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ABSTRACT
Boolean Satisfiability (SAT) has seen many successful applications
in various fields, such as Electronic Design Automation (EDA) and
Artificial Intelligence (AI). However, in some cases it may be re-
quired/preferable to use variations of the general SAT problem.
In this paper we consider one important variation, the Minimum-
Cost Satisfiability Problem (MinCostSAT). MinCostSAT is a SAT
problem which minimizes the cost of the satisfying assignment.
MinCostSAT has various applications, e.g. Automatic Test Pat-
tern Generation (ATPG), FPGA Routing, AI Planning, etc. This
problem has been tackled before – first by covering algorithms,
e.g. scherzo [3], and more recently by SAT based algorithms, e.g.
bsolo [16]. However the SAT algorithms they are based on are not
the current generation of highly efficient solvers. The solvers in this
generation, e.g. Chaff [20], MiniSat [5] etc., incorporate several
new advances, e.g. two literal watching based Boolean Constraint
Propagation, that have delivered order of magnitude speedups. We
first point out the challenges in using this class of solvers for the
MinCostSAT problem and then present techniques to overcome
these challenges. The resulting solver MinCostChaff shows order
of magnitude improvement over several current best known branch-
and-bound solvers for a large class of problems, ranging from Min-
imum Test Pattern Generation, Bounded Model Checking in EDA
to Graph Coloring and Planning in AI.

Categories and Subject Descriptors:
B.6.3 [Design Aids]: Optimization, Verification
General Terms:
Algorithms, Optimization, Verification
Keywords:
Boolean Satisfiability, MinCostSAT, Branch-and-Bound

1. INTRODUCTION
In the last decade Boolean Satisfiability (SAT) has seen many

great advances, including non-chronological backtracking, conflict
driven clause learning and efficient Boolean Constraint Propaga-
tion (BCP). As a consequence many applications have been able
to successfully use SAT as a decision procedure to determine if
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a specific instance is satisfiable or unsatisfiable. However, there
are many other variations of the SAT problem that go beyond this
decision procedure. For example, the Minimum Size Test Pattern
Generation Problem (MinSTPG) [6] looks for the test pattern with
a minimum number of specified primary input assignments for de-
tecting a specific stuck-at fault. This paper examines a generaliza-
tion of this problem named the Minimum-Cost Satisfiability Prob-
lem (MinCostSAT) [13].

In the past decade, there have been various solvers, for example
scherzo [3], bsolo [16], eclipse [13] etc., targeting the MinCostSAT
problem and many effective techniques have been proposed, e.g.
Maximum Independent Set [2,3] or Linear Programming [13,14]
based lower bounding, SAT based pruning [16] etc. However, none
of these have exploited the latest advances in SAT solvers, partic-
ularly two literal watching based fast Boolean Constraint Propa-
gation (BCP), which have enabled order of magnitude speedup in
SAT solvers. One major reason is that two literal watching based
BCP is fundamentally different from any of the previous methods,
e.g. counter based BCP. Many operations, e.g. the literal counter
updating of clause, have been eliminated for performance reasons
in two literal watching based SAT solvers. However, these data
structures are essential for all previously successful MinCostSAT
solvers, e.g. scherzo [3], bsolo [16], eclipse [13] etc. For example,
most of these solvers use branch-and-bound search, which usually
uses the set of unresolved (currently unsatisfied) clauses to com-
pute the lower bound. The set of unresolved clauses can be quickly
identified by checking the literal counters. Without the literal coun-
ters, the lower bound computation of a branch-and-bound search
becomes the greatest challenge faced by any two literal watching
based SAT solver, which does not maintain the satisfied/unsatisfied
state of a clause and thus cannot tell whether a clause is satisfied or
not without the computationally expensive operation of checking
all its literals. This paper examines these challenges in detail and
proposes various methods to solve them efficiently.

1.1 Our Contribution
We present MinCostChaff, a SAT based branch-and-bound Min-

CostSAT solver based on a contemporary SAT solver, zChaff. Min-
CostChaff implements many novel ideas that are specially tailored
for zChaff (and other solvers of this generation):

1. Incorporating advanced techniques in SAT, e.g. two literal
watching based BCP [20], variable branching selection based
on VSIDS [20] etc., with branch-and-bound search.

2. A static Maximum-Independent Set (MIS) (as compared to a
dynamic MIS used by previous solvers) for the lower bound-
ing function. This is only pre-computed once before the
search starts and is dynamically maintained during the search.
We show that the static MIS is valuable in exploiting the two
literal watching based BCP.
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3. An adaptive lower bounding scheme that dynamically adjusts
itself to suit the different instances of the MinCostSAT prob-
lem.

Extensive experiments using different types of benchmarks show
that MinCostChaff outperforms the best known branch-and-bound
based solvers with order of magnitude improvements on a large
class of problems.

2. BACKGROUND REVIEW
We define the MinCostSAT problem as follows:

DEFINITION 1. A MinCostSAT problem instance P is: Given a
Boolean formula ϕ with n variables x1,x2, . . . ,xn with cost ci ≥ 0,
find a variable assignment X ∈ {0,1}n such that X satisfies ϕ and
minimizes

C =
n

∑
i=1

cixi

where xi ∈ {0,1} and 1 ≤ i ≤ n.

Note that the above definition requires non-negative cost for vari-
ables with 1 assignment and zero cost for variables with 0 assign-
ment, i.e. c1

i ≥ 0 and c0
i = 0. This, however, does not cause any

loss of generality. Assume we have c1
i ≥ c0

i (or otherwise we could
have an equivalent problem P? with x?

i = x′i,c
0?
i = c1

i ,c
1?
i = c0

i and
C ? = C , i.e. swap xi with x′i and c0

i with c1
i ). We simplify the

problem to P∗ such that x∗i = xi,c1∗
i = c1

i − c0
i ,c

0∗
i = c0

i − c0
i = 0

and C ∗ = C −∑n
i=1 c0

i . Finally we have P∗ ≡ P with c1∗
i ≥ 0 and

c0∗
i = 0.

The decision version of MinCostSAT is in NP and is NP-complete
as the SAT problem is a special case of MinCostSAT with ci = 0
for all i. Bounds of approximability are given by Khanna et al. [12]
for a special case of MinCostSAT whose ci = 1 for all i.

The difference between MinCostSAT and 0-1 Integer Linear Pro-
gramming (ILP), which is also known as Linear Pseudo-Boolean
Optimization (PBO), is that 0-1 ILP allows coefficients in the con-
straints (clauses) in addition to the objective function.

MinCostSAT is the generalization of many closely related com-
binatorial optimization problems that were previously investigated
in isolation. For example, the well known Min-One/Max-One Prob-
lem [12] is a special case of MinCostSAT with ci = 1/−1 for all i;
the Binate Covering Problem [3] is identical to our MinCostSAT
problem. There are also problems that can be easily reformulated
as the MinCostSAT problem. Examples include Partial MAX-SAT
(PMSat) [7,19] and MAX-SAT [11], which can be reformulated
with the introduction of slack variables [13].

We will assume that the Boolean formula ϕ is provided in Con-
junctive Normal Form (CNF) as it is the case with most modern
SAT solvers

2.1 Classic Covering Algorithms
The earliest important forms of MinCostSAT are the Unate and

Binate Covering Problems (UCP/BiCP1). BiCP is a synonym of
MinCostSAT. UCP has an additional property of every variable xi
only appearing exclusively in one phase, i.e. complemented or un-
complemented, in the problem instance. UCP/BiCP solvers, like
scherzo [3], use a matrix representation of the problem instance. In
UCP you need to cover all rows of the matrix (clauses in MinCost-
SAT) using a minimum number of columns (true variables in Min-
CostSAT). These methods are typically known as covering algo-
rithms, which were once the dominating algorithms for MinCost-
SAT.
1To differentiate from Boolean Constraint Propagation (BCP), we
use BiCP to denote the Binate Covering Problem.

scherzo [3] is the most well known branch-and-bound solver in
this category. It incorporates many state-of-the-art techniques, in-
cluding a Maximum Independent Set (MIS) based lower bounding
function2 (which will be discussed it in Section 2.1.2), branch vari-
able selection and various rules for search pruning.

2.1.1 Branch-and-Bound Search
The branch-and-bound search prunes the search space by using

a lower bounding function, while an explicitly complete search ex-
plores every leaf of the search tree and therefore results in expo-
nential time complexity.

The branch-and-bound search compares the sum of the already
incurred cost at current search node (Costcurrent) and the minimum
possible cost (LowerBound) from the nodes beneath the current one
with the best known solution (U pperBound) to determine whether
to continue the search in the current direction. The classic branch-
and-bound procedure is given in Algorithm 1.

Algorithm 1 A Typical Branch-and-Bound Algorithm
1: U pperBound := ∞
2: while There exists a solution do
3: if Costcurrent +LowerBound ≥U pperBound then
4: Backtrack to certain previous decision
5: end if
6: if A complete solution is found then
7: U pperBound := Costcurrent
8: end if
9: Make a decision d

10: if d causes any conflict then
11: Resolve the conflict by backtracking to certain previous

decision
12: end if
13: end while
14: Return U pperBound

2.1.2 Maximum Independent Set (MIS) Based Lower
Bounding Functions

One of the most important components in a branch-and-bound
search is the lower bounding function. In order for a branch-and-
bound solver to be complete (or exact), it is crucial to have a strict
lower bounding function that never overestimates the lower bound,
i.e. the estimated lower bound should never be greater than the
actual lower bound. Further, since the lower bounding functions
are executed very frequently, the efficiency of computing these is a
key performance factor for contemporary MinCostSAT solvers.

An MIS based lower bounding function [2] identifies the MIS of
uncovered rows of the matrix. The size of the MIS is used as lower
bound since one column can at most cover one row in the MIS.

2.1.3 Non-MIS Based Lower Bounding Functions
Coudert proposes a non-MIS based algorithm [3] that guarantees

a log-approximation ratio with respect to the minimum solution to
the UCP. However, the applicability of Coudert’s approximation
algorithm is limited for the general MinCostSAT problem, i.e. for
the binate case when every variable xi may appear in both positive
and negative phases.

Liao and Devadas propose a Linear Programming Relaxation
(LPR) [14] based lower bounding function. Recall that the Min-
CostSAT is a special case of 0-1 ILP with all coefficients in the
2The use of MIS in computing lower bound is often credited to
scherzo. However, the Unate Covering solver included in the fa-
mous Espresso minimizer used it as early as in 1984.
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constraints to be 1. If we further relax the constraint on integer so-
lutions, MinCostSAT becomes an LP problem, which can be solved
by a general purpose LP solver. The LPR based lower bounding
function works by constructing an LP instance using current un-
resolved clauses. It then solves the instance using a general pur-
pose LP solver like cplex [10]. The optimal value of the objective
function returned by the LP solver could then be used as the lower
bound.

The lower bound returned by the LPR approach is usually more
accurate than the MIS based lower bounds. However, since the LPR
based lower bounding only guarantees the optimal non-integer so-
lution, which may be arbitrarily far away from the optimal integer
solution. Li uses the Cutting Plane (CP) [13] technique to further
improve the quality of the LPR lower bound. The CP technique
continuously moves the non-integer solution closer to the real opti-
mal integer solution by iteratively applying the Gomory Cut [8].

Both LPR and CP based methods depend on contemporary LP
solvers like cplex to give better lower bounds than the simple and
greedy MIS based method. However, these approaches suffer sig-
nificant overhead caused by both the construction of the LP in-
stance and the LP solver itself. The trade-off between speed and
quality of the lower bound usually has to be determined on a case
by case basis (as discussed in Section 4.1).

2.2 SAT Based Algorithms
scherzo is very successful on problems with hundreds of vari-

ables (columns). However, since the late 90s, there have been
many breakthrough techniques, particularly conflict driven clause
learning [18] and non-chronological backtracking [18], that have
resulted in order of magnitude improvement for SAT solvers. Con-
sequently, SAT has been applied to a range of difficult problems.

2.2.1 SAT Based Branch-and-Bound Search
Overall SAT has been much better studied than covering algo-

rithms. Many ideas used in the classic covering algorithms can be
more efficiently implemented in a SAT framework. bsolo [16] by
Manquinho and Marques-Silva is the first state-of-the-art MinCost-
SAT solver based on a SAT solver, GRASP [18], and it is capable
of handling problems with thousands of variables. Further, exper-
iments show that bsolo performs very well on heavily constrained
problems, like the MinSTPG Problem [6]. bsolo also uses branch-
and-bound search, but with many search pruning techniques spe-
cially tailored for a SAT solver.

bsolo uses an MIS based lower bounding function (Algorithm 2)
implemented in the GRASP SAT solver. Recall that this lower
bounding function relies on the MIS of currently unresolved clauses.
GRASP uses a counter based implementation of BCP. The zero
(one) counter records the number of false (true) literals in a clause.
When a variable is assigned or unassigned, counters from corre-
sponding clauses are updated. Therefore it is easy to tell whether a
clause is satisfied or not by checking its true literal counter, without
scanning any literals in the clause.

2.2.2 MIS Based Lower Bounding Functions
The MIS lower bounding functions used here are similar to the

ones used in covering algorithms except the MIS in a SAT based
algorithms is a set of independent unresolved unate clauses. An
unresolved clause has unassigned variables and is currently unsat-
isfied. The term independent means that there is no sharing of any
Boolean variables between any two clauses in the MIS. For ex-
ample, clauses (x1 + x2 + x3)(x4 + x5) form an MIS and they are
satisfied iff at least two variables (one from each clause as they are
disjoint or independent) are assigned to true. The MIS is usually

constructed using a greedy heuristic as shown in Algorithm 2.

Algorithm 2 Construction of the MIS (ϕ)
1: MIS := /0
2: ϕ := ϕ\{satisfied clauses}
3: while ϕ 6= /0 do
4: ω := HeuristicChooseClause(ϕ)
5: MIS := MIS∪ω
6: ϕ := ϕ\{clauses sharing variables with ω}
7: end while
8: Return MIS

Given an MIS of unate clauses, i.e. clauses with only positive
literals, the lower bound is given by

Cost(MIS) = ∑
ω∈MIS

Weight(ω) (1)

where ω is a clause in the MIS and

Weight(ω) = min
xi∈ω

ci (2)

Algorithm 2 finds the MIS by repeatedly selecting a clause and
removing all the intersecting clauses from problem instance ϕ until
no more clauses are left. bsolo uses a greedy heuristic that always
chooses the clause (Line 4 of Algorithm 2) that maximizes the fol-
lowing ratio:

CostRatio(ω) =
Weight(ω)

|{xi p xi ∈ ω}|
(3)

The rationale behind this heuristic is that smaller clauses tend to
intersect with fewer other clauses and the resulting MIS is likely to
have more clauses and hence provides a larger lower bound.

2.2.3 Encoding Based MinCostSAT Solvers
In an alternate approach, a SAT based linear search [1,15] trans-

lates the MinCostSAT instance into a SAT instance by using an
auxiliary counter to encode the objective function. The counter
maps the numerical output into a Boolean variable such that it is
true if and only if the numerical value is less than or equal to a
certain threshold. This approach then uses linear search starting
form the highest possible value of the objective function and itera-
tively reduces the value of the known cost function until the prob-
lem instance becomes unsatisfiable, at which time the minimum
value of the objective function is found. However, this approach
suffers significant overhead caused by the introduction of the aux-
iliary counter and it is not competitive on large problems [16].

Better encoding schemes are proposed by MiniSat+ [5], which
is a new PBO solver implemented on top of MiniSat [5]. It converts
the PB constraints into SAT clauses using one of the three methods:

1. Converting the PB constraint to SAT clauses using Binary
Decision Diagrams (BDDs).

2. Converting the PB constraint to a network of adders. The
sum of the left-hand side of the PB constraint is compared
to the right hand side in binary format. Then this circuit is
translated into SAT clauses.

3. Converting the PB constraint to a network of sorters and
again the circuit for the comparison (in unary format) is con-
structed and translated to SAT clauses.

MiniSat+ shows impressive results on PB’05 [17]. However, as
we will show in Section 4, the efficiency of the translation of PB
constraints to SAT clauses using any of the above three methods
still depends on the number of non-zero cost variables in the ob-
jective function. Therefore such an encoding based method is not
efficient for problem instances with a large number of non-zero cost
variables.
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3. ENGINEERING AN EFFICIENT BRANCH-
AND-BOUND MINCOSTSAT SOLVER

SAT has seen many significant advances since the development
of GRASP. zChaff [20] first implements the two literal watching
based BCP [20] and Variable State Independent Decaying Sum
(VSIDS) [20] based decision heuristic. As a result, zChaff is able
to handle instances with tens of thousands of variables, which is an
order of magnitude larger than GRASP.

Compared to the two literal watching, the counter based BCP
used in GRASP (and hence bsolo) suffers from a significant book-
keeping overhead. The new two literal watching based BCP dra-
matically reduces this bookkeeping overhead by only updating the
clauses where this variable is being watched.

The success of zChaff naturally raises the possibility of further
improving the performance of current MinCostSAT solvers, like
bsolo, which is based on GRASP, by incorporating techniques used
in zChaff, like the two literal watching based BCP. However, this
poses new challenges which need to be overcome to successfully
leverage these advances in SAT. This is precisely the focus of this
paper.

3.1 MIS Based Lower Bounding Function
We choose the MIS based lower bounding function over the LP

based (either LPR or CP) functions for two major reasons. First,
the MIS based lower bounding function is simple and hence incurs
much less overhead than LP based ones. Second, we focus more on
large instances that are usually more constrained than general LP
instances.

All MIS based lower bounding functions we discussed earlier in
Section 2.1.2 use a dynamic MIS in the sense that they compute
the MIS each time according to the current state of the search, e.g.
variable assignments, unresolved clauses etc. The major drawback
of the dynamic MIS is the overhead in the repeated construction
of the MIS. This is further exacerbated by the two literal watching
based BCP. Recall that two literal watching BCP does not maintain
the counters for each clause. As a result, it cannot even tell whether
a clause is satisfied or not without scanning all literals in this clause.
Identifying all unresolved clauses hence requires the scanning of all
the literals for all the clauses, which is a very expensive operation
as we will show in the experiments in Section 4.

3.1.1 A Pre-computed Static MIS
To overcome the difficulty of computing an MIS dynamically, we

propose the use of a static MIS that is pre-computed and dynami-
cally maintained using the current problem state. The rationale is
to trade-off little quality of the estimated lower bound for a signif-
icant speedup. The static MIS still uses the typical MIS construc-
tion procedure as presented in Algorithm 2, but it is pre-computed
before the branch-and-bound search starts, only clauses from this
static MIS are used to compute the lower bound during the search.
Therefore it is critical to construct a good static MIS that has an
accurate (larger) expected lower bound in the future search.

3.1.2 Construction of the Static MIS
Recall that bsolo only selects the unresolved unate clauses, i.e.

clauses with all positive literals left, for the MIS. This constraint
usually results in a small yet accurate MIS since each clause con-
tributes to cost of the MIS (i.e. the lower bound). Note that an unre-
solved unate clause requires only unassigned literals to be positive.
However, this constraint of unate clause does not work well for our
static MIS because the static MIS is pre-computed before any vari-
able assignment. In other words, an initially non-unate clause may
become an unresolved unate clause during the search when all its

negative literals are assigned to be false. However, since our MIS
is only pre-computed once, a clause that is not in the MIS dur-
ing its construction will never be in the MIS for the entire search.
Hence excluding these initially non-unate clauses could result in
a very small static MIS that significantly underestimates the lower
bound during the search. We have to relax this constraint of unate
clauses during the selection of MIS clauses. For example, clause
(x′1 + x2 + x3 + x4) cannot be in the MIS according to bsolo before
any variable assignment since x′1 is a negative literal. However, this
clause can be part of the MIS once x1 is assigned to be true (x′1 is
false). We choose to include this clause in our static MIS, taking
into consideration that this clause is likely to become unate during
the future search. Note that though we include the negative literals
in our MIS clauses, we still enforce the mutually non-intersecting
rules among these MIS clauses.

A critical component in the construction of the MIS is the heuris-
tic used to select a clause for the MIS (Line 4 of Algorithm 2).
Recall that bsolo uses a greedy heuristic that maximizes the ratio
(CostRatio in Equation 3) of the clause weight (Equation 2) with
the number of literals in the clause. (Note that though negative lit-
erals are now allowed in the MIS clauses, their cost are always set
to 0 due to our previous assumption of c1

i ≥ 0 and c0
i = 0.) The

clause selection heuristic using CostRatio favors short clauses as
they tend to intersect with fewer other clauses and results in an
MIS with more clauses and hence provides a larger lower bound.
However, the CostRatio only considers the clauses that are useful
for computing the immediate lower bound; it does not take into
consideration the expected lower bound in the future of the search,
which is remarkably more important in our static MIS approach.
We propose the clause selecting heuristic based on the following
measurement:

ExpectedCost(ω) =
∑xi∈ω ci

|{xi p xi ∈ ω}|
(4)

Equation 4 is a better estimation of the cost of the clause in the
acutal search because it considers the expected cost of a clause in
the future. Consider the following simple example with c1 = c2 =
c3 = 100,c4 = c5 = c6 = 1.

ω1 = (x1 + x2 + x3 + x4)

ω2 = (x3 + x4 + x5 + x6)

The heuristic used in bsolo considers both clauses ω1 and ω2 to
be equally preferable since CostRatio(ω1) = CostRatio(ω2) = 1

4 .
This observation is valid only for the current state of the search
where both ω1 and ω2 contribute 1 to the lower bound. However, in
terms of the expected cost in the future, clause ω1, which has more
high cost literals, therefore should be more preferable because it is
likely to give larger cost in the future search (if we assume equal
probability for every xi being true or false). Our measurement
in Equation 4 captures this information as ExpectedCost(ω1) =
301
4 > ExpectedCost(ω2) = 103

4 . Note that even for cases with
ci = 1 for all i, ExpectedCost works better because of the pres-
ence of negative literals, which always have cost 0, in the clause.
A detailed comparison of the lower bounds returned by two differ-
ent static MISs constructed using CostRatio and ExpectedCost is
given in Figure 1, which shows the experiment conducted on the
bmc-ibm-3 benchmark. Details on the benchmark can be found
in Table 1 in Section 4. Initially, heuristic using CostRatio con-
structed its MIS with 5796 clauses and ExpectedCost has 4365
clauses. The intersection of the curve with the X-axis indicates the
discovery of a feasible solution. The better (larger) lower bound is
used for each search iteration of the search. Figure 1 shows that the
MIS constructed using our new heuristic with ExpectedCost is al-
most always superior than the heuristic CostRatio used by bsolo by
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Figure 1: Comparison of lower bounds returned by two differ-
ent static MISs constructed using CostRatio (Equation 3) and
ExpectedCost (Equation 4) respectively.

providing a much larger (and hence more accurate) lower bound,
even though the heuristic using CostRatio constructs a larger MIS
of clauses (5796 vs. 4365).

3.1.3 Computing the Lower Bound using the Static
MIS During the Search

After the construction of the static MIS, we show how it is used
to compute the lower bound in Algorithm 3. It iterates though all
clauses in the MIS and sums up the minimum possible cost to sat-
isfy each clause. Note that Line 6 of Algorithm 3 denotes the two
cases where the current clause does not incur any cost. The first
case is that the current clause is already satisfied (hence inactive).
The second one is that there are unassigned negative literals in this
clause and this clause can be satisfied by setting a negative literal
to true (corresponding variable setting to false) with no cost.

Algorithm 3 Computing the Lower Bound (MIS)
1: LowerBound := 0
2: for all ω ∈ MIS do
3: Cost := ∞
4: for all Literal l ∈ ω do
5: Let xi be the variable corresponding to Literal l
6: if Literal l is TRUE or l is UNASSIGNED and negative

then
7: Cost := 0
8: Break
9: end if

10: if Cost > ci then
11: Cost := ci
12: end if
13: end for
14: LowerBound := LowerBound +Cost
15: end for
16: Return LowerBound

We do not explicitly update our MIS, e.g. marking satisfied
clauses inactive, during the search, but rather check all MIS clauses
during the computation of the lower bound. This “lazy” approach
works well because a two literal watching based SAT solver does
not maintain the list of satisfied clauses for efficiency reasons and
one cannot tell what clauses are satisfied after a variable assign-
ment.

3.1.4 Improve the Lower Bounding with Multiple
Static MISs

The idea of using one static MIS can be extended to having k
different MISs. Multiple static MISs have a higher probability of
giving a larger lower bound as compared to a single MIS. Note that
k is a small constant number that should be negligible as compared
to the total number of decisions. These MISs are still constructed
based on our proposed approach of using the ExpectedCost crite-
rion, but are different from each other. For instance, the first MIS
MIS1 is constructed in the same way as before, the first clause in the
second MIS MIS2 should be different from the one used in MIS1
and so on.

3.1.5 No Lower Bounding Function At All?
The pre-computed static MIS eliminates the overhead caused by

repeated constructions of MIS. However, profiling shows that as
much as 70% of the CPU time is still spent on lower bound com-
putation in certain cases. There are cases where the benefit from
lower bounding is overwhelmed by the cost of computation. Nat-
urally we should not use any lower bounding functions for these
benchmarks. Examples of these cases are presented in Section 4,
which belong to one of the following two types. The first one is
the heavily constrained problem with very small solution spaces,
i.e. very small number of satisfying assignments. In these cases,
the search space is mostly pruned by the existing constraints and
makes lower bounding ineffective. The second type includes the
problems with many ci = 0, i.e. zero-cost variables. These zero-
cost variables make every clause easy to satisfy with low (or zero)
cost and the lower bound returned is zero most of the time.

3.1.6 Compute Lower Bound Adaptively
Based on our discussion in the previous section, we propose an

adaptive lower bounding scheme by constantly monitoring the val-
ues returned by the lower bounding function and disabling itself
when the number of consecutive poor, e.g. returning 0, lower
bounds exceeds a certain threshold, e.g. 100. Note that once the
lower bounding function is disabled by the adaptive approach, it
will never be enabled again for the rest of the search. This adaptive
strategy provides a good balance between the quality of the lower
bound and the time used to compute it. Experiments in Section 4
show that this adaptive approach takes the advantages from both
persistent lower bounding and no lower bounding.

3.2 Compact Blocking Clause
After an extensive discussion on optimizing the lower bound

computation, we focus on the upper bound blocking in this section.
The upper bound in a branch-and-bound search corresponds to the
best known solution and the upper bounding is implemented using
a blocking clause, which prunes the unwanted search space as in
bsolo. This is also adopted in the same way by MinCostChaff. It is
well known that shorter clauses are always preferred by the state-
of-the-art SAT solvers as they generate faster and more frequent
BCP. We illustrate how to obtain a shorter blocking clause while
achieving the same effectiveness with static MIS in MinCostChaff.

The blocking clause consists of variables from the set {x′i|ci >

0 and xi = 1}, i.e. the variable assignments explaining Costcurrent .
Manquinho and Marques-Silva [16] propose to include the vari-
ables explaining the LowerBound in the blocking clause as well.
The explanation variables are the ones that appear in the set {l|l =
0 and l ∈ ω j and ω j ∈ MIS} as literals. In other words, the liter-
als corresponding to these explaining variables always have false
value in the MIS clauses. Recall that only unresolved MIS clauses
contribute to the lower bound. If any of these variables is assigned
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the opposite value, then some of the MIS clauses will be satisfied
and hence the MIS lower bound is no longer valid. Explanation
variables capture additional information of the current state of the
search and after combining with true non-zero cost variables, they
form a complete blocking clause that prunes the unwanted search
space. Furthermore, bsolo uses other techniques to shorten the
blocking clauses by dropping variables while keeping the sum of
lower bound and current solution still greater than or equal to the
upper bound. This technique is shown to be very effective and is
also adopted in MinCostChaff.

3.3 Other Optimization Techniques
Besides the major performance factors discussed above, we are

able to further improve the performance of MinCostChaff with the
following optimization techniques.

3.3.1 Branch Variable Selection
zChaff uses VSIDS for branching variable selection. VSIDS is a

scoring scheme based on the number of occurrences of the variables
and picks the unassigned variable with the largest score to branch
on. The value of a variable is determined based on its occurrences
in positive/negative phases and it is set to the value that satisfies
more clauses.

We uses VSIDS to select the branching variable xi, but the value
of xi is determined according to the VSIDS score only if ci = 0.
We assign xi = 0 if ci > 0. This is a greedy method of minimiz-
ing the cost, i.e. we always assign the variables with non-zero cost
to be false unless we are forced otherwise. This method is con-
sistent with the limit lower bound theorem [4] proposed by Coud-
ert, which says any variable with ci ≥Costcurrent +LowerBound −
U pperBound is implied to be false.

3.3.2 No Expensive Simplifications
There are several simplification techniques used in classic cover-

ing algorithms, e.g. essentiality, row/column domination etc. The
essentiality is automatically taken care of by BCP in SAT. bsolo
considers other simplifications using row/column domination, which
are not adopted in MinCostChaff. The row/column dominance
corresponds to the clause/variable subsumption in SAT. However,
clause/variable subsumption is known to be an expensive operation
for contemporary SAT solvers and it is very rarely used.

4. EXPERIMENTAL RESULTS
We have conducted extensive experiments on various benchmarks

from different categories. The first set of the benchmarks includes:

1. MinSTPG Problem [6]. The problem is to find the test pat-
tern with a minimum number of specified primary input as-
signments for detecting a specific stuck-at fault.

2. Bounded Model Checking (BMC).These are the BMC bench-
marks from the SAT benchmark set [9] with the added con-
straint that ci = 1 for all variables xi.

3. Graph Coloring with 3 colors [9]. ci = 1 for all variable xi.
4. AI Planning (Logistics and Blocks World Planning [9] ) prob-

lems. ci = 1 for all variables xi.
5. Covering benchmarks. These are classic MCNC [21] BiCP

Benchmarks with ci = 1 for all i.

For each of these benchmarks, we present the performance of
different variants of MinCostChaff in columns 6-10 as well as the
best known solver MiniSat+, scherzo, bsolo and state-of-the-art LP
solver cplex (used in 0-1 ILP mode) in columns 11-14 of Table 1.
Column 6 shows the run time using counter based BCP (same as
bsolo and GRASP) with dynamic MIS. Columns 7-10 use 2-literal

watching based BCP. In particular, column 7 (Dyna.) uses dynamic
MIS; column 8 (Static) uses static MIS; column 9 (No LB) does
not use any lower bounding function and hence no MIS; column 10
(Adapt.) uses adaptive lower bounding.

All the experiments are conducted on a Dell PowerEdge 700 run-
ning Linux Fedora core 1.0 (g++ GCC 3.3.2) with single Pentium 4
2.8GHz, 1MB L2 cache CPU on 800MHz main bus. Time/Memory
limits for all solvers is set to be 1hour/1GB. cplex version 9.1.0 is
used for all experiments.

Table 1 clearly shows that all variants of MinCostChaff solver
outperform both bsolo and cplex on most benchmarks with order
of magnitude improvements. MinCostChaff with adaptive lower
bounding performs similar to MiniSat+ on benchmarks with small
number of non-zero cost variables. For instance, MinSTPG only in-
troduces non-zero cost variables for the primary inputs and Color-
ing benchmarks have a small number of total variables (and hence
a small number of non-zero cost variables). MinCostChaff per-
forms significantly better than MiniSat+ on other benchmarks, e.g.
BMC and Planning. Counter based BCP shows better results in
some MinSTPG benchmarks over two literal watching BCP with
dynamic MIS. This is mainly due to the fact that the solver with
counter based BCP does not need to scan the literals in all clauses,
which is very expensive for identifying unresolved clauses. Re-
sults from MinSTPG benchmarks show that lower bounding func-
tions are not effective because most variables in these benchmarks
have zero cost and the MIS lower bounding function almost always
returns zero for lower bound. However, benchmarks from BMC
and AI Planning show dramatic performance gain using the lower
bounding functions. The solver with adaptive lower bounding takes
advantages of both persistent lower bounding and no lower bound-
ing. Solver with multiple MIS does not work well on these bench-
marks and the results are not presented due to space limit.

4.1 A Discussion on Covering Benchmarks
Though UCP/BiCP are the earliest forms of MinCostSAT, there

are clear distinctions between UCP/BiCP and other MinCostSAT
benchmarks we presented in Table 1. For example, all clauses in
UCP are unate clauses (only positive literals) and hence all impli-
cations are positive, i.e. implying a variable to be true, and there
will never be a conflict during the search. In other words, UCP
has a large solution space and it is extremely easy to find a sat-
isfying assignment. Though BiCP could include negative literals
in the clauses, all the MCNC BiCP benchmarks in Table 1 con-
tain at most one negative literal per clause, which makes them very
similar to the UCP benchmarks and thus they have very few con-
flicts. For example, benchmark alu4.b from the covering cate-
gory has 808 Boolean variables and 1838 clauses (1747 of them
have one negative literal) while a typical non-covering benchmark
like misex3 Fb1 has 2348 variables and 12574 clauses.

The strength of the contemporary SAT solvers, e.g. fast BCP,
conflict driven clause learning etc., are not effective for this class
of loosely constrained problems. Another reason of the poor per-
formance is because our static MIS cannot provide sufficiently ac-
curate lower bounds. Since the solution space is extremely large,
an underestimated lower bound could lead to a significant amount
of time being wasted on some hopeless search space.

cplex is the best solver in this category of benchmarks and its
remarkable performance also shows that the covering benchmarks
are more similar to generic ILP instances rather than SAT instances.
It is worth mentioning that the current version of bsolo has an op-
tion to use LPR for lower bounding and it automatically switches to
LPR mode based on its own heuristics. For example, it switched to
LPR lower bounding during the execution of benchmark ex5.pi.
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Table 1: Performance comparison of different categories of benchmarks. When solver is time/memory out, the best solution found (if
sovler reports it) is presented with *, otherwise -. We noticed (and have confirmed with other researchers) that scherzo occasionally
gives false optimal solutions (denoted with ?) that are 1 larger than the actual optimal solutions. All time is presented in seconds.

Cate- Bench- Num. Num. Min. Cnt. BCP 2 Literal Watching Based BCP Other Solvers
gory mark Var. Cls. Cost Dynamic Dyna. Static No LB Adapt. MiniSat+ scherzo bsolo cplex

M
in

im
um

Si
ze

Te
st

Pa
tte

rn
G

en
er

at
io

n c1908 F469 2826 12735 11 2.59 3.68 0.35 0.31 0.32 0.53 - 32.10 3182.86
c1908 F953 3540 17796 4 8.01 11.82 0.90 0.65 0.70 0.63 - 32.36 208.58
c3540 F20 7600 41312 6 48.40 58.19 3.75 4.50 4.79 2.49 - 413.26 6*
c3540 F45 6000 29076 9 43.35 34.27 5.93 5.75 5.75 2.62 - 3428.20 9*
c432 F37 966 5054 9 7.32 8.25 1.09 1.04 1.02 0.21 - 29.55 47.95

c5315 F54 3778 16000 5 21.08 48.29 1.33 0.44 0.61 0.61 - 27.84 4.55
c6288 F35 6791 30396 4 5.31 4.53 0.27 0.26 0.27 0.97 2751.05 69.96 5*
c6288 F69 7539 36257 6 6.13 12.97 1.01 0.98 0.98 2.00 - 606.60 10*

9symml F6 735 4048 9 0.12 0.14 0.06 0.06 0.06 0.14 - 1.35 74.95
alu4 Fj 2881 16732 6 0.88 1.29 0.21 0.20 0.21 0.71 95.21? 10.10 2066.50
alu4 Fl 2908 16980 6 0.90 1.76 0.33 0.31 0.32 0.68 180.37? 8.18 1068.59

duke2 Fv5 1836 10162 5 0.71 1.71 0.11 0.09 0.09 0.39 - 6.67 157.87
misex3 Fa0 2051 10088 9 0.61 1.12 0.23 0.22 0.23 0.36 - 7.62 664.52
misex3 Fb1 2348 12574 8 1.30 2.03 0.46 0.45 0.45 0.48 476.47 13.87 1611.92

spla Fv14 2168 10687 8 0.48 0.74 0.10 0.10 0.10 0.36 171.81 7.77 907.18

B
M

C 2bitcomp-5 125 310 39 25.43 3.36 1.91 19.81 1.92 0.54 22.54 26.53 1.70
bmc-ibm-2 2810 11683 940 1136.86 155.80 97.22 940* 97.71 210.50 - 20.85 7.51
bmc-ibm-3 14930 72106 6356 211.45 147.30 1.96 6365* 1.98 6373* - 76.53 -

C
ol

or
in

g 3col120 5 240 1026 110 24.31 22.02 8.13 8.07 8.13 2.53 - 110* 241.97
3col140 5 280 1196 124 155.77 53.41 19.97 22.03 19.96 4.46 - 124* 579.73
3col160 5 320 1366 139 2476.38 241.53 131.90 128.03 132.05 53.98 - 144* 139*
3col180 5 360 1536 153 157* 153* 2025.98 1997.27 2027.62 153* - 163* 171*

Pl
an

ni
ng

logistics.b 843 7301 138 7.26 6.80 0.02 3027.81 0.02 8.85 29.67 138* 87.11
logistics.c 1141 10719 162 15.73 17.89 0.04 2705.87 0.04 17.86 941.35 162* 162*

rocket ext.b 351 2398 69 0.36 0.56 0.02 0.14 0.01 0.36 338.40 5.19 737.26
bw large.c 3016 50457 265 14.46 15.67 0.37 0.37 0.38 8.45 - 24.99 165.40
bw large.d 6325 131973 431 245.02 141.69 2.92 2.86 2.94 92.10 - 683.77 251.49

C
ov

er
in

g 9sym.b 310 976 5 56.16 200.22 583.08 633.16 3205.81 0.68 0.19 62.42 0.11
alu4.b 808 1838 50 55* 56* 55* 56* 56* 52* - 50* 189.10

apex4.a 4317 11912 776 801* 800* 800* 800* 800* 848* 4.07 2358.90 0.33
ex5.pi 2460 873 65 101* 99* 95* 95* 97* 85* - 508.90 35.93

rot.b 1452 2984 115 140* 142* 141* 141* 141* 126* - 117* 5.81

4.2 Performance on Partial MAT-SAT Bench-
marks

We have also conducted experiments on Partial MAX-SAT (PM-
SAT) benchmarks [7,19]. PM-SAT has certain constraints (clauses)
that are marked as relaxable (soft) and the rest are non-relaxable
(hard). The objective is to find a variable assignment that satis-
fies all non-relaxable clauses together with the maximum number
of relaxable ones. We can convert PM-SAT instances to MinCost-
SAT ones with the introduction of slack variables to the relaxable
clauses. The PM-SAT benchmarks we considered include:

1. FPGA Routing. These benchmarks are industrial examples
resulting from a SAT based FPGA router. Each unrouted
net-arc (single source, single destination) is associated with
a unit cost and minimum cost corresponds to the maximum
routing of all net-arcs. In these benchmarks ci = 1 only for
xi (slack variable) associated with the routability of the net-
arcs.

2. Relaxed UNSAT Instances. We randomly mark some clauses
relaxable with a unit cost slack variable, a minimum cost
means the problem instance becomes satisfiable with mini-
mum number of clauses left unsatisfied (relaxed).

3. Multiple Property Checking. The outputs of these circuits are
asserted to be constant 0 or 1 (properties). False assertion
incurs a unit cost (by the slack variable) and the minimum
cost represents maximum true assumptions.

We include the PM-SAT solver PMChaff [7] in our experiment
since scherzo times out on all these experiments. PMChaff first

proposes an iterative UNSAT Core elimination approach that iter-
atively identifies the UNSAT Core and relaxes it using additional
relaxation variables. It also uses an encoding based approach (with
a tree of adders) for comparison purposes. The best result obtained
by either approache is reported in Table 2.

Table 2 again shows that for benchmarks with small number of
non-zero cost variables, e.g. FPGA Routing and Multi-Property
Checking, MinCostChaff does not perform well since the lower
bounding function returns 0 in most cases while some encoding
based approaches, e.g. MiniSat+ or the encoding based approach
in PMChaff, are more suitable in this case. The relaxed UNSAT
benchmarks contain more non-zero cost variables and as a result,
encoding based approaches perform poorly due to the large size
of the adder/sorter/BDD. The iterative UNSAT Core elimination is
still the best approach for this benchmark group.

5. CONCLUSIONS
We have presented an efficient solver MinCostChaff that applies

the advanced techniques from contemporary SAT solvers to Min-
CostSAT using branch-and-bound search. Variants of MinCostChaff
with different features were evaluated and MinCostChaff with adap-
tive lower bounding turns to be the fastest among all these and
outperforms scherzo, bsolo and cplex with order of magnitude im-
provements for heavily constrained instances. MinCostChaff does
not work well on classic covering benchmarks, where cplex shows
obvious advantages. The performance of MinCostChaff is compa-
rable to MiniSat+ on benchmarks with a small number of non-zero
cost variables.
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Table 2: Performance comparison on some Partial Max-SAT benchmarks. * and - are used in the same way as in Table 1. scherzo
times out on all these benchmarks. Results NOT from UNSAT Core elimination are marked with ? for PMChaff.

Cate- Bench- Num. Num. Min. Cnt. BCP 2 Literal Watching Based BCP Other Solvers
gory mark Var. Cls. Cost Dynamic Dynamic Static No LB Adaptive MiniSat+ PMchaff bsolo cplex

FP
G

A
R

ou
tin

g FPGA 27 3953 13537 3 76.84 149.16 2.99 2.49 2.54 0.88 1.65? 21.29 3*
FPGA 31 17869 65869 1 - - 381.20 377.33 376.96 117.39 88.68? 4* 12*
FPGA 32 2926 9202 3 49.87 92.63 1.92 1.41 1.41 0.78 0.89 6.56 3*
FPGA 33 9077 32168 3 3369.86 1990.56 50.88 54.44 49.63 2.53 18.65 61.50 4*
FPGA 39 6352 22865 4 2123.34 423.88 9.89 8.08 8.17 2.21 7.15? 59.07 6*
FPGA 44 6566 22302 3 6* 1788.41 258.79 254.60 254.53 3.90 8.36? 6* 5*

U
N

SA
T 3pipe 2468 27533 1 692.92 1338.47 44.82 5.80 6.39 131.05 5.12 1* 1*

4pipe 5237 80213 1 805.33 591.19 35.14 25.23 25.27 141.74 8.45 1* 1*
5pipe 9471 195452 1 1* 13* 854.85 118.08 126.28 2609.28 18.91 1* 1*

M
ul

ti-
Pr

op
er

ty
C

he
ck

in
g c2670 1 1567 3409 7 3.97 5.96 0.40 0.19 0.16 0.26 0.05 1.05 106.40

c5315 1 2609 6816 10 1.88 4.41 0.23 0.13 0.12 0.33 0.09 15.35 208.80
c6288 1 4723 11700 2 4* 285.63 186.39 187.30 186.28 37.42 81.98? 2* 3*
c7552 1 4355 10814 5 122.15 111.13 10.43 9.44 9.53 0.76 1.17? 5* 1909.63

b14 1 10288 28929 1 18.51 34.13 1.09 1.15 0.73 1.16 0.19 4.45 1182.85
b15 1 9302 26060 2 1155.13 958.44 28.85 9.05 10.13 1.95 0.26 7.55 1308.47
b20 1 20717 58407 2 15* 3424.49 97.18 60.86 61.56 3.96 0.50 10.88 5*

c2670 0 1567 3409 7 6.59 11.32 0.77 0.31 0.31 0.23 0.04 1.27 0.10
c7552 0 4355 10814 6 94.16 249.16 23.08 9.21 21.60 2.38 1.57 2369.50 6*

b15 0 9302 26060 3 285.69 455.70 12.86 3.60 3.56 2.25 0.22 19.37 260.75
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