
UML for ESL Design − Basic Principles, Tools, and
Applications

W. Mueller

Paderborn University/C-LAB
Fuerstenallee 11

33102 Paderborn, Germany

A. Rosti
S. Bocchio

STMicroelectronics
Via Olivetti 2

Agrate Brianza, 20041, Italy

E. Riccobene
P. Scandurra

University of Milano, DTI
Via Bramante 65

Crema, 26013, Italy

W. Dehaene
Y. Vanderperren

KU Leuven
Kasteelpark Arenberg 10
3001 Heverlee, Belgium

ABSTRACT
This paper starts with a brief introduction to the UML 2.0 and
application-specific UML customizations via profiles. After a
discussion of UML design tools with focus on EDA support, we
present a HW/SW co-design approach and demonstrate how HW
architectures are described together with application SW in a
unique UML based environment. Using a dedicated profile
providing support for SystemC in UML, and a SystemC wrapper
for the SimIt instruction set simulator of a StrongARM, an
executable model of the complete architecture is generated which
can be simulated by the SystemC kernel. The physical layer of an
802.11a system is used as an application example.

Categories and Subject Descriptors
I.6.5 Model Development

General Terms
Design, Languages, Verification

Keywords
ESL Design, SoC, UML, Profiles, Tools, SystemC, Simulation

1. INTRODUCTION
The OMG (Object Management Group) standard UML (Unified
Modeling Language™) has received wide acceptance in software
engineering over the last years. Meanwhile, we can find signifi-
cant investigations how to apply UML for real-time systems [6]
and professional development environments with UML support
became available in that area. As electronic systems design
moved towards software engineering, there is emerging interest
for UML within the hardware community [7,28] and different
UML diagrams and their variations found their application in:

• requirements specification,
• testbenches,
• architectural descriptions, and
• behavioral modeling.

In most cases UML is just applied as a graphical capture, though
UML 2.0 meanwhile comes as a computationally complete
language based on a generic metamodeling1 mechanism.
However, that metamodel-based approach makes the language
definition really complex. Nevertheless, it constitutes one of the
key strengths of UML 2.0, providing a flexible foundation for its
customization towards different application domains through so-
called UML profiles, which currently receives increasing tool
support and gives UML great potential to complement current
C++-oriented languages for ESL design. In this context, SysML
[12] and the UML for SoC extension [17] are already available as
OMG profiles for Systems Engineering and SoC application. In
this paper, we present a UML profile for SystemC which goes
beyond the OMG profile [17] and supports the description of the
structural and the behavioral SystemC.
Another great potential lies in UML’s structural parts, which
apply well to current practices in IP integration and packaging for
architectural, component, and interface descriptions. The SPRINT
project [27], for instance, investigates how structural parts of
UML or related profiles can complement IP-based design flow.
Of particular interests are partial cross-compilations between the
two XML-based standard exchange formats: the OMG standard
XMI2 [10] and SPIRIT [26], the emerging IEEE standard.
For industrial applications, the availability of appropriate tool
support is crucial for deployment of UML for SoC design (e.g.,
see the UML-SoC workshop survey [28]). As explained in
Section 4, UML tools come in different variations based on
different UML versions and subsets with the support of specific
flows, so that the selection of the appropriate tools becomes a key
decision for the successful introduction of UML.
The remainder for this paper is structured as follows. We first
give an overview of basic UML 2.0 features and profiles. After an
overview of UML related tools and a discussion of tool-related
aspects, we introduce a UML profile for SystemC and
demonstrate how it can be applied in the context of simulation.
Finally, the paper closes by a brief summary and conclusion.

2. UML 2.0
The UML 2.0 standard is defined based on MOF (Meta Object
Facility) [11], which is a simple language for the definition of

1 Defining a model by means of a model
2 XML Metadata Interchange – XML-based format for the ex-

change of UML models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

73

languages via metamodels. The definition of UML 2.0 is divided
into two parts: the infrastructure and the superstructure [14],
where the first one defines the kernel with all core constructs and
the latter defines constructs which are visible to the user. The
UML standard defines the structure (i.e., syntax) by means of
class diagrams with constraints and the semantics through textual
outlines. As far as possible, constraints are defined by OCL
(Object Constraint Language) expressions [13], another OMG
standard language in the context of UML.

UML 2.0 itself is composed of a set of structural (classes,
components, composite structures, deployments) and behavioral
concepts (actions, activities, state machines, interactions, use
cases) clearly separating those concepts from their visual
representation, i.e., the diagrams composed of graphical symbols.
This separation has the advantage to easily replace the graphical
representation without changing underlying concepts.

The fundamental structural units of UML are classes with
attributes, operations, ports, and interfaces with class relationships
by means of inheritance, generalizations, and associations.
Components can be either groups of elements (packaging
component) or specialized classes (basic component), which are
connected by their required or provided interfaces. Deployments
and composite structures define nested structures. As the latter
two compare well to architectural descriptions, they currently find
several applications in electronic systems representation.

For behavioral modeling, UML 2.0 has actions, activities, state
machines, interactions, and use cases with various graphical
representations. Actions represent the fundamental behavioral
units of UML with functional input/output behavior. Actions can
be called by activities and state machines, where activities
basically compare to Petri-Nets with queuing semantics and
control and object token flows. State machines represent a variant
of Harel’s StateCharts [5]. Interactions give definitions of
partially ordered events and can be represented as sequence,
timing, interaction overview, and communication diagrams,
where sequence diagrams owe very much to ITU’s Message
Sequence Charts. Though state machines are similar to
StateCharts it has to be noted here that UML defines a so-called
Run-To-Completion semantics based the sequential selection of
events from an event pool.

Current electronic system designs more often apply variants of
state machines for modeling, mainly due to more intuitive
synthesizable HDL code generation and available tools. Sequence
diagrams currently come more into application when interactions
of objects, like protocol descriptions, are sketched as well as for
testbench definitions.

3. UML PROFILES
3.1 Defining a UML Profile
The possibility to define profiles is a standard extension
mechanism provided by UML [14]. Profiles allow customizing
the UML so that any system could in theory be modeled at any
level of detail. A profile is made of a set of stereotypes, tagged
values, and constraints to define how the syntax and the semantics
of the UML metamodel are extended for a specific domain
terminology. Stereotypes are specific metaclasses (classes in the
metamodel), tagged values are standard attributes of metaclasses.

A profile provides mechanisms for specializing a reference
metamodel, like the UML 2.0 standard metamodel [14], for its
customization to a specific application domain. The profile adds
information to adapt the metamodel to a specific problem domain.
The profile cannot remove information, e.g., constraints, from the
reference metamodel. Because profiles extend a metamodel, they
are derived from the Meta Object Facility (MOF) definition and
provide just enough extensibility to create line of sight while
avoiding the complexity of defining a new metamodel.
Profiles can customize the UML reference metamodel with
constraints, tagged values, and extensions. An extension indicates
that the properties of a metaclass are extended through a
stereotype. An extension is a kind of association. One end ties the
association to the metaclass. The other end ties the stereotype to
the metaclass it extends. Extensions contain an isRequired
attribute indicating whether an instance of the stereotype must be
created when an instance of the extended class is created.

Figure 1. Stereotype definition for sc_port

Within the profile package, a class of the UML metamodel that is
extended by a stereotype is shown as a conventional class with
the optional keyword <<metaclass>>. A stereotype is depicted
as a class with the keyword <<stereotype>> (see Figure 1).
The extension relationship between a stereotype and a metaclass
is depicted by a solid black arrow pointing towards the metaclass.
When applied to an element in a model, a stereotype is shown as a
keyword consisting in the name of the stereotype within a pair of
guillemets, near the symbol of the element or with the special
icon defined for it (if one was defined for it) in place of the
conventional symbol for the element.
Constraints are semantic conditions or restrictions and can be
applied to stereotypes. It is possible to define additional semantic
constraints expressed as OCL (Object Constraint Language) [13]
formulas over its base metaclass. A constraint enforces a semantic
restriction of the extended modeling element. Table 1 shows an
example of semantic constraint in OCL.

Table 1. OCL constraint example for an sc_port

English: An sc_port can have exactly one required interface and no
provided interfaces.

OCL:
 baseClass.required->size()=1 and baseClass.provided->size()=0

Tagged values define properties as name/value pairs and they can
be attached to any modeling element. They can describe
properties such as the initial value of an attribute, or the fanout of
a port, like the tagged value of the sc_port max_if in Figure 1.

A UML profile is therefore based on the following elements:
1) the UML reference metamodel or a subset of it
2) a standard graphical notation for the set of extensions (i.e.

stereotypes and their tagged values)

74

3) OCL and natural language to write further constraints
Another fundamental requirement about a profile is that it must be
formally defined and machine-readable, from the definition of the
profile it is possible to derive a specification in XMI [10] format
that can be used in practice to import the profile in the UML
tools.
In order to provide a co-design flow based on UML, we need to
extend the UML with capabilities for modeling the hardware. We
achieve this by defining a UML profile for SystemC as introduced
in Section 5.

3.2 Relevant UML Profiles
There already exist several profiles available as OMG standards
or close to final OMG adoption. Hereafter, we have summarized
those which are of particular interest for SoC and embedded
systems design; see [7] for more details. It has to be noted here,
that the OMG does not prescribe compatibilities between different
profiles, i.e., definitions between may overlap and contradict.
Some cannot easily applied to all cases since they still refer to
UML 1.x.
The Schedulability, Performance, and Timing Analysis (SPT)
profile [16] provides constructs to represent more easily the kinds
of timing and performance artifacts useful in embedded real-time
systems, such as Rate Monotonic Analysis (RMA) and Deadline
Monotonic Analysis (DMA).
A related profile is the one for QoS and Fault Tolerance [15],
which defines the notion of concurrently executing resource-
consuming components (RCC). This profile covers real-time
issues with a focus on communication policies and their latency
with hard and soft deadlines. However, though the QoS profile
has some overlap with the SPT profile there has been no effort yet
to combine both on a joint basis.
An additional profile was defined for applications in software,
hardware, and protocol testing. The UML testing profile [18]
gives several definitions for test benches, test architectures,
stimuli, and procedures. The standard gives a mapping of the
concepts to the ITU standard test language TTCN-3 (Testing and
Test Control Notation), which plays an important role in telecom
and automotive systems design.
The UML for SoC profile [17] is an outcome of the Japanese
UML for SoC Forum (USoCF) and mainly defines structure
diagrams through specific SoC stereotypes, e.g., SoCModule,
SoCPort, and SoCClock, including their SystemC-like graphical
symbols as well as modeling guidelines for Systems-on-Chip.
The SysML (Systems Modeling Language) [12] was jointly
developed as a UML profile by INCOSE (International Council of
Systems Engineering), ISO AP233 Working Group, and an OMG
special interest group. It basically takes classes, components,
composite structures, activities, state machines, use cases and
parts of interactions from UML and additionally defines
parametrics (i.e., constraints), requirements (mainly defining
dependencies and properties in design flows), and allocations,
which define cross-association of elements within the various
structures or hierarchies of a model, such as the assignment of
behavior to structures, for instance. In addition to some new
diagrams like the internal block and block definition diagram,
SysML also adds different behavioral concepts to activities like
rates and probabilities of token flows. Though the SysML

specification was recently finalized, several tools with SysML
support are already available on the market.

4. UML TOOLS FOR ESL DESIGN
UML tools applicable for ESL design can be classified in four
different categories: UML CASE3 tools, UML modeling tools
with real-time support, UML tools with co-simulation support,
and UML in-house tools or tool extensions, respectively.

4.1 CASE Tools
UML CASE tools are used to model primarily software systems,
support object oriented analysis and design methods, support
model exchange by XMI, and provide code generation for
languages, such as C++ or Java. IBM Rational Rose, Sparx
Systems Enterprise Architect, and Gentleware Poseidon are
typical examples of tools which fit in this category. A more
detailed classification of this type of tools can be found in [2].

4.2 Tools with Real-Time Support
UML tools which provide (sometimes limited) support for real-
time systems constitute a second category. Products such as I-
Logix Rhapsody (now acquired by Telelogic), ArtisanSW Real-
Time Studio or IBM Rational Rose RealTime, provide proprietary
mechanisms to represent timeliness properties and execute UML
models with timing annotations. Several UML tools, such as I-
Logix Rhapsody, Telelogic Tau, and the Mentor Graphics EDGE
UML suite, provide support for common RTOS programming
interfaces, like Green Hills Integrity or Mentor Graphics Nucleus,
respectively.

4.3 Tools with Co-Simulation Support
Third, some tools associate different application areas and are
located at the crossroad of domains. For instance, Extessy AG
Exite is a coupling tool which allows co-simulating Simulink
models with UML state diagrams in Rhapsody or Real-Time
Studio. As a second example, Real-Time Innovation Constellation
is a UML-based integrated platform for real-time systems which
can be used for system-level semiconductor design, although it is
initially meant for controls and robotics. It provides a graphical
environment with execution tracing and data-visualization tools,
generation of C++ code with support for concurrent behaviors
similar to SystemC, and means to integrate C++ code generated
from Matlab/Simulink into the C++ produced by Constellation.
These two examples illustrate how Matlab and Simulink can be
integrated with UML: by co-simulation in the first case (Figure
2), and by translation to a common language (C++) in the second
case (Figure 3). The circular arrow indicates in each situation
which model is executed. To the very best knowledge of the
authors, co-simulation is currently not supported for Matlab
programs written in M. However, several solutions exist which
rely on a dedicated coupling tool interfacing the Simulink model
via a coupling block which handles the transfer of data. In
contrast, the co-translation approach supports both Matlab code
and Simulink models, as C/C++ code can be generated using the
Matlab Compiler or Real-Time Workshop, and then linked to a
C++ implementation of the UML model. Further details about the

3 Computer Aided Software Engineering

75

integration between UML tools and Matlab/Simulink can be
found in [29].

Figure 2. UML and Simulink integration: co-simulation

Figure 3. UML and Matlab/Simulink integration: co-

translation to a common language (C++)

4.4 In-house Tools or Tool Extensions
In-house tools are developed by users to customize and/or extend
the tools in the previous categories with extra features, such as
behavioral synthesis on top of Rhapsody [1], SystemC code
generation from UML 2.0 in the context of Enterprise Architect
[23], or Real-Time Studio [21]. These efforts towards tools
providing SystemC code generation realize the idea of associating
UML and SystemC and confirm its benefits, as investigated by
previous studies and experiences based upon UML 1.x [3,22,31].
Another example of tool extension is the Mentor Graphics
BridgePoint model compiler, which transforms UML design
models into C or C++ code usually, but allows its rule-based
translation templates to be modified so that the same UML model
can be used to generate code for other targets, such as VHDL [8].

4.5 Discussion
The previous paragraphs might suggest that heavy UML tools are
required to take full advantage of UML. In practice, the selection
of a subset of UML appropriate for the application domain, and
efficient code generation are sometimes more important aspects to
consider. [24] demonstrates, for instance, that state machines can
be efficiently implemented in C to fit a low-end 8-bit micro-
controller architecture with modest memory fingerprint (4 KB
ROM for a non-trivial hierarchical state machine and minimalist
RTOS).
In general, it can be observed today that the vast majority of tools
do not provide complete support for UML 2.0 and that the
interpretation of the UML specification varies among the vendors.
Several reasons explain this situation.
First, the complexity of UML makes a selection of a subset
appropriate for each particular application domain mandatory.
Such subset typically includes class diagrams, composite structure
diagrams, object diagrams, state diagrams, activity diagrams,
sequence diagrams, and timing diagrams.
Second, UML 2.0 constitutes a major change with respect to
UML 1.5 and most vendors have not yet completely adapted their

tools for UML 2.0. This lack of support for UML 2.0 is reflected
by the discrepancy between the XMI descriptions of UML
models. While it should be theoretically possible to export a UML
model made with a particular UML tool as an XMI file and
import it into the UML tool of another vendor, this operation fails
in practice in several cases.
Finally, tool vendors may include some form of support for a
particular development process of their own (such as the Rational
Unified Process in the case of IBM Rational), which biases the
use of UML and the tool support towards that particular process.
The situation becomes even more complex when considering
extensions to UML (i.e. profiles). While SysML has already
gained the support of several tool vendors who have participated
to the standardization effort of SysML, other profiles applicable
to SoC design, such as the UML-SoC profile [17], are far less
supported. At the time of writing, only ArtisanSW has publicly
reported support for this profile in the context of the joint work
with Philips Semiconductors [21]. The situation may change in
the future if more designers use the profile, now that a first
version of the profile has been standardized, and if the profile
solves the lack of behavior semantics in UML.
In front of such a complex situation, it is understandable that the
lack of appropriate tool support was the weakness of UML which
was most often chosen in the survey at last UML-SoC workshop
at DAC [28] was the lack of appropriate tool support. Another
interesting result was that the design time can decrease by using
UML but at the condition that users have suitable tools supporting
the design flow, not by virtue of the inherent features provided by
UML.
As a conclusion, it is crucial to choose a UML tool according to a
well-defined list of user-defined criterion and desired features, in
order to assess each tool objectively and understand the strengths
and weaknesses of each solution. Such list of criterion includes
for example the degree of compliance with UML 2.0, the ease to
customize interfaces and code generation, the support for forward
and reverse engineering, the degree of compliance with XMI
standard, the tool cost, the capability to provide a collaborative
modeling environment etc.

5. AN SOC CO-DESIGN FLOW BASED ON
UML AND SYSTEMC
To demonstrate UML in industrial application, the remainder of
this paper presents an approach to SoC design that allows
modeling the hardware and software architecture together. We
show how a hardware architecture can be described together with
the application software in a unique environment based on UML
2.0, and how we also generate an executable model which can be
simulated by the SystemC kernel.

The system architecture we are demonstrating contains an
encapsulation in a SystemC wrapper of the SimIt instruction set
simulator for the StrongArm processor. It is modeled as an
element of a UML composite structure diagram. The architecture
contains also other major hardware components modeled using
our UML profile for SystemC (that allows embedding SystemC
parts within UML 2.0): the memory architecture, the OCCN (On
Chip Configurable Network) for the interconnections, and other
dedicated components to increase the overall system performance.
We provide an application example implementing an 802.11a
physical layer transceiver.

76

Figure 5. UML for SystemC structure of the profile

5.1 SYSTEMC
Our profile is developed for SystemC application. SystemC [20]
is an open standard controlled by a steering group composed of
several companies in the EDA (Electronics Design Automation)
area. It is one of the most promising system-level design
languages intended to support the description and validation of
complex systems in an environment completely based on the
C++ programming language. SystemC permits to design at
system level supporting different levels of abstraction in the
same design − functional level, timed or untimed, transactional
level, down to bus cycle accurate and RTL − and to perform
design refinement in the same language. In our vision, SystemC
is a suitable target implementation language, since it is able to
represent the system at different levels of abstraction and to mix
them in the same design model, allowing describing together the
hardware and the software since the early design phases.
Figure 4 shows that the language architecture of SystemC is
built on top of the standard C++. The Core Language and Data
Types provide the basic layer of the language, which defines the
basic primitives to describe a system (modules, ports, processes,
interfaces, channels, events), and new data types more oriented
to describe hardware entities than the original C++ data types.
The Elementary Channels are implemented in a separate layer
using the primitives provided by the basic layer.

C++ Language Standard

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Data Types
Logic(0 1 X Z) and Logic Vector
Bits and Bits Vector
Arbitrary Precision Integer
Fixed Point
C++ Built in types (int,char,double..)
C++ User Defined Types

Elementary Channels
Signal, Timer, Mutex, Semaphore, Fifo, etc

C++ Language Standard

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Data Types
Logic(0 1 X Z) and Logic Vector
Bits and Bits Vector
Arbitrary Precision Integer
Fixed Point
C++ Built in types (int,char,double..)
C++ User Defined Types

Elementary Channels
Signal, Timer, Mutex, Semaphore, Fifo, etc

Figure 4. SystemC structure of the language

5.2 UML Profile for SystemC
The main purpose of the UML 2.0 profile for SystemC [23] is to
provide a graphical entry to SystemC designer, with a special
attention to the code generation and back annotation capabili-
ties. Other purposes are the maintainability of the design, the
compactness, and expressiveness.
UML 2.0 uses a standard graphical notation for defining
profiles: we describe it here briefly together with the definition
of our UML 2.0 profile for SystemC.
A profile is denoted as a package with the keyword
<<profile>>. Figure 5 shows the structure of our UML 2.0
profile for SystemC. Resembling the structure of the SystemC
class library it is organized in two distinct layers: layer-0 corres-
ponds to the part of SystemC that includes the Core Language
and the Data Types, it is modeled by the SystemC-Kernel
importing the SystemC-DataTypes package; layer-1 corresponds
to the SystemC Elementary Channels, it is modeled by the
SystemCPredefinedChannelsAndPorts that imports the
SystemCKernel.
It is important to notice that package SystemCPredefined-
ChannelsAndPorts is not strictly required for modeling; it just
extends the SystemC kernel profile, adding specialized icons
and short notations for predefined channels and ports. It is in
fact possible to use the package named SystemCPredefined-
ChannelsAndPortsLibrary that provides the same predefined
SystemC channels, interfaces, and ports implemented from the
SystemCKernel. While modeling, one can choose to apply either
the basic layer-0 profile using stereotypes from the kernel and
importing the library for predefined channels (long hand
notation), or the SystemC layer-1 profile extended with the
stereotypes for the predefined channels and ports (shorthand
notation).
The profile can then be further analyzed in its four parts:
The SystemC CORE layer: structure and communication in
layer-0 defines stereotypes of the core layer of SystemC which

77

can be used in various UML structural diagrams (i.e., UML
class diagrams and composite structure diagrams) to represent
SystemC structural and communication elements like modules,
interfaces, ports, and channels.
The SystemC CORE layer: behavior and synchronization in
layer-0 defines stereotypes of the core layer of SystemC which
can be used in various UML behavioral diagrams (such as UML
state machines) for behavioral modeling of systems.
The SystemC CORE layer: data types in layer-0 define UML
classes for representing SystemC data types.
The SystemC layer of predefined channels, interfaces and
ports in layer-1 provides concepts for the layer 1 of the
predefined channels, interfaces, and ports of SystemC.

Figure 6. Stereotypes for structural modeling

Figure 6 contains several examples of stereotypes definitions
related to the part of the profile that allows describing the
structure of a design. At model level, when a stereotype is
applied to a model element, an instance of a stereotype is linked
to the instance of the corresponding UML metaclass, as shown
in Figure 7 where an instance of a class with <<sc_module>>
stereotype is placed.

Figure 7. Class with its interfaces

It is then possible to compose hierarchical models of
interconnected components as in Figure 8, which shows two
instances of SystemC modules which connect through ports and
the corresponding interfaces a fifo channel (this element is
modeled in the SystemCPredefinedChannelsAndPortsLibrary).
To complete the description about the features that allow
modeling the system structure, we have also to mention the
object diagrams. They are similar to the composite structure
diagrams, but deal with objects rather that with classes and
allow to define actual values of parameters on the object
instances.

Figure 8. A structural composite class diagram

The most innovative aspect of this UML 2.0 profile for SystemC
is an enhanced capability for modeling the behavior. In fact
behavioral elements such as methods and threads have a double
derivation (see Figure 9) both from Operation and StateMachine
allowing to associate behavioral descriptions as extended state
machines.

Figure 9. Behavior is operation and state machine

The semantic of state machines diagrams has been enhanced so
that they can model the body of any SystemC method or thread,
in a one-to-one relationship between the statements of SystemC
and the constructs of the state machine. We have introduced all
the C control statements (if, switch, for, while, break, return,
continue) plus the synchronization primitives from SystemC
(wait, next_trigger, event notifications). Inside the states (see
Figure 10) it is possible to define directly any SystemC
statement by an extended semantics of UML actions. Those
state machines have been designed particularly for easy code
generation.

Figure 10. Behavioral state machine

5.2.1 The fifo example
As described before, we can summarize the profile by two main
views that contribute to the description of the model:
1) the Structure and Communication view provided by

stereotyped UML class diagrams, composite structure dia-

78

grams, and object diagrams that represent the hierarchical
structures and communication blocks of the system;

2) the Behavior and Synchronization view provided by a varia-
tion of the UML method state machine, called SystemC
Process State Machine, that specifies the reactive behavior
of the SystemC processes, which run concurrently within
modules and channels.

We show hereafter the descriptive capability of the SystemC
profile for a system that sends and receives data through a FIFO.
Instead of using the predefined channel sc_fifo, we provide a
custom implementation of a fifo channel. Therefore, the first
step is to provide a definition with the SystemC profile
constructs of the interface that the channel will implement, as in
the upper part of Figure 11; the equivalent SystemC code is
shown at the bottom of the figure.

 class write_if: virtual public sc_interface {
 public:
 virtual void write(char) = 0;
 virtual void reset() = 0;
 };

Figure 11. Interfaces definition in UML and SystemC code

We use class diagrams to define the basic blocks that will form
the system: a producer and consumer module that respectively
will send and receive data and the fifo channel. The producer
module in UML is shown in Figure 13, while the behavior of the
process main is represented in Figure 12.

Figure 12. sc_thread main behavior

Figure 14 represents the structure diagram of the system, where
the entire basic blocks are connected and instantiated.

Figure 13. Producer module

Figure 14. System structure diagram

5.3 Case Study
Following the previously introduced approach, we have
implemented an 802.11.a physical layer transmitter and receiver
described at instruction level (see Figure 15). Therefore, on one
hand the C/C++ application code is encapsulated as a library
functions in a UML class. This class provides through ports the
I/O interface of the software layer to the hardware system. On
the other hand, an ISS encapsulation in UML is also provided,
in order to represent all the elements of the system. The UML
encapsulation of the ISS is built by the UML profile for
SystemC, in order to generate a SystemC wrapper for the ISS
and to allow a HW/SW co-simulation at transactional or cycle-
accurate level. The application code generated from UML
diagrams – Enterprise Architect already provides this feature –
is executed by the SimIt ISS [25].

Figure 15. 802.11a TRX block diagram

The system is composed of an ARM processor and a dedicated
hardware coprocessor that implements an FFT operation. The
processor acts as a master to the hardware module and the
memory components, where code and data are stored. The
communication is realized by a system bus: we use here On
Chip Configurable Network [4], a transactional level cycle
accurate SystemC model available at [19]. All the blocks of this
system are modeled with UML class diagrams using our profile,
in order to automatically generate the SystemC code.

5.4 An ESL Design Environment
Relying on standards, such as UML with its profiling
mechanism and SystemC, allows us to easily develop a design
environment based on tools that support UML 2.0. We can use
such tools as front-end to our design flow with a very low cost
of integration. By importing the profile through XMI in the

79

chosen UML tool (Enterprise Architect, see Figure 16), we
obtain a UML schematic entry that can handle SystemC models
such as those described in this paper.

Figure 16. Building a design environment

The rest of the design flow encompasses a code generator that is
now mature enough for being used in complex designs and a
reverse engineering tool that can import SystemC models in the
environment and is currently at a prototypal stage.

6. SUMMARY AND CONCLUSIONS
This paper discussed advanced UML applications for electronic
systems design with focus on UML tools and its customizations
for SystemC. We have shown how UML profiles can be used
within a wider scope of application domains such as the SoC
design area. UML profiles provide a standardized visual re-
presentation easy to learn and supported by a number of tools to
design, implement, and document systems. The possibility to
develop a complete design environment, with full round-trip
capabilities for code engineering, constitutes one of the benefits
provided by a UML extension for SystemC.
Finally, the availability of appropriate tool support is crucial for
a successful adoption of UML for SoC design. Several ongoing
efforts resulting from collaborations between industrial users,
researchers, and tool vendors, constitute steps in the right
direction. Similarly to the approach presented in this paper,
other positive outcomes have already been reported.

7. ACKNOWLEDGMENTS
The work of Paderborn University is partly funded by the IST
project SPRINT (IST-2004-027580).

8. REFERENCES
[1] Basu, A., Lajolo, M., Prevostini, M. A Methodology for

Bridging the Gap between UML and Codesign. In [7].
[2] Blechar, M.J. Magic Quadrant for OOA&D Tools (2H06

to 1H07). Gartner Research Report G00140111. May
2006.

[3] Bruschi, F. et al. A SystemC based Design Flow starting
from UML Models. In [32].

[4] Coppola, M., Curaba, S., Grammatikakis, M.D.,
Maruccia G., Papariello, F. OCCN: A Network-On-Chip
Modeling and Simulation Framework. In Proc. of
DATE’04, Munich, 2004.

[5] Harel, D. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming 8. 1987.

[6] Lavagno, L., Martin, G., Selic, B. (eds) UML for Real:
Design of Embedded Real-Time Systems. Kluwer,
Dordrecht, 2003.

[7] Martin, G. and Mueller, W. (eds) UML for SoC Design.
Springer, Dordrecht, 2005.

[8] Mellor, S. and Balcer, M. Executable UML - A Found-
ation for Model-Driven Architecture. Addison-Wesley,
2003.

[9] Mellor, S., Wolfe, J., McCausland, C. Why Systems-on-
Chip needs More UML like a Hole in the Head. In [7].

[10] Object Management Group (OMG). XML Metadata
Interchange (XMI) Specification, Version 2.0. formal/03-
05-02, May 2003.

[11] Object Management Group (OMG). Meta Object
Facility (MOF) Core Specification.Version 2.0. formal/
06-01-01, January 2006.

[12] Object Management Group (OMG). OMG Systems
Modeling Language (OMG SysML) Specification. ptc/
06-05-04, June 2006.

[13] Object Management Group (OMG). UML 2.0 OCL
Specification. ptc/03-10-14, October 2003.

[14] Object Management Group (OMG). UML 2.0 Super-
structure. ptc/05-07-04, August 2005.

[15] Object Management Group (OMG). UML Profile for
Modeling QoS and Fault Tolerance Characteristics and
Mechanisms, V 1.0. formal/06-05-02, May 2006.

[16] Object Management Group (OMG). UML Profile for
Schedulability, Performance, and Time Specification,
V1.0. formal/03-09-01, September 2003.

[17] Object Management Group (OMG). UML Profile for
System on a Chip (SoC) Specification V1.0. formal/06-
06-01, June 2006.

[18] Object Management Group (OMG). UML Testing
Profile, V1.0. formal/05-07-07, July 2005.

[19] OCCN Project. occn.sourceforge.net
[20] The Open SystemC Initiative. www.systemc.org
[21] Ramanan, M. SoC, UML & MDA – An Investigation. In

Proc. of the 3rd DAC UML for SoC Design Workshop,
San Francisco, July 2006.

[22] Rational Software. SoC Design with UML and SystemC.
6th European SystemC Users Group Meeting (ESCUG),
2002.

[23] Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S. A
SoC Design Methodology Based on a UML 2.0 Profile
for SystemC. In Proc. of DATE’05, Munich, 2005.

[24] Samek, M. UML Statecharts at $10.99. In Dr. Dobb's
Portal, May 2006.

[25] SimIt-ARM Project. simit-arm.sourceforge.net
[26] Spirit Consortium. www.spiritconsortium.org
[27] SPRINT Project. www.sprint-project.net
[28] UML-SoC Workshop at DAC. www.c-lab.de/uml-soc
[29] Vanderperren, Y. and Dehaene, W. From UML/SysML

to Matlab/Simulink: Current State and Future Perspec-
tives. In Proc. of DATE’06, Munich, 2006.

[30] Vanderperren, Y. and Wolfe, J. Survey of 3rd DAC UML
for SoC Design Workshop. www.c-lab.de/uml-soc.

[31] Vanderperren, Y. et al. A Design Methodology For The
Development Of A Complex System-On-Chip Using
UML And Executable System Models. In [32].

[32] Villar, E. and Mermet, J.P. (eds.) System Specification &
Design Languages. Springer, Dordrecht, 2003.

80

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /Batang
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MS-Mincho
 /MSOutlook
 /MT-Extra
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /SimSun
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

