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ABSTRACT

We present a gridless method for solving the interior problem for a
set of conductors in an homogeneous dielectric, at sufficiently high
frequencies, valid for conductor lengths that are not small com-
pared to the minimum wavelength, and transverse dimensions that
are large compared to the skin depth. For IC applications, we cover
the regime 10 — 100 GHz and the inclusion of all relevant wire
dimensions. We decompose the Electromagnetic field in terms of
the eigenfunctions of the Helmholtz equation for three dimensional
current distributions inside the conductors. Using a relatively small
number of modes per conductor we obtain results comparable to
filament or mesh decompositions using a much larger dimensional-
ity for the resulting linear problem. The method is an extension to
the fullwave regime of a method introduced in [1].

1. INTRODUCTION

Interconnect effects in signal propagation and noise analysis pose
ever increasing demands on electromagnetic solvers. Maximum
frequencies attainable with CMOS technology at 65 nm mode are in
the neighborhood of 40GHz. The frequency range (10 — 100)GHz
is one where proximity and skin effect become fully developed.
Signals propagating at these frequencies, on Cu wires with trans-
verse dimensions in the order of 1um penetrate the conductors only
a fraction of its cross section. In this regime, frequencies are too
high for considering the currents to be uniform over the cross sec-
tion, and too low for considering them as purely superficial. Global
interconnect and some intentional passive devices have lengths com-
parable to the minimal wavelength of light in the medium. Good
and efficient computational schemes have been developed in EM
applications for the very long as well as for the very short wave-
length regimes [2]. In the IC domain up to frequencies of 10GHz
the long wavelength regime suffices to study EM phenomena. Above
these frequencies we enter the intermediate wavelength scale which
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has been much less explored. Seminal contributions to high perfor-
mance field solvers in the long wavelength domain, developed in
the early 1990’s, have been widely used in industry, namely the
quasi-electrostatic (EQS) Capacitance solver FastCap [3] and the
quasi-magnetostatic (MQS) RL solver FastHenry [4]. In the in-
termediate wavelength scale, some recent contributions [5, 6] are
today’s reference in the field. Both teams use integral surface repre-
sentations for the EM field. The conditioning number of the result-
ing linear system is an open question and a source of concern. The
UIUC team uses different mesh decomposition of the surfaces de-
pending on the frequency range [6], while the MIT team is currently
revisiting a volume formulation, in part driven by this concern [7].

The computational demands associated to this new generation
of EM solvers is an an open area for research and development.
Motivated by this concern, we were attracted by the work of [1]
who introduced conduction modes as an alternative to the filament
decomposition for examining skin effect influence on RL compu-
tations. Their work falls entirely within the MQS approximation
and as such valid for long wavelengths. A major impact of that pa-
per comes from the fact that few modes were needed to reproduce
the FastHenry results with good accuracy in the presence of sig-
nificant skin effect. The computational savings resulting from this
approximation vis a vis a filament decomposition within FastHenry
were significant. With this result in mind we studied the extension
of the volumetric conduction mode treatment to the fullwave do-
main, in the presence of wire lengths comparable to the minimum
wavelength. In this paper we are reporting our first conclusions.

In generalizing the method of conduction modes basis functions,
from the RL—MQS approach to the RLC— fullwave domain, the
first approximation we dropped is that of unidimensional current
distributions, with the direction being that of the gradient of the ap-
plied potential. The unidimensional nature of the currents and mag-
netic vector potential is prevalent in quasistatic analysis and cannot
be kept in the fullwave regime. Transverse currents are a necessary
ingredient and are responsible for the deposition of charges on the
conductors’ non-contact surfaces. These surface charges give rise
to capacitance effects between conductors, and are hereby treated
within the same framework as the one used to describe resistive
and inductive effects. Their inclusion impacts on the choice of the
boundary conditions on the conductor surfaces, on a full solver. In
essence, the E field on the non contact surfaces develops a small
tangential component, as expected for a non perfect conductor [8].

We use a mixed potential integral equation (MPIE) approach to
describe the electric field E in terms of the gradient of electric scalar
potential and the time derivative of the magnetic vector potential.
To make room for the length scales comparable to the minimum
wavelength we modify the Green function of the problem in the
presence of a homogeneous dielectric from the Coulomb Green



function to the fullwave Green function.

In the following two sections we present the equations for the
linear system. The fundamental results later used in this work are
contained in equations (5), (9) and (11). In section 4, we describe
the RL conduction mode parametrization and the RLC generaliza-
tion. In section 5 we give a brief overview of some of the numerical
challenges encountered in performing the numerical integrations in
(5). In section 6, we give a couple of examples, on the the first one
we examine the stability of the method in moving toward the qua-
sistatic regime. We verify that in fact we recover FastHenry results
for small conductor lengths compared to the minimum A. We next
examine a simple fullwave electromagnetic problem and encounter
the expected resonances not present in the quasistatic treatments.
‘We compare our results to FastImp, and to the separated quasistatic
approach resulting from merging the impedance computations from
RL with the C results from FastCap.

2. CHOICE OF LINEAR SYSTEM

We start from a formal solution to the three dimensional Maxwell’s
equations. We work in the Lorenz gauge, with the conductors im-
mersed in a homogeneous lossless dielectric, incorporate Ohms law
and the continuity equation resulting from charge conservation, and
perform our computation on the Fourier representation. We use a
MPIE representation of the field E(r) in terms of the gradient of the
scalar electric potential ¢ and the time derivative of the magnetic
vector potential A(r). The unknown quantities are the currents in
the interior of the conductors, and the charges on their surfaces,
which are governed by the integral equations:
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with ¢ the conductor’s conductivity, ko = ®./Eug = 21/\ is the
wave number, V is the union of all conductor volumes V;, and sim-
ilarly for the surface S. Ohm’s law has been used in replacing
the total E in the conductor by J(r)/c, and the common kernel
exp(—jko|r —r'|)/|r — 1’| is the Green function for this problem in
the Lorenz gauge. In addition, the sources J and p are related by
the continuity equation:

V-]
J-n

as well as boundary conditions on the contact surfaces, ¢(r) =
0s, at the electrical connexions to the conductors.

We expand the vector current density J and surface charge den-
sity p, in terms of two sets of functions w;(r),i = 1...n defined on
the conductors volumes, and v;(r), j = I...n defined on the con-
ductors’ surfaces. For compactness of the notation, we absorb into
the single index i the dependence on the conductor as well as the
particular mode. Where it might lead to confusion we clarify the
respective roles. The total number # is the sum of modes over all
conductors.
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To determine the coefficients /;,q; on these expansions, we use
the Galerkin method of moments, whereby we replace (3b) into
(1a) and (1b), perform a functional inner product with w;(r) for
(1a) and with v;(r) for (1b), with the requirement that the residuals
be orthogonal to the basis functions. The resulting equations are
represented by a (Zn)2 linear system that can be written as:
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with the subindices i, j ranging from 1 to n, in the first two lines,
and from n+ 1 to 2n in the last one. The volume V is the collec-
tion of all the conductors’ volumes, whereas S is the set of all the
conductors’ non-contact surfaces. We have a collection of three,
four and six dimensional integrals to perform. The inner products
appearing on the right hand side (rhs) of (4) are given by:

<w,Vo> = /v¢-wfd3r i=1l.n (6a)
Vv

<vi, 0> = /q)vl*dzr i=n+1.2n (6b)
N

The effectiveness of the method will be assessed by the level of
precision we can get using a relatively small number of modes for
each conductor in w;(r) and v;(r), and the difficulty associated with
computing (5).

In the quasistatic limit the two blocks in (4) are decoupled. Cur-
rent distributions (RL extraction) and the charge distributions (C
extraction) are independently found. The choice of piecewise con-
stant functions, vanishing outside the volume of a single filament of
a conductor’s volume for w;j(r) and independently piecewise con-
stant functions over surface panels for each conductor for v;(r),
correspond to the model equations on FastHenry and FastCap, re-
spectively. Boundary conditions for these two problems are differ-
ent: for the RL problem, they are tantamount to setting ® = 0 in the
continuity equation (2b), whereas conductors are treated as equipo-
tentials for the EQS problem. Moreover, in this nearly infinite
wavelength approximation A >> ¢ (with £ the conductor’s length)
it is admissible to replace the phase factors by 1 inside the integrals
in (5).

3. RLC MIXED REPRESENTATION

For the general RLC extraction method, valid over a wider regime
of length and frequencies, the coupling between (1a) and (1b) must
be kept. Our goal in this section is to reduce the dimensionality
of the linear system on (4) and express the unknowns solely in
terms of currents. To this effect, we rewrite the linear system using
Green’s theorem:
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Figure 1: Surface S(V) with its normal vectors i, decomposed
into two contact surfaces S;,p, Sy, and one non-contact surface
Sxide-
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with S(V;) a closed surface that encloses volume V; (a single
conductor) and we use it on F = ¢w;. We then use the identity
V- (¢u) =u-Vo+ (V- u)d to obtain,

f w;

5(vi)

ﬁ)¢d2r+/w7-v¢ d3r+/(v-wjf)¢d3r:0 (8)
v 2

We use divergence-free functions wj, as demanded by the conti-
nuity equation inside the volume, thus the last term in (8) vanishes.
The first integral in the last expression is broken into integrals over
the two contact surfaces Syop i, Spor,i Plus the integral over the side
walls Syige,; (non-contact surfaces, see Fig.1). On the side walls,
we adopt the following choice for v; to describe the surface charge
distribution functions:

Vi =wi-n On side face S; )
resulting in
/w Vo dr+ Y / vigdlr =
wdevs
side,i
/(wf-ﬁ)q) d’r + / )0 d’r (10)
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The left hand side on this last expression is the sum of the two
right hand sides of (4), which we replace by the respective left hand
sides.

Consistency between the continuity equation (2) and the choice
of functions v; in (9) implies that the values ¢; in the solution must
be such that jog; = I;.

As to the rhs of (10), the factors wj - i act as weights for the
average potential on each contact surface, except for a factor iden-
tical to the z—dependence {(z) of the z component for the function
wj(r) and a difference of sign given by the orientation of the nor-
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mal vectors (see Fig.1). Thus we obtain the following equation for

the system:
. P
rssor+ =] (1) = (o)
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with (AV); = (£:)Vri — C(0)Vo,i ey

with the size of the system being n x n. This equation, together
with (5) is the basis of our formulation.

4. CONDUCTION MODES

The conduction modes are eigenfunctions of the homogeneous
vector Helmholtz equation that the current density J satisfies inside
the conductors.

(V2+:2)I(r) =
2 _

(12)

with « ko +
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This equation is the differential form of (1).

4.1 RL extraction

In the MQS version of conduction modes [1], the following as-
sumptions are used:

1. Currents are one dimensional;

2. Current density does not depend on the direction of propaga-
tion (2);

3. Mnin > L.

In other words:

Jr) = L(xy)2 (13)
o(r) = ¢(z) foreach conductor (14)
The RL conduction mode eigenfunctions are:
2A;e~[le=x) B0 ifp ey,
(r) = ! 15
wi(r) {0 else (1)
with
2 N\ 2
21 1+
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and x;,y; indicate the corner, on the cross section, from which
the conduction mode decays.

Since, & <€ A, one can neglect the first term in the rhs of (16).
For the rhs of (4), the above assumptions lead to:

<wi,V¢>:/a¢( dr—/a dz=¢

Vi
with the w; implicit normalization [w;(x,y)dxdy =1 over the
cross section of the conductor. The author in [9] found that within
this scheme, the inclusion of a few modes suffices for capturing RL
effects in the region of small penetration J.

L)—¢(0) (17)



4.2 RLC extraction

For the coupled fullwave RLC problem, we use eigenfunctions
to the vector Helmholtz equation, and since the equation separates
in cartesian coordinates the extension is straightforward:

R 5 ) e~ [0 (x=x)+Bi(y—yi)4Mi(z—z)
wi(r) = {(ax,x+ay,y+az,z)e ifreV,
0 else
(18)
with
o\ 2 1+ i\2
oc%+ﬁ%+n%=—(7”> +<%> (19)

When selecting o, B, we must keep the (27t/1)? term in (19) at
variance with (16) in the RL case. Our range of lengths is broader
than that of the RL counterpart. We associate the A with the z de-
pendence. This particular choice stems from the observation that,
for realistic configurations, the wire length is the only length scale
that can be comparable to the wavelength, while the wire cross
sections, are much smaller than A, making A-sensitivity in x or y
unnoticeable. Moreover, were a matrix element with finite 1 to
contain a §-like dependence, it would lead to an exponentially at-
tenuated function along the z-axis, whereas the elements containing
no 3 dependence, will only include a phase factor for the z integral.
Barring unforeseeable cancellations, our choice is natural. Our de-
composition captures the following physical picture: z-dependence
is that associated with the propagation of electromagnetic waves in
the surrounding medium, whereas the x,y dependence represents
the re-accomodation of currents inside the conductors, and the de-
posit of charges on the surfaces, such us to shield the interior from
charge accumulation.

Therefore, the choice for a;,3; remains as in (16), while for n
we have:

2n
ni==j m (20)
where the sign assignment corresponds to the direction of prop-
agation either going up or down along the z axis.
Due to (2a), the coefficients must satisfy

axi% + ayiPi +a;m; =0 21

This last condition restricts the spatial direction for basis func-
tions wj

11 2 1 1
. - N=A; — B: - 22
(axlva)laazl) L(“[’Bi’ nl>+ l<0(,~’ Biv()) ( )

for arbitrary A;, B; nonzero complex numbers.

The direction of the second vector in the rhs of (22) represents
solutions with no current flow along the z axis, direction of the ap-
plied gradient of the potential. These solutions carry no net charge,
and represent redistribution of currents along the cross section of
a conductor. We neglect their contribution, and keep only a vector
that is perpendicular to it. We thus determine the values A; and B;,
up to an arbitrary normalization constant.

We choose to normalize the basis functions such that the total
current entering the conductor at the bottom face can be represented
as the sum of all the coefficients in (3b) corresponding to that con-

ductor Leonductor k = Ziek I;.
This choice fixes the arbitrary constant remaining in (22) :
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Figure 2: Structure of the matrix in (11) according to the prop-
agation in z (arrows). The darker boxes represent larger ele-
ments in that part of the matrix; the diagonal elements contain
the contribution of the R elements.

cond. n
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Figure 3: Example configurations for: (a) RL case; (b) RLC
case.
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with d; and h;, the width and thickness of the conductor, respec-
tively. In general, a conduction mode will have both a;, B; # 0, and
we will refer to it as a corner mode. If one of these parameters is
null, we will call it a side mode. If o; is null, then the first fraction
in the expression above should be replaced by d;” ! likewise, the
second fraction is replaced by hi_l (o; and B; cannot both be null
due to (16)).

For every current conduction mode, there is a corresponding sur-
face charge function v; computed using (9).

) (520611]1', B, 1)
(23)

5. IMPLEMENTATION

Our next task is to compute the matrix elements in (5), and solve
(11) to obtain the currents on all the conductors. Computation of
the matrix elements is nontrivial.

The R;j elements pose no problem, the three dimensional overlap
integrals can be computed analytically, they are only different from
zero for 7, j running over the same conductor, the result is:
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Figure 4: Conduction Modes (CM) and FastHenry (FH) results
for loop resistance and inductance, example Fig.3a over a wide
frequency range.
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At high frequencies the conduction modes become very local-
ized, rendering R matrix nearly diagonal.

The six dimensional L and the four dimensional P integrals (5)
demand special attention. As a matter of fact at least three dimen-
sions in the six dimensional integral in L can be evaluated analyti-
cally, similarly two out of the four dimensions in the P evaluation
can also be evaluated analytically.

We noticed the following property: the capacitive (P) contribu-
tion nearly cancels out with the inductive (L) one for the case where
the two modes i, j correspond to waves traveling in the same sense
on the z-direction (in other words, when 1; = 1), and give nearly
the same when the modes are opposing waves in z (1; = —;).

This is strictly a high frequency phenomenon. In fact, in the
(infinite-frequency) limit 8 — 0, the L and P contributions with
M; =M cancel exactly each other out. The origin of this near can-
cellation and doubling stems from the observation that, after some
algebra, the L contribution for these modes may be written as

d
L=[[| [ePrina ar| avee (25)
»z \'o
whereas the P contribution becomes:
Plo? =+ [[ £(0,5,2) dy dz 26)

2z

both with the same integrand function f(x,y,z). In other words,
the P matrix elements, divided by w?, are the collapsed version of
the L ones, up to a sign according to whether the element corre-
spond to two modes traveling in the same or opposite sense along
the z—axis.

Given this state of affairs, we always pair up the combination
Jo(Lij — ij/(oz) together (see (11)). Otherwise, we would be in-
curring in large numerical errors by computing them separately and
canceling out two similar magnitudes, each with a certain numeri-
cal error.
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Figure 5: RLC results, for the example in Fig.3b: modulus (top)
and argument (bottom) for the aggressor’s near end current
Liear for Conduction Modes and other methods described in
text.

The matrix Z = R+ jo(L — P/®?) in (11), has a checker-board
structure as shown in Fig.2. This alternation between small and
large elements while decomposing into forward- and backward-
traveling waves, is responsible for the appearance of marked res-
onance peaks observed in the following section.

The numerical computation of the integrals is done with a com-
bination of Monte Carlo, Gaussian quadrature, and Taylor series
expansion following standard schemes [10].

We are testing small dimensionality problems, for which we use
Singular Value Decomposition method [10, 11] to solve the system
matrix, equation (11).

6. EXAMPLES

To calibrate our expectations we start by evaluating the matrix
elements in the RL MQS regime. We select a problem such that
the skin effect is important. To this end, we neglect the x— and y—
components of the current J in (22) and set kg = 0. There is no z—
dependence, therefore there is no distinction between backward-
and forward-traveling waves. Our example is drawn from [12],
consisting of two Cu wires Smm long, of cross sections 10um X
40um, separated by a distance of 10um, shorted at the far end (see
Fig.3a). In Fig.4 we compare the loop inductance and resistance to
the RL standard solver FastHenry. There is total agreement. Four
side modes per conductor sufficed to get this level of agreement. It
should be noted that the numerical computation of L; ; is two di-
mensional in the RL regime, rather than three dimensional as in the
general RLC case.

We consider next the fullwave regime. We take the same ge-
ometrical example, grounding all terminals except one where the
input excitation is introduced (Fig.3b). We use the full wave repre-
sentation for the matrix elements, with 16 modes per conductor: 4
side plus 4 corner for each possible z— propagation. In Figs. 5 and
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Figure 6: RLC results, for the example in Fig.3b: real (top) and
imaginary (bottom) parts for the aggressor’s far end current
I74r. for Conduction Modes and other methods described in
text.

6 we compare the currents obtained at the near and far end of the
aggressor against:

o Fastlmp, used in the fullwave mode [5]

e Spice simulation using transmission-line model with param-
eters obtained with the help of FastHenry and FastCap.

We observe resonance peaks at the right frequencies multiples
of quarter wave lengths. Qualitatively, the merged RLC volume
solver shows the correct physical behavior. The location of the
minima is different on Fastlmp compared to our’s as well as the
transmission line model. The exact origin of this discrepancy is not
yet completely understood.

Further development is ongoing, both to increase our understand-
ing of the algorithmic advantages and or pitfalls of the method.
Among them, the “intelligent” choice of modes according to the
particular geometry of the problem at hand. The acceleration of
the numerical integration schemes comes next in our long list of
priorities.

We rest quite hopeful regarding the advantages of the method,
given that for these simple problems at least, the dimensionality
of the resulting linear system is n = 64 dimensions on conduction
modes, compared to n = 4612 on FastImp, and n = 1936 for Fast-
Henry plus n = 136 for FastCap, a sensible improvement. Fur-
thermore, the convergence to FastCap plus FastHenry in the low
frequency regime with a fairly simplified description is equally re-
warding.

7. CONCLUSIONS

We presented the essence of a new simulation approach to study
RLC fullwave modeling of conductors in terms of a small set of
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conduction basis functions. We have been able to capture the inter-
play between the electric and magnetic energy content that gives
rise to resonances, while keeping a very concise description of
the geometry. Our model resembles a transverse electromagnetic
(TEM) model with frequency dependent parameters.

We have omitted the extensive algebra associated with the de-
tailed computation of the matrix elements, algebra that we leave for
a more detailed version of this work. We have several challenges
ahead of us to arrive to computationally inexpensive recipes. We
plan to thoroughly explore different choices of conduction modes
in terms of the extraction results so as to systematize the choice of
conduction modes as a function of problem geometry. Next step is
to address different accuracy vs. performance ratios in the compu-
tation of the numerical integrals.
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