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ABSTRACT
In this paper, we present a dynamic scratchpad memory al-
location strategy targeting a horizontally partitioned mem-
ory subsystem for contemporary embedded processors. The
memory subsystem is equipped with a memory management
unit (MMU), and physically addressed scratchpad memory
(SPM) is mapped into the virtual address space. A small
minicache is added to further reduce energy consumption
and improve performance. Using the MMU’s page fault ex-
ception mechanism, we track page accesses and copy fre-
quently executed code sections into the SPM before they
are executed. Because the minimal transfer unit between
the external memory and the SPM is a single memory page,
good code placement is of great importance for the suc-
cess of our method. Based on profiling information, our
postpass optimizer divides the application binary into page-
able, cacheable, and uncacheable regions. The latter two are
placed at fixed locations in the external memory, and only
pageable code is copied on demand to the SPM from the
external memory. Pageable code is grouped into sections
whose sizes are equal to the physical page size of the MMU.
We discuss code grouping techniques and also analyze the
effect of the minicache on execution time and energy con-
sumption. We evaluate our SPM allocation strategy with
twelve embedded applications, including MPEG-4. Com-
pared to a fully-cached configuration, on average we achieve
a 12% improvement in runtime performance and a 33% re-
duction in energy consumption by the memory system.
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1. INTRODUCTION
Contemporary portable devices are getting more powerful

and include an increasing number of features. While just
a couple of years ago tech-savvy consumers had to carry
around a mobile phone, MP3 player, PDA, and portable
TV, these days it is hard to find a phone without a built-in
digital camera, MP3 player, personal organizer, and dozens
of other features.

Despite this ongoing digital convergence, today’s portable
devices still do not live up to consumers’ expectations con-
cerning battery life. Reducing the energy consumption and
thereby increasing the running time of these devices is still
an important direction of research.

Most of today’s state-of-the-art processors for mobile and
embedded systems feature cache and/or scratchpad memo-
ries [3, 10, 12, 26]. Both cache and scratchpad memories
are made of SRAM cells. Caches are composed of tag and
data RAM plus management logic that makes them mostly
transparent to the software. Scratchpad memory (SPM), on
the other hand, consists of a simple array of SRAM cells and
includes neither a tag RAM nor complex comparator logic.
Usually the SPM is mapped into the physical address map
as a contiguous block of fast memory. Unlike caches, it is
the application or operating system’s responsibility to de-
termine what parts of the code/data are placed in the SPM.
Placing the most frequently accessed parts of the program
into the SPM can reduce both the energy consumption and
the execution time of an application [4, 23].

Since the SPM is managed by software, placing the correct
code/data segments in the SPM requires a careful analysis
of the memory access patterns of the application. Allocat-
ing frequently accessed code or data to the SPM may benefit
both performance and energy consumption. Static SPM al-
locations select a fixed set of segments to reside in the SPM
during the whole execution of the application. Dynamic al-
location schemes, on the other hand, modify the contents
of the SPM during execution. Such algorithms usually per-
form loop analysis of the program trace to find the appropri-
ate segments for each execution phase. Dynamic allocation
schemes perform better than static ones for programs with
several hot-spots during execution. With very few excep-
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tions, most of the prior work requires that the SPM size
be known at compile time and that the SPM be controlled
exclusively by one application.

Today’s portable devices usually do not meet these re-
quirements anymore. Today, these devices more frequently
run a full-featured operating system with a scheduler, vir-
tual memory, and even a file system. Processes can be cre-
ated and destroyed on the user’s demand and at arbitrary
times; the user might want to listen to music while she is
composing a text message, or take a snap-shot with the in-
tegrated camera while watching her favorite TV program on
her PDA.

In this paper, we present a novel scratchpad allocation
technique for such systems. We propose a horizontally par-
titioned memory subsystem with an SPM backed up by a
small instruction cache (minicache). Our design does not oc-
cupy additional die area compared to an instruction cache
with the same (data RAM) size because the SPM requires
significantly less die area [4]. The SPM is placed under
the control of an SPM manager which itself is part of the
runtime system. Processes have their own private virtual
address space and may be created or destroyed at arbitrary
times. Although our technique can be extended easily to
include data and multiple processes, we focus on code and
one process only in this paper.

In our approach, a postpass optimizer divides the exe-
cutable into three different classes based on profiling in-
formation: pageable, cacheable, and uncacheable. When-
ever a new process is created, the runtime SPM manager
sets up the process’ virtual-to-physical page table mappings.
Main memory cacheable code is placed in cacheable mem-
ory regions and uncacheable code is placed in memory re-
gions marked uncacheable. Pageable code resides in the
main memory, but it is copied to the SPM before execu-
tion. Our postpass optimizer operates on ARM binaries,
although our technique is applicable to any processor with
an MMU, cache, and scratchpad memory.

The contributions of this paper are as follows. First, our
SPM management is truly dynamic since pages are loaded
on demand. Thus, our approach is independent of the SPM
size.

Second, we propose a new, horizontally partitioned mem-
ory architecture composed of a small direct-mapped, phy-
sically-addressed minicache and scratchpad memory with
1-cycle access latency. The presence of the minicache en-
ables even SPM-unaware programs to run with reasonable
performance.

Third, our technique is implemented in a postpass op-
timizer. This enables us to process binaries to which the
source code is not readily available, including libraries. Un-
like any previous work, the SPM-optimized binary image
runs unmodified with almost no performance degradation
on systems without any SPM at all. We therefore achieve
total memory architecture independence: SPM-optimized
binaries run on systems with or without SPM, and the pro-
posed memory architecture runs SPM-optimized as well as
SPM-unaware binaries.

To the best of our knowledge, this paper presents the first
approach to access physically-addressed SPM in a virtual
memory environment.

We implemented the proposed memory subsystem in our
cycle-accurate ARM9E-S core simulator [28]. To evaluate
our approach, we used a standard MP3 decoder, an MPEG-4

encoder/decoder, and several applications from MediaBench
[16] and MiBench [11]. Compared to a fully-cached con-
figuration with virtually-indexed, physically-tagged (VIPT)
caches, on average we achieved a 12% improvement in run-
time performance and a 33% reduction in energy consump-
tion by the memory system.

The rest of this paper is organized as follows. Section 2
summarizes related work. Section 3 describes the memory
architecture of our system. Section 4 presents the runtime
SPM manager. Section 5 describes in detail the postpass
optimizer and our code placement technique. Section 6 ex-
plains the evaluation environment, and Section 7 presents
the results. Section 8 concludes the paper.

2. RELATED WORK
Existing work on SPM allocation can be divided roughly

into two classes: statically allocated and dynamically man-
aged scratchpad memories. In statically allocated SPM al-
location, the scratchpad memory is initialized with the des-
ignated program parts at load time and its contents do
not change during runtime. Dynamically managed SPM,
on the other hand, is characterized by the fact that the
contents of the SPM change while the program executes.
The program points where code and/or data are moved
back and forth from the SPM to the main memory are usu-
ally predetermined locations immediately before a substan-
tial change in program behavior (e.g., before loops). Both
statically-allocated and dynamically-managed SPM can be
further classified into techniques that consider only instruc-
tions (code), only data, or both.

Static SPM allocation techniques are presented in [1, 2,
4, 9, 22, 31, 32]. Except for [22], all of these approaches
require knowledge of the SPM size at compile time. In [1,
2], the authors present SPM allocation schemes that select
code blocks which promise the highest energy savings us-
ing an algorithm based on Dynamic Programming. While
[1] requires special hardware support to split the SPM into
several partitions, [2] uses a post-pass optimizer to mod-
ify the necessary instructions so that the application runs
on a unified SPM. [4] solves the static assignment with a
knapsack algorithm, both for code and data blocks. In [32],
memory objects are selected based on a cache conflict graph
obtained through cache hit/miss statistics. The optimal set
of memory objects is selected using an Integer Linear Pro-
gram (ILP) variant of the knapsack algorithm. In [22], the
decision of which blocks should go to the SPM is delayed
until the application is loaded, making it independent from
the actual scratchpad memory size. Obviously, some pro-
filing information has to be embedded into the application
binary, but the authors report only a minimal image size
increase. [9] and [31] both aim at multi-tasking systems.
While [9] proposes an API that helps the programmer move
blocks back and forth between the SPM and the main mem-
ory, [31] is an automatic approach. The authors present
three sharing strategies: non-saving, saving, and hybrid. In
the non-saving approach, the scratchpad memory is com-
pletely allocated to the currently active task. The saving
approach divides the scratchpad evenly between the appli-
cations. The hybrid approach is a mixture of the saving and
non-saving method. Since [31] presents a static allocation
method, both the SPM size as well as the sharing strategy
must be decided at compile time.
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Dynamically allocated SPM algorithms are presented in
[7, 13, 14, 15, 17, 29, 30]. Both [14] and [15] focus on data
arrays accessed from well-structured loop kernels. Arrays
are split into so-called tiles to allow only parts of an array
to be copied to the SPM, which allows arrays bigger than
the SPM size to be allocated to the SPM. Also in [17], the
authors focus on assigning data arrays to the SPM. To de-
termine the most beneficial set, they first assign registers to
so-called register classes based on their size. Each register
class gets a fixed share of the SPM. Using a conflict graph of
live ranges, a graph coloring algorithm determines which ar-
ray is to be allocated to the SPM at what program points. In
[29], code blocks are dynamically copied to the SPM directly
before loops. The optimal set is determined using an ILP.
[30] focuses on performance optimization and considers local
and global data. The program’s control-flow graph (CFG)
is annotated with timestamps to form a data program rela-
tionship graph (DPRG). Using greedy heuristics, the most
promising candidates are copied to and from the SPM at
well-defined copy points. In [7], loop nests are copied on
demand to the SPM. The most beneficial set of loops for a
given SPM size is determined by solving an ILP. A dynamic
SPM allocation for code is presented in [13]. The allocation
is based on the so-called concomitance metric, which indi-
cates how correlated in time the execution of various blocks
of code are.

Finally, in [6], the authors propose an SPM allocation
scheme for heap data. Promising candidates are assigned
a fixed-size bin that can hold n elements of a dynamically
allocated variable. At runtime, only the first n objects are
allocated to the SPM. While the bins are fixed in size, their
memory location may change during program execution,
making this allocation technique a dynamic one.

The horizontal partitioning of memory architectures has
been examined recently in [27]. Inspired by the memory
architecture of the Intel XScale architecture with a big main
data cache and a 2KB minicache, the authors show that, by
cleverly allocating the data objects to one of the caches, a
substantial amount of energy can be saved.

3. MEMORY SYSTEM
As portable devices get more powerful, they diverge in-

creasingly from traditional embedded systems with a shared
physical address space and a set of well-known applications.
Portable devices now run full-fledged operating systems with
virtual memory management, and tasks are created and de-
stroyed at arbitrary times on the user’s demand. Further-
more, cache and SPM configurations vary from device to de-
vice even though their processor cores are the same. These
factors have limited the application of scratchpad memory
allocation algorithms that are tailored to a certain SPM size
and assume a fixed set of tasks running in one address space.

Existing memory subsystems of embedded cores that sup-
port physically addressed scratchpad memory mapped into
a virtual address room are restricted in one of two ways: ei-
ther the SPM access latency is longer than one cycle, or the
SPM is accessed simultaneously with the cache for each re-
quest, which wastes energy because only one of the memory
structures can contain the requested data.

In the first case, the MMU first translates the virtual ad-
dress (VA) to a physical address (PA). The PA is then com-
pared to the SPM base register, and the SPM is accessed
only if the PA lies within the SPM address range. Unless
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Figure 1: ARM11 level one cache block diagram
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Figure 2: On-chip memory architecture

the translation lookaside buffer (TLB) misses, the VA-to-PA
address translation requires one cycle; thus, an SPM access
can usually be handled in two cycles. The ARM926EJ-S
core [3], for example, implements such a design. Other de-
signs, such as the ARM11 core [3], access the SPM and
the cache simultaneously (Figure 1). At the same time, the
address translation is performed by a MicroTLB (μTLB)
[20], which is basically a fully associative cache with 2 to
16 entries providing fast lookups of recently used page table
entries. The usual cache hit signals plus special SPM range
hit signals are then used to select the correct data from one
of the cache sets or the SPM. While the latency of the cache
and the SPM is one cycle, both are active in every memory
request, thereby wasting a significant amount of energy. The
XScale’s horizontally-partitioned, virtually-addressed cache
architecture seems to suffer from the same problem [12].

To eliminate these difficulties, we propose the following
horizontally-partitioned, on-chip memory subsystem for the
instruction side of a Harvard architecture (see Figure 2).
The subsystem consists of a μTLB, a scratchpad memory,
and a direct-mapped minicache. The μTLB first translates
the VA of the instruction fetch issued by the core. The
resulting PA is checked against the SPM base region register
to determine whether the request should be routed to the
SPM or the mini cache. If the address lies outside the SPM
range, the physically addressed minicache is accessed.

The purpose of the minicache is to cover the external
memory access cost caused by those instructions that are
not executed from the SPM. As we will show in Section 5,
under certain conditions, it might not be worth executing
instructions from the SPM because the additional energy
consumed by copying them to the SPM is higher than the
energy consumed by running them from the minicache.
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16-entry μTLB 1.14ns
16KB SPM 0.81ns
1K direct-mapped cache 0.81ns
Total latency (μTLB → SPM or cache) 1.95ns

Table 1: Access Latencies

Cache SPM SPM + 1KB
Size (4-way, 32B line) minicache
[KB] energy area energy area area

[nJ] [mm2] [nJ] [mm2] [mm2]
4 0.55 0.53 0.14 0.29 0.45
6 0.16 0.39 0.55
8 0.56 0.73 0.18 0.49 0.65

12 0.19 0.71 0.87
16 0.61 1.19 0.21 0.94 1.10

Table 2: Comparison of energy per access and die
area for cache and SPM (0.13μm technology)

The data side of the first level memory hierarchy remains
unchanged and implements a standard virtually-indexed,
physically-tagged cache.

The disadvantage of our design is that serializing the VA-
to-PA address translation with the SPM/cache access in-
creases the latency of an instruction fetch by approximately
the access time of the μTLB. With the current 0.13μm man-
ufacturing process, however, core clocks of up to 500MHz
can be supported with a 1-cycle latency. Table 1 shows ac-
cess latencies for both μTLB, cache, and scratchpad memo-
ries. The numbers were obtained from CACTI [33].

For clock frequencies above 500MHz, a possible solution is
to split the instruction fetch pipeline stage into two separate
parts, effectively increasing the pipeline depth by one.

The SPM is more efficient than a cache of the same size
in terms of both energy and area. Table 2 shows energy
and area parameters for various cache and SPM sizes. For
example, a 4KB, 4-way set associative minicache with a line
size of 32 bytes occupies a die area of 0.53mm2. A 4KB
SPM (0.29mm2) plus a 1KB, direct-mapped cache with a
line size of 32 bytes (0.16mm2) requires only 85% of the
cache area. Even a 6KB SPM (0.38mm2) together with the
aforementioned minicache increases the required die area by
only about 5%.

Unlike a cache, a scratchpad memory is not managed by
hardware. Instead, the runtime system is responsible for its
contents and efficient utilization. This is the subject of the
next section.

4. SPM MANAGEMENT
In this section, we describe the runtime support that is

necessary to run a specially prepared application binary ef-
ficiently on the proposed memory architecture. While on
cached cores, binaries run without further software support,
the SPM has to be explicitly managed either by the applica-
tion itself or by a dedicated SPM manager as a part of the
runtime environment.

As mentioned before, we believe that techniques that al-
low the SPM to be controlled entirely by the running ap-
plication are particularly well-suited for embedded systems
where the set of running tasks and the size of the SPM
are known in advance. However, the optimized binaries are
tailored to one configuration, and might not (or only ineffi-
ciently) run on different configurations.
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(a) Memory layout after loading the application binary.
Pageable code is not mapped to generate a prefetch abort
exception when it is entered. The PC is set to the image
entry point.
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(b) Memory layout after the PC has entered pageable code.
The memory page that caused the fault is loaded into SPM,
the PTE entry is changed accordingly, and execution con-
tinues from the SPM.

Figure 3: Operation of the SPM Manager

The SPM management technique described in this sec-
tion depends neither on a certain size of the SPM nor on a
predetermined set of running applications. The technique is
fully integrated into the runtime environment. Our runtime
scratchpad memory manager (SPMM) manages the SPM as
a global resource. The SPMM uses demand-paging tech-
niques similar to those in virtual memory systems [8] to
track the course of the application.

Pageable code (that is, code that has been identified to
be executed from SPM) is allocated to pages whose size cor-
responds to that of a virtual memory page (see Section 5).
When an application binary is loaded, the runtime environ-
ment sets up its virtual-to-physical memory mappings by
allocating MMU page tables that map the expected virtual
memory layout to real physical pages.

At the beginning, the mappings of pageable code are dis-
abled by clearing the respective bits in the page tables (Fig-
ure 3 (a)). After the page table mappings have been set up,
the application starts to run by setting the program counter
(PC) to the designated entry point. As soon as the PC
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Figure 4: The post-pass optimizer

reaches pageable code, the MMU will generate a prefetch
abort exception due to the disabled page table entry (PTE)
in the page tables of the MMU.

The runtime environment forwards the prefetch abort ex-
ception to the SPMM. The SPMM loads the page into the
SPM and modifies the corresponding PTE to map the vir-
tual address range of the page in question to the SPM. Then,
it enables the PTE and restarts the aborted instruction fetch
(Figure 3 (b)). The code now runs without further interrup-
tion until it encounters another disabled PTE, and the whole
page loading mechanism is invoked again. For pages residing
in the SPM, no additional cost occurs when the execution
of the application reaches such a page.

Depending on the size of the pageable code and the num-
ber of SPM pages available, pages may need to be evicted
before a new page can be loaded into the SPM. Since code
pages are only read from but never written to, the SPMM
does not need to copy the page back to main memory; it
simply overwrites the old page with the contents of the new
one. The PTE of the evicted page has to be invalidated,
however, to trigger invocation of the SPMM as soon as that
page is entered again. For this purpose, the SPMM keeps
track of which pages in the SPM are occupied and which
pages are free. The SPMM also stores the original PTE of
each code page currently residing in the SPM. Currently,
the SPMM uses a round-robin policy for page replacement.

Our demand paging for SPM is independent of the SPM
size and directly applicable to multiple tasks. Furthermore,
since all addresses are virtual addresses, no code patching is
necessary. An SPMM-enabled application runs just as well
as an unmodified binary on a cached-only architecture. The
opposite, of course, is not the case.

As should be clear now, the pageable code region should
contain only code sections that are worth being copied to the
SPM before execution. In an unmodified application binary,
frequently executed code is randomly spread over the whole
binary image. The next section discusses in more detail our
postpass optimizer and how it modifies the binary to achieve
optimal results in conjunction with the SPM manager.

5. THE POST-PASS OPTIMIZER

5.1 Overview
Figure 4 shows the organization of our postpass optimizer

called SNACK-pop that is part of our Seoul National Uni-

foo() ...
0x14 add r1, pc, #14 ;=#0x30
0x18 bl strcmp

...
0x30 dcb “imahugabimbo”, 0

(a)

foo() ...
0x14 ldr r1, [pc, #14] ;=#0x30
0x18 bl strcmp

...
0x30 dcd foo string ;=#0x5c

global data
foo string
0x5c dcb “imahugabimbo”,0

(b)

Figure 5: Constant data extraction from local con-
stant pools

versity Advanced Compiler tool Kit [24]. SNACK-pop op-
erates on the ARM/Thumb instruction set, including the
DSP extensions. ARM floating point instructions are not
supported. Using a postpass optimizer has several advan-
tages. First, any binary can be optimized for our scratchpad
allocation technique without requiring access to the source
code and recompiling the application. Second, a postpass
optimizer enables whole program optimization, including li-
braries, which is impossible at the source level. Finally,
since optimizations concerning code layout are rather low-
level in nature, postpass code arrangement is well-suited for
this purpose.

The inputs to our post-pass optimizer are application bi-
naries and libraries in the ARM ELF file format. SNACK-
pop disassembles the object files into code and data seg-
ments, and resolves all undefined symbols. In the next
step, the code blocks are further divided into functions com-
posed of basic blocks. Branches with hard-coded offsets are
resolved and replaced by relocation information to enable
SNACK-pop to freely relocate code.

Constant data residing in local data pools requires special
attention. Most ARM compilers place constant data used
in a function into the function’s constant pool. Consider,
for example, a function foo() that contains a call to the str-
cmp() string comparison function with one of the strings
hardcoded in the source. The string is placed into foo’s
constant pool which is included in foo’s code segment (Fig-
ure 5 (a)). One of the arguments to strcmp() is a pointer
to the constant string and is generated by adding the offset
from the current PC to the first character of the embed-
ded string. Now imagine that both foo() and strcmp() are
located in the pageable code region, but not in the same
page. If the SPM is full, and the call to strcmp() causes the
SPMM to load the page containing strcmp() into the SPM,
foo’s page might get evicted. Since strcmp() contains a ref-
erence to foo’s constant pool, the access of this data would
be aborted immediately, causing foo’s page to be reloaded.
Excessive thrashing could result in extreme cases when only
few SPM pages are available.

To avoid such scenarios, whenever SNACK-pop detects
the passing of pointers that point to a function’s constant
pool, it extracts the referenced constant data from the func-
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tion and places it in a global data region that is not pageable.
The call is then modified to pass a pointer to the global data.
(Figure 5 (b)).

To generate an SPMM-optimized binary, SNACK-pop first
inserts instrumentation code into each function and basic
blocks to gather profiling information. The profiling im-
age is run on an instruction set simulator (ISS) to get the
call/return profile. The unmodified reference image is also
run to obtain a trace of all instruction fetches during the ex-
ecution of the application. Several profiles and instruction
traces are generated with different training data sets.

In a second step, those profiles are again fed into SNACK-
pop to generate an SPMM-enabled binary. SNACK-pop
computes the average number of reads for each basic block.
For each block, the energy model described in the following
subsection is solved and the basic block is assigned to one
of the paged, cached, or uncached code regions. This process
is described in greater detail in Subsection 5.3. Once the
code placement is done, SNACK-pop generates a new ELF
binary and inserts six new symbols that contain the loca-
tion and size of each of the three code regions paged, cached,
and uncached. When loading an ELF binary, the SPMM
manager searches the image for these six symbols. If they
are present, the memory mappings are setup accordingly. If
not, the image is an unoptimized image and will use only
the minicache.

5.2 Code Classification
Based on the trace profile, SNACK-pop determines the

code region for each block bi:

Loci =

8<
:

uncached if the code is executed less than once
cached if Ecached(bi) < Epaged(bi)
paged otherwise

Code that is executed less than once on average is assigned
to an uncached code region. Such code would generate only
cache misses and no hits. Due to the spatial locality of a
cache line, it might run slightly faster from cache, but since
it is executed once at most, the performance penalty is neg-
ligible. For blocks executed more frequently, the following
energy model is used:

Epaged(bi) = AiEspm + MSi(Eext + Espm) (1)

Ecached(bi) = Ai(Ecache + mcacheEmiss) (2)

where

Ai number of instructions fetched from block bi

Si size of block bi in words
M average number of page misses
mcache cache miss ratio
Espm SPM access energy
Eext external memory access energy
Ecache cache access energy
Emiss cache miss energy

The first term in (1), AiEspm, represents the energy re-
quired to execute block bi from the SPM. The second term,
MSi(Eext + Espm), computes the cost of copying block bi

from main memory to the SPM. The empirical factor M is
used to consider the fact that a block might get copied to
the SPM several times. Note that we consider the pure copy
cost only and not the additional overhead of the SPMM. Ba-
sic blocks are usually much smaller than one memory page
so that the SPMM cost does not have a big impact on a

single basic block. The energy consumed when executing
block bi from the cache is computed by (2).

This computation is performed on the function level for
each basic block. We then perform function splitting simi-
lar to the one described in [25]: first, the basic blocks are
reordered according to their intended storage location. The
reordering might invalidate some fall-through edges in the
control flow graph. Additional branch instructions are in-
serted as needed to restore the correct control flow. Next,
the function fk is divided into up to three parts fpaged

k ,

fcached
k , and funcached

k in such a way that basic blocks that
should be executed from SPM are located in fpaged

k , and
accordingly for cached and uncached.

The cached and uncached functions fcached and funcached

are then allocated to the cached or the uncached code seg-
ment, respectively. For the paged functions fpaged, we apply
a clustering heuristics as described in the next subsection.

5.3 Pageable Code Arrangement
Intuitively, an optimal page placement must

• allocate the pageable code to as few pages as possible

• cluster temporally local code together in as few pages
as possible

The optimal page placement problem is harder than Knap-
sack because the code must not only be allocated to as few
pages as possible, but we also have to consider the temporal
relationship between all candidates.

We, therefore, have developed the following heuristics that
work reasonably well for a wide range of benchmarks. Fig-
ure 6 illustrates the steps of the heuristics on a running
example. We assume a page size of 128 bytes.

In the first step, we detect loops by looking at the dynamic
call graph (DCG). What we call loop is not a loop in the
traditional sense, but its effect is the same as that of a loop
at the source level. Figure 6 (a) shows an example of a DCG
depicting eight functions and their size.

Let | a → b | denote the weight of the edge a → b in
the DCG (that is, the number of calls from a to b). Also,
| ∗ → b | denotes the sum of the weights of all incoming
edges to b. We consider a function f to be a loop header if

| g → f |
| ∗ → g | ≥ threshold

(i.e.,the number of calls g → f divided by the number of
incoming calls to g exceeds a certain threshold value). In
Figure 6 (b), the functions c and f have been identified as
loop headers.

For each loop header hd, the members in the loop with
loop header hd are identified by computing the closure of the
loop, closure(hd, hd). The function closure is recursively
defined by

closure(hd, f) =
[

closure(hd, h), ∀h,
| f → h |
| ∗ → hd | ≥ 1

(i.e., the loop consists of all functions h that are called at
least as many times as the loop header itself). In Figure 6
(b), closure(c, c) = {c, e, f, g, h} and closure(f, f) = {f, h}.
Note that function g is not a member of closure(f, f) be-
cause the number of calls to f , | ∗ → f | is bigger than
the number of calls from f to g. Function g is, however, a
member of closure(c, c).
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Figure 6: Code placement example

After detecting all the loops in the DCG, we build the loop
call graph (LCG), which is simply a directed graph with the
loops as nodes and an edge between loop l1 and l2 if loop l2
is an inner loop of l1 (Figure 6 (c)).

The LCG is then traversed in a depth-first manner (i.e.
the innermost loops are processed first). For each loop li
a bin bli is allocated. We insert all functions fpaged to bin
bli that are contained in li and have not yet been allocated
to any other bin. After all nodes in the LCG have been
processed, the maximum size of a bin is set to

sizemax(bli) = �
P

f∈bli
size(f)

pagesize
� · pagesize (3)

where pagesize denotes the size of one memory page. Fig-
ures 6 (d) and (e) show the state of the LCG and the asso-
ciated bins after processing f and c, respectively. Note that
even though loop c contains the functions c, e, f, g and h,
only c, e, and g are assigned to bin bc because f and h have
already been placed in bin bf .

Next, we consider all non-leaf nodes of the LCG (i.e., loops
containing inner loops). Using the bestfit algorithm [5], we
push functions allocated to the outer loop bin into the bins
of its inner loops as long as the size of the inner loop’s bin
bli does not exceed sizemax(bli). The idea here is to pack
functions together that have a close temporal relationship to
achieve a better utilization of the bins and to reduce their
internal fragmentation. Here it also becomes clear why we
have calculated a maximum bin size. If a bin could grow
without any constraint, all outer loop functions would sim-
ply get pushed down to the bin of the innermost loop. This
would result in huge bins containing a lot of functions that
do not necessarily have a close temporal relationship.

Memory Read Write
cache 1 1
SPM 1 1
SDRAM

non-sequential 27 27
sequential 24 24

Table 3: Access latencies in CPU cycles

After no more functions can be pushed to inner loops’
bins, the maximum size of the outer loop bin is recalculated
according to (3). In Figure 6 (f), function g is pushed to bf

and the maximum size of bin bc is reduced to 128 bytes.
Functions that are to be paged, but are not part of any

loop, are placed last. For each unplaced function fpaged
k ,

we follow the DCG up towards the root. For each caller
encountered on the way up, we compute a fictitious loop
with a threshold of one. If that loop contains both fpaged

k

and another loop l, we try to include fpaged
k in the bin bl.

Any remaining functions are allocated to an extra bin.

6. EVALUATION ENVIRONMENT
We have evaluated the effectiveness of our approach using

SNACK-armsim [28]. SNACK-armsim is a cycle-accurate
architecture simulator that models the ARM9E-S core. It
supports the ARMv5TE instruction set and includes timing
models for the pipelined ARM9E-S core, the MMU includ-
ing the unified TLB, caches including μTLBs, the AMBA
AHB bus [3], and external memory. For this work, we also
have modeled the on-chip memory architecture presented in
Section 3. The processor core clock in SNACK-armsim was
set to 200MHz and the caches were virtually-indexed and
physically-tagged. The cache, SPM, and external memory
(SDRAM) latencies are shown in Table 3.

We use the total execution time as the performance met-
ric and the total energy consumed in the memory subsystem
as the energy metric. The components of the memory sub-
system include the on-chip instruction and data caches, the
SPM, the off-chip bus, and the main memory (SDRAM).
The energy consumption by the memory subsystem is com-
puted by

Ttotal =
core clocks

core frequency

Etotal = ESPM + Eicache + Edcache +

Eext static + Eext dynamic

The energies for cache and SPM are computed by

Ecache = ecache(hit +
linesize

4
· miss)

ESPM = eSPM (read + write)

The SDRAM energy is composed of static and dynamic en-
ergy [19]. We have modeled the low power 128MB Micron
MT48H8M16LF [18] SDRAM with a memory bus frequency
fmem of 100MHz and a supply voltage Vdd of 1.8V . The
static energy consumption includes the standby power and
the power to periodically refresh the SDRAM cells. The en-
ergy of off-chip memory accesses Eext static is the SDRAM’s
static energy and is given by

Eext static = Pstandby · Ttotal

Pstandby is the static power consumption of the SDRAM and
is computed from [18]. Eext dynamic includes both the bus
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cache nJ SDRAM nJ
(dynamic)

1KB, 1-way 0.20 random read 11.75
4KB, 4-way 0.55 burst read 26.98
8KB, 4-way 0.56 random write 10.40
16KB, 4-way 0.61 burst write 13.27
SPM nJ SDRAM mW
4KB 0.15 static power 57.30
6KB 0.16
8KB 0.18
12KB 0.19

Table 4: Access energy and power parameters. The
bus energy is included in the SDRAM dynamic en-
ergy. The burst length is 8 words.

Application Code Size [KB] Reference ICache
Combine 12 4KB, 4-way
FFT 14 4KB, 4-way
Epic 20 4KB, 4-way
Unepic 20 4KB, 4-way
MP3-dec 24 8KB, 4-way
MPEG4-dec 44 8KB, 4-way
MPEG4-enc 49 8KB, 4-way

Table 5: Benchmarks

and SDRAM dynamic energy. The dynamic energy of the
SDRAM is also computed from [18]. The per-access bus
energy is taken from [27]. Table 4 shows the parameters
used in our energy calculations.

We use 12 embedded applications to evaluate our work.
These include nine benchmarks from MiBench [11] and Me-
diaBench [16], the official ISO MP3 decoder [21], and
MPEG-4 XviD encoding/decoding [34]. We put the bench-
marks Quicksort, Dijkstra, SHA, ADPCM-enc, ADPCM-
dec, and Bitcount together into one benchmark called Com-
bine. Each of the smaller benchmarks is executed once
in Combine. Combine represents an embedded application
with multiple phases. Table 5 summarizes the characteris-
tics of each benchmark. We set M = 2 and threshold = 4
for the clustering algorithm (Section 5) for all benchmarks.

The reference cases were obtained using a fully cached
system with 4-way associative virtually-indexed, physically-
tagged instruction and data caches. For the smaller bench-
marks (Combine, Epic, FFT, and Unepic), the instruction
cache has a size of 4KB, and 8 kilobyte for the bigger ones
(MP3, MPEG4-dec, and MPEG4-enc). The data cache has
a fixed size of 16KB.

7. EXPERIMENTAL RESULTS

7.1 Code Placement
Table 6 shows the results of our code placement algorithm

with 1KB page size, as described in Section 5.3. On aver-
age, each memory page of the pageable region is 85% filled
(i.e. 15% of each page are unallocated). While the SPMM is
aware of the actual page size and loads only as many bytes
into the SPM as needed, the unallocated space cannot be
used to hold other code or data because the minimal alloca-
tion unit is one memory page. Our code placement strategy
does not consider whether the total amount of pageable code
can be easily allocated to 1KB pages. It might, for exam-
ple, allocate 2052B of code to the pageable region that will
inevitably require three pages (1024B + 1024B + 4B). In ad-
dition, the clustering algorithm groups code at the function
level, which also leads to internal fragmentation.

Application pageable cacheable uncacheable pages
combine
codesize 5.4KB 2.9KB 3.7KB 7
# of instr. 191.1M 5.7K 357

fft
codesize 6.5KB 3.0KB 4.5KB 8
# of instr. 91.4M 3.7K 133

epic
codesize 7.6KB 5.5KB 6.9KB 8
# of instr. 329.9M 15.0K 635

unepic
codesize 5.8KB 7.4KB 6.8KB 7
# of instr. 30.6M 24.2K 499

mp3-dec
codesize 17.6KB 0.8KB 5.6KB 20
# of instr. 82.1M 2.8K 147

mpeg4-dec
codesize 16.3KB 7.4KB 20.3KB 19
# of instr. 54.4M 16.7K 1.6K

mpeg4-enc
codesize 14.8KB 7.7KB 22.5KB 19
# of instr. 35.6M 18.6K 2.3K

Table 6: Code placement for memory pages of 1KB
size. The fourth column shows the number of pages
allocated to pageable code.

7.2 Execution time and Energy Consumption
Figure 8 (a) shows the energy consumption and execution

time of our SPM allocation technique for different configu-
rations. Reference is the reference case with instruction and
data cache, but no SPM. For each application, the size of the
instruction cache is set to 20-30% of the executed code size
(Table 5). The energy consumption of the different configu-
rations is normalized to reference. Table 7 shows the number
of page faults in addition to the energy consumption and ex-
ecution time of our technique. Figure 8 (b) displays the to-
tal number and distribution of instruction fetches from the
different memory components. For most applications, the
instruction cache hits of reference are completely absorbed
by the SPM. This shows that the code classification is very
effective. A significant number of instructions are fetched
from the minicache/SDRAM only for applications with a
large number of page faults (fft and mp3-dec) because the
SPM manager itself is never executed from SPM.

Without the minicache. As shown in Table 7, without
a minicache, the average execution time is 231% when the
SPM size equals the instruction cache size of the reference
case, or 188% for 1.5 times the cache size. The memory sub-
system energy consumption is also higher than reference with
165% and 132%, respectively. This is somewhat surprising
since Table 6 shows that practically all instruction fetches
are allocated to pageable code regions. A closer look at the
results in Table 6 reveals that the number of page faults has
a direct influence on both the execution time and energy
consumption. Moreover, more than 99% of all instruction
fetches from SDRAM is caused by the SPMM. This effect is
shown in Figure 8 (b) with bigger SDRAM inst sections in
the bars without the minicache for fft, mp3-dec, mpeg4-dec,
and mpeg4-enc.

With the minicache. With a 1KB direct-mapped mini-
cache, the average execution time and energy consumption
are 97% and 72% for an SPM size equal to the instruc-
tion cache in reference, and 88% and 67% for an SPM size
that is 1.5x the size of the cache. If the SPM is saturated,
increasing the SPM size from 1.0x to 1.5x will slightly in-
crease the energy consumption of combine, epic, unepic, and
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Configuration: no minicache 1KB, direct mapped minicache
SPM size: 1.0x reference cache size 1.5x reference cache size 1.0x reference cache size 1.5x reference cache size

Application time energy pageflt time energy pageflt time energy pageflt time energy pageflt
combine 169% 85% 8 169% 87% 3 100% 64% 8 100% 66% 3
fft 929% 1017% 276135 345% 372% 96320 103% 98% 276135 59% 54% 96320
epic 169% 85% 134 169% 87% 8 100% 64% 134 100% 66% 8
unepic 107% 71% 8 107% 73% 5 100% 67% 8 100% 69% 5
mp3-dec 396% 325% 7220 393% 323% 6590 93% 75% 7220 93% 76% 6590
mpeg4-dec 168% 130% 6088 113% 76% 12 93% 70% 6088 87% 64% 12
mpeg4-enc 186% 149% 6389 176% 140% 5272 89% 74% 6398 89% 74% 5272
Geom. mean 231% 165% 188% 132% 97% 72% 88% 67%

Figure 7: Execution time, memory subsystem energy consumption, and the number of page faults for different
on-chip memory subsystem configurations
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Figure 8: Results

mp3-dec (Figure 8 (a)) due to the greater SPM access en-
ergy. Even though mp3-dec in the case of 1.5x produces 650,
or 9% fewer page faults than the 1.0x case, the overall en-
ergy consumption increases by 2% due to the higher access
cost (per-access energy) of a larger SPM.

If the SPM is not saturated, increasing the size will signif-
icantly improve both performance and energy consumption.
While fft is thrashing with 4KB of SPM, increasing the size
by two pages (2KB) reduces the number of page faults by
179,815, or 65%.

The cost of the SPMM. On average, one page fault
costs 190 instructions, 270 loads from, and 29 stores to
SDRAM. The SDRAM-to-SPM block copy routine alone is

responsible for 124 instructions, 232 loads, and 8 stores. Fig-
ure 8 (b) shows that the cost of the SPMM is not noticeable
for most cases with the minicache. For fft, the 4KB SPM is
clearly too small and thrashing occurs, thereby resulting in a
large number of SDRAM accesses or minicache accesses, de-
pending on the configuration. The evidence is an extremely
high number of page faults, and a significantly larger num-
ber of instruction fetches.

Overall, our instruction SPM management technique with
a small minicache is very effective. It achieves a 12% im-
provement in performance and a 33% reduction in memory
subsystem energy consumption in comparison to a conven-
tional instruction cache with similar die area requirements.
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8. CONCLUSION AND FUTURE WORK
This paper proposes a horizontally split memory architec-

ture with a big SPM and a small minicache instead of an
instruction cache.

To manage the SPM in a virtual memory environment, we
introduce an SPM allocation scheme that loads frequently
executed code sections into the SPM on demand. We exploit
the hardware’s page fault exception mechanism to automat-
ically trigger the invocation of our runtime SPM manager.
Since the minimal transfer unit is one memory page, the
code placement is of great importance to the success of our
technique. We have implemented code placement heuristics
in our post-pass optimizer to generate SPM-optimized bina-
ries from ordinary ARM ELF files. SPM-optimized binaries
run without modification on different SPM sizes and even
on cached-only cores. Also, SPM-unaware binaries run with
satisfactory performance on our on-chip memory subsystem.

To support 1-cycle latency accesses to both the SPM and
the cache, even when the MMU is active, we serialize the
address translation and the SPM/cache access. We show
that, with the current 0.13μ manufacturing technology, such
a design can support clock frequencies of up to 500MHz.

Compared to a conventional fully-cached configuration, on
average we achieve a 12% improvement in runtime perfor-
mance and a 33% reduction in energy consumption by the
memory system, with no increase in the required die area.

Our future work includes exploring better code placement
strategies to more effectively utilize the available SPM space.
We also intend to extend our work to multiple running tasks.
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