (13)

where sH
i =

� t6

t5
(Vth + δ − V H

i (t))dt and δ satisfies Equation
(10).

The value of δ is different for each specific power grid with
certain decap size. Moreover, the decap sizes are changed
during the optimization. Therefore, it is not obvious how to
choose the value of δ before the optimization.

With some numeric experiments, we notice that the max-
imum absolute value and average absolute value of δ(t) =
P h

HVH(t)−V(t)decrease when the total decap area increases.
When the decap area increases, more high frequency com-
ponents of the voltage change is filtered out. Since the anal-
ysis on the coarse grid is relatively good at handling low
frequency errors, the magnitude of the error or δ(t) conse-
quently becomes smaller.

As a conservative approach, we obtain the value of δ based
on using the minimum size for each decap. This scheme is to
ensure that the error can always be fully compensated even
in the worst case. Although it sometimes leads to some over-
compensation, experimental results show that the degree of
over-compensation is very limited in general. Through tran-
sient simulations, we can estimate the time-dependent error
function δ(t). Then, a binary search is performed in the
range between the average absolute value and the maximum
absolute value of δ(t) so as to find a value of satisfying Equa-
tion (10).

4.3 Sequential Quadratic Programming Speedup
The compensated nonlinear programming problem DA −

Compensated on the coarse grid is solved using a sequential
quadratic programming (SQP) package [17]. The sensitiv-
ities of the voltage constraints with respect to decap sizes
are calculated by the adjoint network method [5, 6]. SQP
solves a nonlinear programming problem by converting it
to a series of locally approximated quadratic programming
problems [18]. Here, we suggest three simple yet effective
speedup techniques to the SQP: (1) violation aware decap
pre-allocation; (2) variable removal for nodes at power pads;
(3) search step scaling.

SQP starts from an initial solution and then successively
moves the solution toward the optimal point. Therefore, a
good initial solution can greatly improve the convergence.
We propose to find a good initial solution by pre-allocating
more decap to nodes with relatively large current withdrawn
during the violation time intervals:
(1) Run transient simulation on the coarse grid with minimum-
sized decap at each node.
(2) Obtain the accumulated violation charge during the volt-

age violation period at each node: QH
i =

� t2

t1
IH

i (t)dt for each
node i, where [t1, t2] is the time interval of voltage drop vi-
olation.
(3) Add decap equivalent to the amount of the charges dur-
ing violation period: CH

0 = lHb + QH/(VDD − Vth).
During the power grid reduction of AMG, the nodes con-

nected to power pads are always kept [12, 15]. Thus, a sig-
nificant portion of nodes in the coarse grid are connected to
power pads. Since these nodes are directly connected to volt-
age sources in the circuit model, decaps at these nodes have
no effect on the voltage drop there. Hence, we can remove
many variables corresponding to these nodes in the nonlin-
ear programming. Evidently, such removal may reduce the
runtime of SQP.

Since the problem DA − Compensated is on the coarse
grid, the allowed range (uH

b − lHb ) for each decap size is very
large. This implies a large solution search space and slow
runtime. In SQP [17], the searching step in each iteration
is limited in order to maintain decent accuracy for the local
quadratic approximation. We find that we can scale the
searching step of [17] by a small factor (1+β) with β=0.1
without significant influencing the solution quality. As a
result, the computation speed is further improved.

4.4 Charge Based Back-mapping
After the solution for decap CH on the coarse grid is ob-

tained, we need map it back to decap Ch on the fine grid.
The back-mapping is equivalent to spreading decaps on the
coarse grid to nodes in the fine grid. Even though we know
that RH

h Ch = CH, there are usually many solutions on the
fine grid satisfying RH

h Ch = CH. The work of [9] finds a
unique back-mapping by solving a linear programming of
minimizing a weighted sum of total decaps area subject to
RH

h Ch = CH. However, such back-mapping neglects the
voltage drop constraint on the fine grid. Moreover, it tends
to be very slow when the problem size is huge. For example,
if there are one million nodes in the power grid, such back-
mapping requires solving a linear programming with roughly
one million variables.

We propose a charge based back-mapping. When we spread
decaps on the coarse grid to nodes in the fine grid, we allo-
cate greater portions to nodes with relatively large violation
charge. Same as in Section 4.3, the violation charge for the
nodes in the fine grid is the accumulated charge flowing into
a node during the time interval of voltage drop violation:
Qh

i =
� t2

t1
Ih

i (t)dt where [t1, t2] is the time interval of volt-
age violation.

Procedure: Charge Based Back-mapping

Input: Interpolation operator P h
H , the optimized decap

vector CH on the coarse grid, the violation charge vector
QH on the coarse grid.
Output: decap vector Ch on the fine grid.
1: For each node i in the coarse grid do
2: Inspect the voltage waveform of node i to find

the voltage violation interval [t1, t2];
3: For each node j that P h

H(j, i) �= 0 do

4: Qh
j =

� t2

t1
Ih

j (t)dt is the violation charge;
5: end for
6: w = (CH

i − lHbi )/QH
i ;

7: Ch = Ch+w×P h
H(:, i)◦Qh, where ◦ represents

entry-wise product, and P h
H(:, i) represents the

ith column of P h
H ;

8: end for
9: Ch = Ch + lb, check if lb < Ch < ub;
10: For those node that Ch > ub or Ch < lb do
11: Average the redundant parts with its neighbor-

ing nodes until lb < Ch < ub;
12: end for

Figure 2: Algorithm for charge based back-mapping
Our proposed charge based back-mapping is outlined in

Figure 2. Because the computations here are mostly vector
operations and the violation time intervals are already avail-
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able from the decap pre-allocation described in Section 4.3,
our back-mapping is much faster and more scalable than the
linear programming based back-mapping in [9].

Since RH
h Ih(t) = IH(t), the violation charge on the coarse

grid satisfies QH
i =

� t2

t1
IH

i (t)dt =
� t2

t1
RH

h (i, :)Ih(t)dt, where

RH
h (i, :) is the ith row of RH

h . The violation time interval
on the fine grid is approximated by that on the coarse grid.
Then, we have:

QH
i =

�
j

� t2

t1

RH
h (i, j)Ih

j (t)dt

=
�

j

� t2

t1

P h
H(j, i)Ih

j (t)dt =
�

j

P h
H(j, i)Qh

j

(14)

where P h
H(j, i) is the element at the jth row and ith column

of P h
H . This indicates that the total decap area remains the

same after the back-mapping.

5. EXPERIMENTAL RESULTS
The proposed method was implemented in C language

with numeric libraries TAUCS [19] and RFSQP [17]. The
experiments were carried out on PC with Pentium IV 2.6G
CPU, 1GB memory and Windows operating system. The
experiments are performed on 5 small testcases and 5 large
testcases. All of them are in mesh structure with some local
irregularities. The voltage supply is 1.8V. The information
of the testcases, including the number of nodes, the thresh-
old of voltage drop, the maximal violation time intervals and
the percentage of violation nodes, are shown Table 1. The
threshold of voltage drop is set artificially such that about
20-35% nodes have violations for each testcase.

Table 1: The testcases information
Threshold Max(t2-t1) Violation

Case #nodes
(mV) (ns) (%)

1 100 30 0.20 21.0%
2 225 58 0.20 27.6%
3 361 77 0.25 26.3%
4 625 75 0.35 31.2%
5 729 70 0.45 34.7%
6 10.0K 92 0.45 31.7%
7 62.5K 92 0.40 27.9%
8 108.9K 92 0.40 30.7%
9 324.9K 122 0.70 32.5%
10 1.0M 130 0.95 21.7%

5.1 Comparison with Previous Works
In order to demonstrate the efficiency of our AMG based

method, we implemented and compared with the following
previous works:
• CG: solving decap allocation problem using standard
conjugate gradient method as in [6]. It generally provides
very good results, but is relatively slow.
• iCG: the improved conjugate gradient method proposed
in [8]. By replacing standard line search in CG with greedy
search step sizes, it is significantly faster than CG. However,
it tends to over-budget decap area.
• Theta: the charge based method introduced in [4]. It
runs very fast, but may result in large over-estimation on
decap area.

The comparisons are shown in Table 2. The data shows
that our method runs much faster than CG which cannot
even complete for the largest two cases. Our method is also
faster than iCG on large cases. It is slower than Theta,
but the gap becomes smaller when the size of power grid
is increased. In fact, its runtime is less than that of Theta
on the largest case. This is because the inaccurate decap

estimation of Theta method incurred multiple iterations of
transient analysis and corrections. One can also observe that
the speedup of our method vs. CG and iCG increases for
large circuits. These evidences indicate that our method has
better scalability than the other methods. This is an appeal-
ing feature when we face increasingly large circuit designs.

The solution quality are evaluated in terms of total decap
area and voltage slack, which is the threshold of voltage drop
minus worst voltage drop after optimization. It can be seen
that our method almost always provides the minimum decap
area except case 6. In contrast, Theta results in unnecessar-
ily large decap area 30%∼77% more than our method. With
the similar or smaller decap, the voltage slack after being
optimized by our proposed AMG is usually larger than that
of CG. It indicates decaps are more reasonably allocated by
our AMG method.

5.2 Effectiveness of AMG and Proposed Speedup
for Sequential Quadratic Programming

The comparisons in this section are made to investigate ef-
fectiveness of using AMG and the SQP speedup techniques
proposed in section 4.3. We compare the full version of our
method with the following variants in Table 3:
• SQP: solving the decap allocation through SQP pack-
age [17] without using AMG and without using the speedup
techniques introduced in Section 4.3.
• Our SQP: solving the decap allocation through SQP
package [17] with the speedup techniques introduced in Sec-
tion 4.3, but without using AMG.

Since the SQP package [17] is not able to handle large
cases directly, the comparisons are made for only the small
cases. The SQP [17] yields the minimum decap area, but has
minor voltage violations. This is because the original SQP
[17] terminates whenever the nonlinear constraint is smaller
than a predefined ε.

The comparison of AMG results with that of our SQP
shows excellent speed/quality compromise of the proposed
AMG techniques. The comparison of the original SQP re-
sults with that of our SQP implies that the speedup tech-
niques of Section 4.3 are very effective on improving the com-
putation speed with very minor overestimation. Overall, the
over-estimation on decap area from our method is no more
than 6%. With the increase of the power grid size, we expect
to see even larger speedup with our AMG method.

5.3 Other Details of Our AMG Based Method
Table 4 displays other details of our AMG based method

including the number of iterations for the grid reduction, the
number of nodes after reduction, the compensation constant
described in Section 4.2, the number of iterations for the
SQP and the amount of total decap allocated. It can be
seen that the coarse grids usually contain only hundreds of
nodes.

Table 4: Detail results of our AMG based method
#iter. in #nodes after δ #iter. Decap

Case
reduction reduction (mV) SQP (nF)

1 2 42 5.9 8 0.4
2 2 93 8.1 20 1.2
3 3 118 11.3 7 1.6
4 5 139 17.8 21 2.7
5 6 127 18.8 19 3.0
6 13 348 25.1 32 42.1
7 23 503 28.3 31 271.0
8 25 771 28.7 17 478.0
9 30 684 20.2 71 1270.0
10 37 763 10.4 103 3910.0
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Table 2: Comparison among CG, iCG , Theta and the proposed AMG based method
CPU Time (sec) / speedup factor Normalized decap area Voltage slack(mV)

Case
AMG CG iCG theta AMG CG iCG theta AMG CG iCG theta

1 1.3 7.4 5.7x 1.4 1.1x 0.06 0.05x 1 1.02 1.16 1.3 0.3 0 1.1 3.3
2 2.5 14.6 5.8x 2.2 0.88x 0.06 0.02x 1 1.02 1.12 1.63 0.5 0.2 2.7 16.6
3 2.9 16 5.5x 2.3 0.79x 0.08 0.03x 1 1.04 1.03 1.64 1.5 0.8 0.5 25.3
4 4.4 18.6 4.2x 2.5 0.57x 0.1 0.02x 1 1.05 1.15 1.61 4.6 0.8 6.6 21.4
5 4.6 27.5 6.0x 2.6 0.57x 0.2 0.04x 1 1.05 1.11 1.68 3.3 0.8 3.9 22
6 42.7 91.4 2.1x 9.5 0.22x 1.8 0.04x 1 0.98 1.03 1.59 0.7 1.3 1.6 2
7 47.4 783 16.5x 56.6 1.2x 17 0.36x 1 1.53 1.51 1.47 4.6 1.7 0 2.4
8 62.3 1415 22.7x 101 1.6x 34.8 0.56x 1 1.05 1.41 1.51 3.9 0.2 0.7 2.8
9 211 × 538 2.6x 162 0.77x 1 × 1.20 1.77 0.1 × 0.6 2.6
10 674 × 4786 7.1x 1601 2.4x 1 × 1.12 1.48 0.5 × 0 1.2

Table 3: Comparison among SQP, our SQP and the proposed AMG based method
CPU Time (sec) / speedup factor Normalized decap area Voltage slack(mV)

Case
AMG SQP our SQP AMG SQP our SQP AMG SQP our SQP

1 1.3 2.1 1.6x 1.6 1.2x 1 0.94 0.96 0.3 -0.1 0.5
2 2.5 16.8 6.7x 3.2 1.3x 1 0.97 0.99 0.5 -0.2 0.2
3 2.9 113 39.0x 10.9 3.8x 1 0.98 1.0 1.5 -0.2 1.6
4 4.4 792 180.0x 63.6 14.4x 1 0.94 0.98 4.6 -0.2 2.4
5 4.6 1360 295.7x 177 38.5x 1 0.94 0.96 3.3 -0.2 0.2

5.4 Charge Based vs. Linear Programming
Based Back-mapping

In Table 5, we compare our charge based back-mapping
and the linear programming (LP) based back-mapping [9]
on the four large cases. Since both mappings give the same
total decap area, we compare only the CPU time and the
voltage slack here. It is evident that our charge based back-
mapping provides better voltage slack at faster speed.

Table 5: Comparison between the charge based and
linear programming based back-mapping

CPU Time (sec) Voltage slack (mV)
Case Charge Linear Charge Linear

based programming based programming
6 <0.1 2.86 0.7 0.4
7 0.24 16.97 4.6 3.8
8 0.42 33.84 3.9 2.8
9 0.62 261.27 0.1 0.0

6. CONCLUSIONS
In this paper, we propose an algebraic multigrid based

decap allocation method. The condition for the equivalency
between the nonlinear programming on the fine grid and
that on the coarse grid is derived. An error compensation
technique is developed to make the method robust to uneven
current distributions. Furthermore, we also propose a new
back-mapping scheme, which is faster and provides better
solution than the previous work. Our method can be applied
to irregular power grids and can be easily combined with
other existing techniques. Experimental results confirm that
our method can lead to high quality solution at fast speed
and it has better scalability than several previous works
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