
Comprehensive Isomorphic Subtree Enumeration

Partha Biswas
The MathWorks, Inc.

Natick, MA 01760
pbiswas@mathworks.com

Girish Venkataramani
The MathWorks, Inc.

Natick, MA 01760
gvenkata@mathworks.com

ABSTRACT
A fundamental problem in program analysis and optimization con-
cerns the discovery of structural similarities between different sec-
tions of a given program and/or across different programs. Specifi-
cally, there is a need to find topologically identical segments within
compiler intermediate representations (IRs).

Such topological isomorphism has many applications. For exam-
ple, finding isomorphic sub-trees within different expression trees
points to common computational resources that can be shared when
targeting application-specific hardware. Isomorphism in the control-
flow graph can be used to discovery of custom instructions for
customizable processors. Discovering isomorphism in context call
trees during program execution is invaluable to several JIT com-
piler optimizations. Thus, all these different applications rely on
the fundamental ability to find topologically identical segments within
a given tree or graph representation.

In this paper, we present a generic formulation of the subtree
isomorphism problem that is more powerful than previous propos-
als. We prove that an optimal quadratic time solution exists for this
problem. We employ a dynamic programming based algorithm to
efficiently enumerate all isomorphic sub-trees within given refer-
ence trees and also demonstrate its efficacy in a production com-
piler.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-time
and Embedded Systems

General Terms
Algorithms, Design

Keywords
Subtree Isomorphism, Subtree Matching Algorithm, Embedded Sys-
tems

1. INTRODUCTION
Two subgraphs of a given set of graphs can be said to be iso-

morphic when there is a one-to-one correspondence between their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

nodes and edges in terms of some chosen attributes. The problem
of subgraph isomorphism is quite ubiquitous in the domain of com-
pilers, hardware synthesis and embedded systems. However, this
problem is known to be NP-complete [14]. Therefore, in practice,
these graphs are transformed into trees by replicating nodes hav-
ing multiple fanouts in order to obtain a reasonable solution [14,
3]. Thus, the problem of subgraph isomorphism is often translated
into the simpler problem of subtree isomorphism.

In the domain of compilers and architectures, the subtree iso-
morphism problem is known to appear in instruction selection [9],
where trees representing ISA instructions are matched against the
compiler’s intermediate representation (IR). Most IRs are directed
acyclic graphs (DAGs) to begin with, but can be converted in to a
tree representation. Furthermore, the subtree isomorphism problem
can also be effectively applied to common subexpression elimina-
tion and code reuse optimizations.

In the hardware synthesis domain, technology mapping [10] is a
well-known problem, where tree patterns from a given standard cell
library are matched against a given abstract netlist of the hardware
circuit. In the domain of behavioral synthesis, resource sharing is
an important problem that aims to maximize the use of arithmetic
and logic operators like adders or multipliers. However, a more
sophisticated approach can be taken whereby an entire subtree pat-
tern, instead of a single operation, is chosen for sharing resources.
Finding isomorphic subtrees is useful for all these synthesis-related
problems.

In the last few years, application-specific customizable proces-
sors of different flavors have been proposed as viable solutions for
meeting the rapidly changing demands of applications in embed-
ded systems. One of the key problems in such systems is automatic
generation of instruction set extensions (ISEs) [5]. Increasing the
effectiveness and reusability of the chosen ISEs requires the iden-
tification of isomorphic subtree patterns of instructions in the IR,
such that a frequently occuring subtree isomorph can become a cus-
tom instruction in the ISE.

Thus, we can see that finding an optimal solution to the sub-
tree isomorphism problem would have a great impact in several do-
mains. In this paper, we propose a novel algorithm to enumerate all
isomorphic subtrees occuring within two given trees. We formally
prove that the proposed algorithm is optimal in that it is guaran-
teed to enumerate all subtree matches and that the algorithm has
quadratic time and space complexity. This is the main contribution
of the paper.

Consider two reference trees (shown in Fig. 1), labeled as T1
and T2. The shaded subtrees in T1 and T2 represent an example of
isomorphic subtrees that can be matched. The enumeration process
of the isomorphic subtrees must also take care of some key prop-
erties of a topological match. First, for some nodes, the children

177

>>

+ −

+ <<

a b fc d e g

y

Reference Tree, T1

x

−

a x fc m n p

z

x>>

+

+

Reference Tree, T2

x

Figure 1: Example to motivate the general subtree isomorphism
problem. Given two reference trees, T1 and T2, the goal is to find
all topologically identical subtrees in T1 and T2. The shaded sub-
trees represent an example of a match.

are unordered; so a match may be formed by flipping the children,
as is the case for the × operation in Fig. 1. Second, the common
subtree match may exist anywhere in the two reference trees. Sev-
eral existing subtree isomorphism problems define a match only if
the matched subtrees share the same root with the reference trees
or the matched subtrees share all their leaves with the reference
trees [15, 14, 7, 2]. Thus, the general problem we address in this
paper is a superset of the subtree isomorphism problems addressed
previously.

The rest of the paper is organized as follows. In the next sec-
tion, we compare our algorithm with the state of the art. Section 3
formally describes the problem statement. In Section 4, we present
our isomorphic subtree enumeration algorithm and then prove its
optimality and complexity. In Section 5, we explore its implica-
tions when applied on real-world applications and finally conclude
in Section 6.

2. RELATED WORK
Subtree isomorphism is a general graph theory problem and has

been employed in several domains like data mining, circuit syn-
thesis, compiler code generation, etc. The most conventional form
of the problem is the pattern matching variety—given a finite set of
pattern tiles, it is the problem of finding all isomorphic subtrees that
match one of the these tiles in a reference graph [7]. This is akin to
technology mapping [10] and instruction selection [3]. There have
been several advances made in the graph theory world that have
looked at alternative algorithms to explore time-space complexity
trade-offs of this problem [6, 7, 14, 2]. The data mining domain
employs such a version of the problem to find frequencies of oc-
currences of each pattern tile within a database of forests [7, 16, 4].
There are also other variants of this problem, like the tree inclusion
problem [11] that is similar yet different from the problem we are
solving here.

We explore a different version of the graph isomorphism problem—
given two reference trees, the goal is to enumerate all matching
subtrees common to the two reference trees. Bottom-up search [2]
is one of the oldest attempts at solving this problem. It simply
traverses the trees from leaves up and at each node, records the
subtree matches found leading to a natural dynamic programming
formulation. However, this algorithm will always find subtrees that
must share their leaves with the reference trees—such subtrees are
sometimes referred to as maximal subtrees. Other advancements

have been made on this algorithm; a common theme includes la-
beling nodes in the trees such that two nodes in a tree will have the
same number if the subtrees under the nodes are isomorphic [15].
This is essentially similar to the value numbering algorithm used in
traditional compilers [13, 1]. All these algorithms inherently find
only those subtrees whose leaves are also the leaves of the reference
trees. Thus, these algorithms cannot (by definition) find the subtree
match shown in Fig. 1. There are related problems of finding sim-
ilarity between two trees [8, 17], but their objective is similarity
rather than isomorphism.

In this paper, we solve a more general problem of finding all
isomorphic subtrees, including those that are not maximal. On
first glance, this problem may seem to have a potentially expo-
nential search space. We show, however, that the problem is well
structured and solvable in polynomial time. We present a dynamic
programming algorithm to search the reference trees for subtree
isomorphism. The algorithm enumerates all (maximal and non-
maximal) isomorphic subtree matches. For two reference trees of
sizes G1 = (V1,E1) and G2 = (V2,E2), it has a O(|V1||V2|) time
and space complexity. To the best of our knowledge, this is the
first paper to solve this general problem, which is a superset of tra-
ditional subtree isomorphism problems where the isomorphic trees
are maximal subtrees [15].

3. PROBLEM DESCRIPTION
This section provides a formal description of the subtree iso-

morphism problem. First, we define some terminologies and then
present the problem statement.

3.1 Definitions
We define tree as a directed acyclic graph, T = (V,E,r, type),

with a set of nodes V , a set of edges E ⊆ V ×V , and a root node,
r ∈ V , such that all nodes except the root have exactly one parent.
Every node has a specific type given by the mapping, type : V 7→ µ.
The direction of the edges is from leaves to root. The node sets,
In(v) and Out(v), define the inputs and outputs of a given node.
The tree invariants are given by: ∀ v,s.t., v 6= r, |Out(v)| = 1 and
for the root node, |Out(r)|= 0.

If the children of a node can be interchanged, then we say that the
node is unordered. Conversely, an ordered node, v, imposes a left-
to-right sequencing of its children, given by Child(v)= 〈u1, . . . ,un〉,
where ∀ 1 ≤ i ≤ n,ui ∈ In(v). Whether or not a node is ordered is
determined by its type and is given by the mapping Order : µ 7→
{0,1}.

Putting these definitions in context, a tree in the compiler’s in-
termediate representation is typically an expression tree with some
functional operations as nodes and the root, r computing the final
result. The set, µ, represents all the operations performed by the
program. Thus, type(v) specifies the operation encapsulated by v.
Finally, an unordered node maps to commutative operations, while
ordered nodes are non-commutative.

Without loss of generality, we also add pseudo leaf nodes to the
trees we consider. This is especially designed to deal with expres-
sion trees where nodes are operations and are typically associated
with some inputs. The pseudo leaf nodes represent a terminal in-
put, e.g., a variable or constant, that is typically supplied as input to
the expression tree. We assume that every leaf of a tree is a pseudo
node, vp, such that In(vp) = /0 and type(vp) = $, i.e., the type of
a pseudo node is considered to be a special alphabet, $. All non-
pseudo nodes must have children (inputs) associated with them.

DEFINITION 1. Two trees, T1 = (V1,E1,r1, type1) and
T2 = (V2,E2,r2, type2), are isomorphic or topologically equivalent,

178

if there exists a relation, τ : V1 7→ V2, between T1 and T2, which
satisfies the following conditions:

1. τ is bijective, i.e., for ∀ u,v ∈ V1, u 6= v =⇒ τ(u) 6= τ(v),
and ∀ v′ ∈V2, ∃ v ∈V1, s.t., τ(v) = v′.

2. τ preserves the edge relations, i.e., for (u,v)∈E1, there exists
(τ(u),τ(v)) ∈ E2.

3. τ preserves the types, i.e., for v∈V1, type1(v) = type2(τ(v)).

4. For every ordered node, v ∈V1, the ordering relation is pre-
served, i.e., if Child(v) = 〈u1, . . . ,un〉, then Child(τ(v)) =
〈τ(u1), . . . ,τ(un)〉.

A subtree, S = (Vs,Es,rs, type) of a tree, T = (V,E,r, type), is a
tree that contains a subset of the nodes of T and preserves the edge,
type and ordering relations. In other words, Vs ⊆V , both trees share
the same type mapping, the edge relations in E are preserved in Es
and the ordering relations in T are preserved in S. Further, S is
a maximal subtree iff Leaves(S) ⊆ Leaves(T). It follows that for
every node, u, in the tree, there exists a unique maximal subtree
rooted at u. We refer to this mapping from a given tree node, u, in
T to its maximal subtree by MaxSubtree(u).

3.2 Problem Statement
Given two trees, T1 =(V1,E1,r1, type1) and T2 =(V2,E2,r2, type2),

find the set of all isomorphic subtrees contained within these two
trees. If T ∗

1 and T ∗
2 are the domains of all subtrees contained in

T1 and T2 respectively, then the goal of the problem is to find the
exhaustive set of subtree isomporphs, ST I ⊆ T ∗

1 ×T ∗
2 , that satisfies

the following conditions:

1. Every member is a pair of isomorphs: ∀ (S1,S2) ∈ ST I, the
subtrees S1 ∈ T ∗

1 and S2 ∈ T ∗
2 are isomorphic as per Defini-

tion 1.

2. If a subtree pair is not a member of ST I, then they are not
isomorphic, i.e., ∀ (S1 ∈ T ∗

1 ,S2 ∈ T ∗
2) 6∈ ST I, the subtrees S1

and S2 violate some condition in Definition 1 and are there-
fore not isomorphic.

4. SUBTREE MATCHING ALGORITHM
A large body of previous work has focused on maximal subtree

isomorphism. This has been shown to be a linear-time search com-
plexity [2, 15]. The problem stated here is to find a set of subtree
isomorphs that includes not only maximal subtree matches but also
those subtree matches that are not maximal. If we were to naively
use maximal subtree isomorphism algorithms, then we would have
to enumerate all subtrees within the given reference trees and then
use the maximal subtree isomorphism algorithm on each pair of
subtrees in this space. Clearly, this has exponential complexity
since we are enumerating all subtrees in the reference trees. The
key insight to combating this complexity is recognizing that the
problem in Section 3.2 has an optimal sub-structure that we can
exploit. In particular, we use the concept of maximal isomorphs to
identify this sub-structure.

DEFINITION 2. Given two reference trees, T1 and T2, let the
domains, T ∗

1 and T ∗
2 , represent all subtrees contained within these

trees respectively. A maximal isomorph is a pair of subtrees, (S1 ∈
T ∗

1 ,S2 ∈ T ∗
2), that satisfy the following conditions:

1. S1 and S2 are isomorphic as per Definition 1.

−

*

−

*+

$ $ $

$

$ $$

PS1 = −(*($,$),+($,$)) PS2 = −($,*($,$))

T1 T2

Figure 2: Two sample reference trees, their corresponding prefix
strings, and the maximal isomorphs

2. S1 and S2 are not subtrees of any other pair of isomorphic
subtrees in the T ∗

1 × T ∗
2 space. This means that 6 ∃ (R1 ∈

T ∗
1 ,R2 ∈ T ∗

2), such that: (a) S1 is a subtree of R1, and (b) S2
is a subtree of R2, and (c) R1 and R2 are isomorphic.

If we can identify all the maximal isomorphs within T1 and T2,
then we have reduced the problem to smaller sub-problems. This is
the key insight to our solution and is described in Section 4.2. First,
however, we must deal with unordered nodes. Since there is no or-
dering in these nodes, a simple topological pattern match is not suf-
ficient to detect isomorphism. To address this, we derive a canon-
ical tree representation that forces an ordering on unordered nodes
as well. This representation generates a canonical prefix string rep-
resentation for a given tree. Next, a dynamic programming based
algorithm is described for finding all maximal isomorphs that will
form the basis for the solution.

4.1 Canonical Prefix String Representation
Determining if two trees, T1 and T2, are isomorphic is straight-

forward if all nodes in the trees are ordered. In this case, we would
simply perform a bottom-up traversal checking if each of the con-
ditions of the mapping (defined by τ in Definition 1) hold. The
presence of unordered nodes, however, introduces additional com-
plexity. Not only are the children nodes of an unordered node in-
terchangeable, but the entire maximal subtrees beneath the children
are also interchangeable.

To address this problem, we represent all trees using a canonical
representation, in effect bringing order to unordered nodes. One
approach to canonicalization is to order the children according to
some order of their types. This is not sufficient, however, since
ambiguity creeps in when two children of an unordered node have
the same type. Taking this concept a step further, we use the prefix
string representation of a given tree to canonicalize it. This repre-
sentation is defined according to the following grammar:

PS → TY PE(CHILD[,CHILD]∗) (1)
CHILD → $ | PS

TY PE → 〈t ∈ µ〉

The prefix string for a subtree under a given node, v, is essen-
tially, the node’s type(v) (we assume members of µ constitute a
unique alphabet), followed by parenthesized, comma-separated list
of its children. Each child, in turn, is either another prefix string or
the terminal ‘$’, if the child is a (pseudo) leaf node of the tree.

Constructing a prefix string for a given tree amounts to perform-
ing a pre-order traversal of the tree. At each node, v, we append
type(v) to the string. When the first child is accessed from a given
node, a ‘(’ is appended to the string; when accessing the next sib-
ling, a ‘,’ is appended and finally after accessing the last child of

179

+ (+ ($, + ($, $)), * ($, $))
1 2 3 4

1
+ (OP, * ($, $))

STOP

STOP

STOP

4

1

2

3

4

$ $ $ $ $

+

+
*

+

(a)

(b)

1

4

$ $

+

*

OP
STOP

STOP STOP

Figure 3: An example to illustrate (a) the mapping between
traversing an expression tree and performing a linear scan of the
string, and (b) introducing OP at a point where the traversal or lin-
ear scan is stopped.

a node, a ‘)’ is appended to the string. Thus, there is a one-to-one
mapping between a tree and its prefix string, given by Prefix(T).
An example of the prefix string for a tree is shown in Fig. 3.

DEFINITION 3. In canonical form, all nodes of a tree are or-
dered. The ordering of children, given by Child(v), for a node, v,
is determined as follows:

• If Order(type(v)) = 1, then use the pre-defined child order-
ing, Child(v) (see Section 3.1).

• If Order(type(v)) = 0, then we construct Child(v) as fol-
lows: let the position in Child(v) of an input node, u, be
pos(u) ∈ N. Then, the ordering of Child(v) is given by the
following implication:

∀ u,w ∈ Child(v),

strcmp(Prefix(MAX(u)),Prefix(MAX(w))) < 0
=⇒ pos(u) < pos(w)

Canonical form is achieved by enforcing a lexicographical or-
dering on unordered nodes. Specifically, the order of children of
an unordered node is the same as the lexicographic order of the
children’s maximal subtrees’ prefix strings. In the above defini-
tion, MAX(u) represents the maximal subtree under a given tree
node, u and Prefix(MAX(u)) gives the prefix string encoding for
this maximal subtree. Converting a given tree into its canonical
form involves a post-order traversal; at each unordered node, we re-
order its children to obey the conditions in Definition 3. Observe
the importance of canonicalization—we use it primarily to prune
the search space without sacrificing optimality. In other words, we
do not have to flip the children of unordered trees in looking for
a match because the canonical representation of two identical sub-
trees is guaranteed to be the same.

4.2 The Common Prefix Substring Matching
(CPSM) Formulation

After obtaining the canonical prefix strings for two reference
trees, one may think of running a simple maximal substring match-
ing on the prefix strings to obtain the maximal isomorphs of the

reference trees. Unfortunately, that is not a solution, as illustrated
in Fig. 2. There are two maximal isomorphs, rooted at ‘∗’ and ‘−’.
However, a naive substring matching algorithm can only yield the
matching at ∗ by matching ∗($,$). In fact, it can be proved that
simple substring matching will only yield isomorphs that are also
maximal subtrees, i.e., those sharing their leaves with the refer-
ence trees. Internal (non-maximal) subtrees like the ‘−’ in Fig. 2
will never be matched by substring matching. Therefore we need a
more context-aware string scanning mechanism in order to find all
maximal isomorphs.

Note that traversing an expression tree in the prefix order amounts
to performing a linear scan of its prefix string. During the process
of scanning a prefix string, skipping an entire operation string pat-
tern starting at an operation effectively means stopping the traversal
of the expression tree at the corresponding operation node. If we
stop the traversal at an operation before reaching the terminal (‘$’),
we represent that point in the string by OP. Fig. 3 illustrates this
principle. The arrows in Fig. 3(a) show the directions of traversal
and scan. After visiting node 1, pruning the subtree rooted at node 2
is tantamount to skipping the whole string pattern, +2($,+3($,$)).
The newly formed pattern (as shown in Fig. 3(b)) is thus repre-
sented as +1(OP,∗4($,$)), clearly indicating the places the traver-
sal stopped by ‘$’ or OP depending on whether the stopping point
is a terminal node or intermediate node respectively.

The following theorem formally brings out important properties
of the prefix strings, which are used in formulating our dynamic
programming algorithm.

THEOREM 1. Let PS1[1..m] and PS2[1..n] be the two prefix strings
of length m and n respectively. Let k be the length of the longest
common prefix substring and LCPS(k) be the set of all longest com-
mon prefix substring matches, each of length k, ending at positions
1 ≤ p1, p2, . . . , pt ≤ m in PS1 and 1 ≤ q1,q2, . . . ,qt ≤ n in PS2,
where t = |LCPS(k)|. Let Lk refer to a member of LCPS(k).

if PS1[p] = PS2[q], where 1≤ p≤m, 1≤ q≤ n, then the follow-
ing must hold true:

1. If PS1[p−1] =‘$’ and PS2[q− j +1..q−1] = OP, (2 ≤ j ≤
q), then Lk−1 is a longest common prefix string for PS1[1..p−
2] and PS2[1..q− j] ending at the alphabet positions p− 2
and q− j of PS1 and PS2 respectively.

2. If PS1[p−i+1..p−1] = OP and PS2[q−1] =‘$’, (2≤ i≤ p),
then Lk−1 is a longest common prefix string for PS1[1..p− i]
and PS2[1..q−2] ending at the alphabet positions p− i and
q−2 of PS1 and PS2 respectively.

3. If PS1[p− i+1..p−1] = OP and PS2[q− i+1..q−1] = OP,
(2 ≤ i ≤ p, 2 ≤ j ≤ q), then Lk−1 is a longest common prefix
string for PS1[1..p− i] and PS2[1..q− j] ending at the alpha-
bet positions p− i and q− j of PS1 and PS2 respectively.

4. Otherwise, Lk−1 is a longest common prefix string for PS1[1..p−
1] and PS2[1..q− 1], ending at the alphabet positions p− 1
and q−1 of PS1 and PS2 respectively.

PROOF. We prove these assertions using contradiction.

1. Lk ∈ LCPS(k)⇒ Lk−1 ∈ LCPS(k−1), where kth alphabet is
a ‘$’ or OP. In this case, PS1[p− 1] =‘$’ and PS2[q− j +
1..q− 1] = OP, (2 ≤ j ≤ q). Let L′k−1 6∈ LCPS(k− 1) be a
longest common prefix string for PS1[1..p−2] and PS2[1..q−
j] ending at the alphabet positions p− 2 and q− j of PS1
and PS2 respectively. Therefore, by skipping over ‘$’ at
PS1[p− 1] and OP in PS2[q− j + 1..q− 1], one can match

180

OP
$

Case 2
$

OP

Case 1

Case 3 Case 4

PS1 = ... OP(OP(... , ...) , ...) ...PS2 = ... OP(OP(... , ...) , ...) ...

PS1 = ... OP($, ...) ... PS2 = ... OP($, ...) ...

PS2 = ... OP(... , OP(... , ...)) ...

PS1 = ... OP(..., ...) ...

PS2 = ... OP(... , OP(... , ...)) ...

PS1 = ... OP(... , ...) ...

OP

OP

Figure 4: The four cases presented in Theorem 1.

PS1[p] and PS2[q], and thus come up with L′k as another
longest common prefix string. Now, L′k−1 6∈ LCPS(k−1)⇒
L′k ∈ LCPS(k). Since L′k 6∈ LCPS(k), this is a contradiction,
as LCPS(k) is the set of all largest common prefix string
matches of length k. Therefore, Lk−1 is a longest common
prefix string for PS1[1..p−2] and PS2[1..q− j] ending at the
alphabet positions p− 2 and q− j of PS1 and PS2 respec-
tively. Now, if L′k−1 is a longest common prefix string that
does not end at PS1[p−2] and PS2[q− j], it can only extend
through the other three possibilities, because there is no other
way to extend the common prefix string.

2. PS1[p− i + 1..p− 1] = OP and PS2[q− 1] =‘$’, (2 ≤ i ≤
p). The proof of this assertion is symmetric to the above
reasoning.

3. PS1[p− i + 1..p− 1] = OP and PS2[q− i + 1..q− 1] = OP,
(2 ≤ i ≤ p, 2 ≤ j ≤ q). The proof of this assertion is also
symmetric to the above reasoning.

4. When none of the above conditions are true, but only PS1[p] =
PS2[q], the previous match has to be a direct match.

The above four cases are depicted in Fig. 4. The arrows pinpoint
to the cases clearly using two sample reference trees and prefix
strings (PS1 and PS2). The cases 1 through 3 involve skipping over
an entire operation substring or a terminal, while case 4 is an exact
match of a non-leaf alphabet and therefore does not involve any
skipping transforms.

This shows that the problem of canonical prefix substring match-
ing (CPSM) has an optimal substructure, i.e., an optimal solution

to this problem contains within it optimal solutions to its subprob-
lems. For 1 ≤ p ≤ m and 1 ≤ q ≤ n, let LCPSL(p,q) be the length
of a longest common prefix substring for PS1[1..p] and PS2[1..q].
We express the three conditions presented by the first three cases in
Theorem 1 as follows:

condition1 = PS1[p−1] = ‘$′

&& PS2[q− j +1..q−1] = OP
condition2 = PS1[p− i+1..p−1] = OP

&& PS2[q−1] = ‘$′

condition3 = PS1[p− i+1..p−1] = OP
&& PS2[q− i+1..q−1] = OP

The optimal substructure of CPSM gives the following recursive
formula:

If PS1[p] = PS2[q], where 1 ≤ p ≤ m, 1 ≤ q ≤ n, for 2 ≤ i ≤ p
and 2 ≤ j ≤ q, the following holds true:

LCPSL(p,q) =

LCPSL(p−2,q− j)+1 if condition1
LCPSL(p− i,q−2)+1 if condition2
LCPSL(p− i,q− j)+1 if condition3
LCPSL(p−1,q−1)+1 otherwise

Based on the above equation, one could easily write an exponential-
time recursive algorithm to compute the matching prefix substrings.
However, because there are only O(m · n) distinct subproblems as
per Theorem 1, we can use dynamic programming to obtain the
solutions bottom up.

The dynamic programming implementation employs an m× n
LCPSL matrix to store the intermediate lengths of the matching
substrings. In addition, it encodes the substring enumeration solu-

181

tion with the help of P_PREV (p,q) and Q_PREV (p,q), which are
respectively defined as the last positions in the prefix strings PS1
and PS2 that were matched by the algorithm, prior to matching the
current positions p and q in the two strings (i.e., PS1[p] = PS2[q],
where 1≤ p≤m, 1≤ q≤ n). This encoding alleviates the exponen-
tial space overhead that would be otherwise required to enumerate
all solutions.

P_PREV (p,q) =

p−2 if condition1
p− i if condition2
p− i if condition3
p−1 otherwise

Q_PREV (p,q) =

q− j if condition1
q−2 if condition2
q− j if condition3
q−1 otherwise

Using LCPSL, P_PREV , and Q_PREV , we can gener-
ate all the common prefix strings enumerating PS1 (using
P_PREV) and PS2 (using Q_PREV). This in turn corre-
sponds to all the maximal isomorphs in the original expres-
sion tree. In order to walk the generated substring positions
in LCPSL in the forward direction, we define P_NEXT and
Q_NEXT as follows: P_NEXT (P_PREV (p),Q_PREV (q)) = p
and Q_NEXT (P_PREV (p),Q_PREV (q)) = q, where 0 ≤ p ≤ m,
0≤ q≤ n. To enumerate all the matching prefix strings, we need to
simply start with positions having LCPSL set to 1 and then walk the
PS_1 or PS_2 strings using P_NEXT and Q_NEXT respectively.
These matched prefix strings in turn enumerate all the maximal iso-
morphs in the reference trees.

In practice, in order to enumerate the longest common prefix
string or the maximal isomorphs (instead of capturing all the in-
ternal ones as well), we check before setting LCPSL(p,q) whether
the newly computed value is greater than the stored value of
LCPSL(p,q). This is because any one of the above 4 cases can
be the reason for finding a match at location (p,q).

4.3 The CPSM Algorithm
We present the CPSM algorithm in Figure 5, which uses the

above formulation. The algorithm takes the prefix strings PS1
and PS2 as inputs, and populates the solution in terms of matri-
ces LCPSL, 4P_NEXT and 4Q_NEXT , where LCPSL tracks
the lengths of substrings at various positions in PS1 and PS2,
P_NEXT (p,q) = p +4P_NEXT (p,q) points to the next match-
ing position for PS1, and Q_NEXT (p,q) = q +4Q_NEXT (p,q)
points to the next matching position for PS2.

The algorithm begins by building operation position tables for
strings PS_1 and PS_2, which mark the beginning and ending of
each valid operation in the prefix strings. The dynamic computation
of the solution matrices based on the above formulation is shown
between lines 21 and 57. Note that in order to favor the growth
of the largest valid substring, we explicitly check whether the new
substring length is greater than any existing substring length eval-
uated so far, at a particular matching point (p,q). This is done in
lines 36, 44, and 52. The dynamic updates of LCPSL, 4P_NEXT ,
and 4Q_NEXT can be tracked in lines 28-30, 37-39, 45-47, and
53-55.

THEOREM 2. The running time of the dynamic programming
(CPSM) algorithm as well as its space complexity is O(m ·n).

PROOF. Each of the computations presented in the formulation
is O(1), which is run within two nested loops of size m and n.

CPSM(PS1, PS2)

00: Create op_pos_table(PS1)
01: Create op_pos_table(PS2)
02: Reset LCPSL, 4P_NEXT and 4Q_NEXT
03: len1 ⇐ length(PS1)
04: len2 ⇐ length(PS2)
05: for (p = 0 to len1−1)
06: for (q = 0 to len2−1)
07: cond1 ⇐ (PS1[p] == PS2[q])
08: cond2 ⇐ (PS1[p−1] == ‘$′)
09: cond3 ⇐ (PS1[p−1] == ‘)′)
10: cond4 ⇐ (PS2[q−1] == ‘$′)
11: cond5 ⇐ (PS2[q−1] == ‘)′)
12: valid1 ⇐ is_valid_op(PS1)
13: valid2 ⇐ is_valid_op(PS2)
14: is_valid ⇐ valid1&&valid2
15: if (cond3)
16: pos1 ⇐ get_op_pos(PS1, p−1,op_pos_table)
17: endif
18: if (cond5)
19: pos2 ⇐ get_op_pos(PS2,q−1,op_pos_table)
20: endif
21: /* Populate solution matrices */
22: if(cond1)
23: if(p == 0 || q == 0)
24: LCPSL(p,q)⇐ 1
25: else
26: newLCPSL ⇐ LCPSL(p−1,q−1)+1
27: if(newLCPSL > 1 || is_valid)
28: LCPSL(p,q)⇐ newLCPSL
29: 4P_NEXT (p−1,q−1)⇐ 1
30: 4Q_NEXT (p−1,q−1)⇐ 1
31: endif
32: endif
33: endif
34: if(cond1 && cond3 && cond4 && (pos1 > 0))
35: newLCPSL ⇐ LCPSL(pos1−1,q−2)+1)
36: if(newLCPSL > LCPSL(p,q))
37: LCPSL(p,q)⇐ newLCPSL
38: 4P_NEXT (pos1−1,q−2)⇐ p− pos1 +1
39: 4Q_NEXT (pos1−1,q−2)⇐ 2
40: endif
41: endif
42: if(cond1 && cond2 && cond5 && (pos2 > 0))
43: newLCPSL ⇐ LCPSL(p−2, pos2−1)+1)
44: if(newLCPSL > LCPSL(p,q))
45: LCPSL(p,q)⇐ newLCPSL
46: 4P_NEXT (p−2, pos2−1)⇐ 2
47: 4Q_NEXT (p−2, pos2−1)⇐ q− pos2 +1
48: endif
49: endif
50: if(cond1 && cond3 && cond5 && (pos1&pos2 > 0))
51: newLCPSL ⇐ LCPSL(pos1−1, pos2−1)+1)
52: if(newLCPSL > LCPSL(p,q))
53: LCPSL(p,q)⇐ newLCPSL
54: 4P_NEXT (pos1−1, pos2−1)⇐ p− pos1 +1
55: 4Q_NEXT (pos1−1, pos2−1)⇐ q− pos2 +1
56: endif
57: endif
58: endfor
59: endfor

Figure 5: The CPSM Algorithm

182

T
1 2T

2SS 1

S 1
2S

2S

S 1

2S

S 1

Leaves Inner

RootWhole

Figure 6: The four different types of isomorphic subtrees, S1 and S2, that can be found in two reference trees, T1 and T2.

Therefore the time complexity is O(m ·n). Since, we are employing
three m×n matrices to capture the results, the space complexity is
also O(m ·n).

4.4 A Running Example
In order to illustrate the working of the CPSM algorithm, let us

consider again the reference trees shown in Fig. 2 and their corre-
sponding prefix string representations:

PS1 = −(∗($,$),+($,$))
PS2 = −($,∗($,$))

The solution matrices LCPSL, P_NEXT and Q_NEXT , built
according the CPSM algorithm are shown together in Table 1a
and Table 1b. There are two maximal substring matches en-
coded within the solution matrices. To enumerate each match-
ing substring, we find the starting position by the entry 1 in the
LCPSL matrix and with the assistance of (P_NEXT,Q_NEXT),
we find the full matching substring. The first match is (−(OP,OP)
in PS1, −($,OP) in PS2), which starts at (0,0) (as indicated by
LCPSL) and then walking down string positions as guided by the
(P_NEXT,Q_NEXT) entries (1,1), (8,3), and (15,10). When the
jump of P_NEXT or Q_NEXT is greater than 2, it indicates stop-
ping at an operation subtree, and we show that by putting the sym-
bol ‘OP’. The second match is (∗($,$) in PS1, ∗($,$) in PS2), cor-
responding to the entries (2,4), (3,5), (4,6), (5,7), (6,8), and (7,9).
The second match is a straight-forward match as there is no jump
in P_NEXT or Q_NEXT greater than 2.

5. CASE STUDY: COMBINATIONAL RE-
SOURCE SHARING

Thus far in the paper, we have described the theoretical rigor
behind subtree isomorphism mining. In this section, we test the
practical usefulness of the algorithm. Although there are many
applications of this algorithm, we explore its effectiveness in the
combinational resource sharing problem [12].

This is a well known problem in high-level synthesis, where the
goal is to share commonly used resources in mutually exclusive
control paths in the given source program. For example, if a multi-
plier is used within the true and false branches of an if-else
statement, then we know that the result of only one multiplier is
needed. Thus, it is possible to share this multiplier across both
conditional branches and muxing its inputs.

Of course, we need not stop at just a single operation. We can
imagine sharing entire expression trees between mutually exclusive
code regions, which necessitates finding common code segments
between these regions that can form the resource (or expression
tree) to be shared.

To enumerate all opportunities for such resource sharing, we
create expression forests for each control-flow region—one for-
est for each mutually exclusive control branch. Next, we can use
the proposed subtree isomorphism algorithm to scan the forests to
find common structural expression tree patterns that form potential
sharable resources. The inputs to the algorithm are two trees from
two different forests. A quadratic complexity search will enumer-
ate all subtree matches that are present in these forests and each
of these matches will form a candidate for combinational resource
sharing.

This scan algorithm was applied on a variety of representative
input programs that are used to test and benchmark the Simulink R©
HDL CoderTM product. Due to proprietary issues, we cannot reveal
the names of these tests but mention here that they are various ap-
plications from the signal processing and control systems domains.
A total of about 50 different test programs were used. We cate-
gorized the subtree matches found into four groups. If S1 and S2
are the matched subtrees within reference trees, T1 and T2, then the
four categories are illustrated in Fig. 6 and can be described as:

• Whole: If S1 = T1 = T2 = S2, then the two reference trees
were themselves isomorphic.

• Root: Here, the subtrees shared the roots with the reference
trees, i.e., root(S1) = root(T1) and root(S2) = root(T2).

183

0 1 2 3 4 5 6 7 8 9 10
- ($, * ($, $))

0 - 1 0 0 0 0 0 0 0 0 0 0
1 (0 2 0 0 0 0 0 0 0 0 0
2 * 0 0 0 0 1 0 0 0 0 0 0
3 (0 0 0 0 0 2 0 0 0 0 0
4 $ 0 0 0 0 0 0 3 0 0 0 0
5 , 0 0 0 0 0 0 0 4 0 0 0
6 $ 0 0 0 0 0 0 0 0 5 0 0
7) 0 0 0 0 0 0 0 0 0 6 0
8 , 0 0 0 3 0 0 0 0 0 0 0
9 + 0 0 0 0 0 0 0 0 0 0 0
10 (0 0 0 0 0 0 0 0 0 0 0
11 $ 0 0 0 0 0 0 0 0 0 0 0
12 , 0 0 0 0 0 0 0 0 0 0 0
13 $ 0 0 0 0 0 0 0 0 0 0 0
14) 0 0 0 0 0 0 0 0 0 0 0
15) 0 0 0 0 0 0 0 0 0 0 4

0 1 2 3 4 5 6 7 8 9 10
- ($, * ($, $))

0 - 1,1 - - - - - - - - - -
1 (- 8,3 - - - - - - - - -
2 * - - - - 3,5 - - - - - -
3 (- - - - - 4,6 - - - - -
4 $ - - - - - - 5,7 - - - -
5 , - - - - - - - 6,8 - - -
6 $ - - - - - - - - 7,9 - -
7) - - - - - - - - - - -
8 , - - - 15,10 - - - - - - -
9 + - - - - - - - - - - -

10 (- - - - - - - - - - -
11 $ - - - - - - - - - - -
12 , - - - - - - - - - - -
13 $ - - - - - - - - - - -
14) - - - - - - - - - - -
15) - - - - - - - - - - -

(a) (b)

Table 1: A running example of the algorithm for finding common substrings between −(∗($,$),+($,$)) and −($,∗($,$)): (a) the
(P_NEXT,Q_NEXT) pairs, where P_NEXT (p,q) = p+4P_NEXT (p,q) and Q_NEXT (p,q) = q+4P_NEXT (p,q), and (b) the LCPSL
matrix.

• Leaves: These are maximal subtree matches, i.e.,
Leaves(S1)⊆ Leaves(T1) and Leaves(S2)⊆ Leaves(T2).

• Inner: Here, at least one of S1 or S2 does not share its root
with its respective reference tree and there exists at least one
leaf for each subtree that is not a leaf in the reference tree.

Previous techniques proposed for subtree isomorphism primar-
ily finds matches in the Leaves category [15, 1, 2]. Typically, ap-
proaches similar to value numbering (used in common subexpres-
sion elimination) [13] are used to provide unique ids to nodes such
that two nodes with the same id will be isomorphic all the way
down to the leaves.

Finding matches in the Root category will involve a lock-step,
pre-order traversal down the reference trees. The traversal ends
when a difference is found in the nodes and portions of the trees
matched to that point form the match. Although this is a straight-
forward linear search, it involves a different algorithm than the one
used to find Leaves matches [15].

To our knowledge, no solutions have been proposed to efficiently
find all matches belonging to the Inner category. The proposed
CPSM algorithm can find all four different types of matches in a
single sweep. The primary strength of our algorithm is its effi-
ciency. Without explicitly enumerating all matches, it simply en-
codes all matches within the solution matrices as described in Sec-
tion 4.3.

The results of the subtree matches found in mutually exclusive
expression forests in our benchmarks are reported in Fig. 7. We
have categorized the matches according to the four groups de-
scribed above. All these matches were found with a single sweep
of our algorithm through the source code. The results indicate that
most of the matches fall in to the Whole and Root categories. How-
ever, there are a significant number of matches that also fall in the
other two categories. The results are promising in that we have
been able to efficiently generate new opportunities for performing
combinational resource sharing within the system design tool. The
next logical step for effective combinational resource sharing is to
prune these matches according to some objective cost function.

This case study is only one example of the possible applica-
tions of the algorithm. Naturally, it can also be used for sequen-
tial resource sharing, which is the traditional approach where re-
sources across different control steps in a given pipeline schedule
are shared. Again, instead of sharing just a single node, we can
explore the possibilities of sharing expression trees across control
steps. Other applications include code re-use optimizations, custom
instruction creation in ISE architectures [5], JIT optimizations that
seek out frequently executed code from the context call trees [17],
amongst many others.

6. CONCLUSIONS
In this paper, we formally described a general version of the sub-

tree isomorphism problem. It is the first formulation to enumerate
all possible matches in two reference trees irrespective of whether
the isomorphism exists at the root, leaves, or internal sections of
the trees. In this respect, it is a superset of all subtree isomorphism
problems addressed so far. Although, it is a seemingly exponential
search space, we show that the problem is structured and thus an
optimal, quadratic-time solution exists for this generic subtree iso-
morphism problem. We have also performed an experimental case
study by applying the algorithm to find opportunities for combi-
national resource sharing in a set of signal processing and control
system benchmarks—our results indicate that the proposed algo-
rithm can rapidly, optimally and efficiently mine common tree pat-
terns vital to compiler analysis and optimizations. We believe that
our algorithm will find significant uses in the embedded computing
domain where tree-based pattern matching problems are abundant.

7. REFERENCES
[1] A. V. Aho, S. C. Johnson, and J. D. Ullman. Code generation

for expressions with common subexpressions. In POPL,
pages 19–31, New York, NY, USA, 1976. ACM.

[2] Alfred V. Aho and John E. Hopcroft. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Boston,
MA, USA, 1974.

184

(a) (b)

Figure 7: (a) The number of subtree matches found (by category) in each test and (b) the median size (in terms of |V |) amongst all matches
found in each test.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

[4] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and
S. Arikawa. Efficient substructure discovery from large
semi-structured data. In SIAM Int. Conf. on Data Mining,
Arlington, VA, 2002.

[5] Kubilay Atasu, Laura Pozzi, and Paolo Ienne. Automatic
application-specific instruction-set extensions under
microarchitectural constraints. In DAC ’03: Proceedings of
the 40th conference on Design automation, pages 256–261,
New York, NY, USA, 2003. ACM.

[6] Samuel R. Buss. Alogtime algorithms for tree isomorphism,
comparison, and canonization. In KGC ’97: Proc. of the 5th
Kurt Gödel Colloquium on Computational Logic and Proof
Theory, pages 18–33, London, UK, 1997. Springer-Verlag.

[7] Yun Chi, Richard R. Muntz, Siegfried Nijssen, and Joost N.
Kok. Frequent subtree mining - an overview. Fundamenta
Informaticae, 66(1-2):161–198, 2005.

[8] Jason Cong and Wei Jiang. Pattern-based behavior synthesis
for fpga resource reduction. In FPGA, pages 107–116, New
York, NY, USA, 2008. ACM.

[9] Christopher W. Fraser, David R. Hanson, and Todd A.
Proebsting. Engineering a simple, efficient code-generator
generator. ACM Lett. Program. Lang. Syst., 1(3):213–226,
1992.

[10] K. Keutzer. Dagon: Technology binding and local
optimization by dag matching. In 25 years of DAC, pages
617–624, New York, NY, USA, 1988. ACM.

[11] Pekka Kilpelainen and Heikki Mannila. Ordered and
unordered tree inclusion. SIAM J. Comput., 24(2):340–356,
1995.

[12] T. Kim, N. Yonezawa, J.W.S. Liu, and C.L. Liu. A
scheduling algorithm for conditional resource sharing - a
hierarchical reduction approach. IEEE TCAD,
13(4):425–438, 1994.

[13] Steven S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[14] Ron Shamir and Dekel Tsur. Faster subtree isomorphism. In
5th Israeli Symposium on Theory of Computing and Systems,
pages 126–131, Bar-Ilan, Israel, 1997.

[15] Gabriel Valiente. Algorithms on Trees and Graphs.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[16] Yi Xia and Yirong Yang. Mining closed and maximal
frequent subtrees from databases of labeled rooted trees.
IEEE Trans. on Knowl. and Data Eng., 17(2):190–202, 2005.
Student Member-Yun Chi and Fellow-Richard R. Muntz.

[17] Xiaotong Zhuang, Suhyun Kim, Mauri io Serrano, and
Jong-Deok Choi. Perfdiff: a framework for performance
difference analysis in a virtual machine environment. In
CGO ’08: Proceedings of the sixth annual IEEE/ACM
international symposium on Code generation and
optimization, pages 4–13, New York, NY, USA, 2008. ACM.

185

