
Incremental Schedulability Analysis of Hierarchical
Real-Time Components∗

Arvind Easwaran, Insik Shin, Oleg Sokolsky, and Insup Lee
Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA

{arvinde, ishin, sokolsky, lee}@cis.upenn.edu

ABSTRACT
Embedded systems are complex as a whole but consist of
smaller independent modules minimally interacting with each
other. This structure makes embedded systems amenable
to compositional system design. Compositional design of
real-time embedded systems can be done using hierarchical
systems which consist of real-time components arranged in
a scheduling hierarchy. Each component consists of a real-
time workload and a scheduling policy for the workload. To
simplify schedulability analysis of hierarchical systems, anal-
ysis can be done compositionally using interfaces that ab-
stract the timing requirements of components. Associative
composition will facilitate analysis of systems in which com-
ponents are modified on the fly. In this paper, we propose
efficient algorithms to abstract the resource requirements of
components in the form of periodic resource models. Each
component interface consists of a set of periodic resource
models for different values of period, which allows the se-
lection of a periodic interface that minimizes the collective
real-time requirements of hierarchical components. We also
describe an interface composition algorithm which accounts
for context switch overheads incurred by components and is
associative.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application based Systems—Real-time and embedded
systems; D.2.2 [Software Engineering]: Design Tools and
Techniques—Modules and Interfaces; D.4.1 [Operating Sys-
tems]: Process Management—Scheduling ; I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms—Algebraic al-
gorithms

∗This research was supported in part by NSF CNS-0410662,
NSF CNS-0509327, NSF CNS-0509143, ARO W911NF-05-
1-0182, and ONR MURI N00014-04-1-0735

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

General Terms
Algorithms, Design, Performance, Theory

Keywords
Associative real-time interfaces, Compositional schedulabil-
ity analysis, Hierarchical scheduling, Incremental schedula-
bility analysis

1. INTRODUCTION
The increasing complexity of real-time embedded systems

demands advanced design and analysis methods for the as-
surance of timing requirements. Component-based design
has been widely accepted as an approach to facilitate the
design of complex systems. It provides means for decom-
posing a complex system into simpler components and for
composing them into a system using interfaces that abstract
component complexity. To take advantage of component-
based design for real-time embedded systems, schedulability
analysis should be addressed for component-based real-time
systems. It is desirable to achieve schedulability analysis
compositionally, i.e., to achieve the system-level schedula-
bility analysis by combining component interfaces that ab-
stract component-level timing requirements. Further, the
abstracted interfaces must minimize the resource demand of
components. In this paper, we consider the periodic resource
interface model since it is simple and practical in the sense
that many existing real-time schedulers support the periodic
model. It is also desirable to achieve incremental schedula-
bility analysis, in particular, for systems with dynamically
changing components.

Component-based real-time systems often involve hierar-
chical scheduling frameworks for supporting hierarchical re-
source sharing among components under different schedul-
ing policies. The hierarchical framework can be generally
represented as a tree of nodes, where each node represents
a component consisting of some real-time workload and a
scheduling policy, and resources are allocated from a par-
ent to its children. Many studies have been proposed on
compositional schedulability analysis for component-based
hierarchical scheduling frameworks [22, 15, 23, 1, 4]. How-
ever, their approaches do not support incremental schedu-
lability analysis. There have been recent studies [25, 26,
12] that support incremental schedulability analysis using
the interface theory [5, 6]. However, these interface theory
based techniques cannot be directly applied for the problem
of finding the periodic interface, among all possible peri-
odic interfaces with different periods, that minimizes the

272

resource demand of hierarchical components. In this paper,
we address this problem taking context switch overhead into
consideration.

This paper presents an approach that supports incremen-
tal schedulability analysis of component interfaces repre-
sented as periodic resource models by allowing associative
composition of such interfaces. Our component interface
abstracts the minimum resource demand of the underlying
component, in the form of periodic resource models for dif-
ferent values of period. The composed interface is gener-
ated by adding together resource capacities of individual
interfaces for each value of the period. This composition
also takes into consideration the context switch overhead in-
curred by components. Once a single interface is generated
for the entire system, the component at the topmost level
can select a value for period that minimizes the resource de-
mand of the system. The corresponding periodic resource
model is exported to the operating system for scheduling and
the chosen value for period is propagated to all the compo-
nents in the system where resource capacities are given by
the corresponding interfaces.

In addition to the interface composition scheme, we also
propose efficient algorithms to generate interfaces for com-
ponents that use rate monotonic (RM) or earliest deadline
first (EDF) schedulers [17]. Furthermore, we develop an effi-
cient representation for interfaces and show using examples
that the size of these interfaces are small in practice.

Related Work. For real-time systems, there has been
a growing attention to hierarchical scheduling frameworks
that support hierarchical resource sharing under different
scheduling algorithms.

Deng and Liu [7] proposed a two-level real-time scheduling
framework for open systems. Kuo and Li [13] presented an
exact schedulability condition for such a two level framework
with the RM system scheduler and Lipari and Baruah [14,
16] presented similar conditions with the EDF system sched-
uler. The common assumption shared by these previous ap-
proaches is that the system scheduler has a (schedulable)
utilization bound of 100%. In open systems, however, it is
desirable to be more general since there could be more than
two-levels and different schedulers may be used at different
levels.

Mok and Feng proposed the bounded-delay resource par-
tition model for a hierarchical scheduling framework [20, 10].
In their framework, a parent component and its child compo-
nents are separated such that they interact with each other
only through their resource partition model. However, they
did not consider the component abstraction problem. Shin
and Lee [24] addressed the component abstraction problem
but their composition technique is not associative.

The periodic resource model has been introduced to spec-
ify the periodic resource allocation guarantees provided to a
component from its parent component [23, 15]. There have
been studies [22, 15, 23, 1, 4] on the component abstraction
problem with periodic resource models. For a component
with RM scheduler and a periodic resource model abstrac-
tion, Saewong et. al. [22] introduced an exact schedulability
condition based on worst-case response time analysis, and
Lipari and Bini [15] presented a similar condition based on
time demand calculations. Shin and Lee [23] provided an
exact schedulability condition under EDF scheduling. Pe-
dreira [1] and Davis and Burns [4] introduced worst-case re-
sponse time analysis techniques under RM component-level

scheduling, which enhance the previous work. All these ab-
straction techniques produce periodic interfaces whose com-
position is not associative. Lipari and Bini [15] describe a
technique to compute a set of periodic resource models, that
satisfy the schedulability condition under RM scheduler. For
each value of resource period, their technique evaluates the
schedulability condition over a set of significant points on
the time demand function. In this paper, we present an
efficient algorithm to compute the periodic interfaces and
also describe an associative technique for composing them.
For each value of interface period greater than one, this al-
gorithm evaluates the schedulability condition at only two
significant points on the time demand function. Lipari and
Bini [15] also describe a non-linear optimization technique
to minimize the context switch overhead of the component,
as well as the resource utilization of the interface. They con-
sider a two level hierarchical framework where the optimiza-
tion is done locally for each component. In our approach,
we account for context switch overheads in the interface ca-
pacity and minimize the resource demand at the topmost
level of a multi level hierarchical framework.

There have been studies on the development of inter-
face theory for supporting incremental design of component-
based real-time systems, applying the interface theories [5, 6]
into real-time context. These studies have proposed assume-
guarantee interface theories for real-time components with a
generic real-time interface model [25, 26] and with a bounded-
delay resource partition interface model [12]. These theories
can be applied to periodic resource models if the period of
the periodic resource abstraction is fixed a priori for all the
components in the system to some arbitrary value. In our
methodology, the value for the period can be chosen after
the interfaces for all the components are generated. Hence
the system can select a period that minimizes the resource
demand of the system, which is not possible if the period
value is fixed a priori.

Matic and Henzinger [19] considered the issue of address-
ing the component abstraction problem in the presence of
task dependences, within and between components, using
two approaches; the RTW (Real-Time Workshop) [18] and
the LET (Logical Execution Time) [11] semantics. They
showed that the previous results [15, 23] can be extended for
supporting interacting tasks with data dependencies when
one of those two approaches are employed, while both ap-
proaches produce a trade-off between the end-to-end latency
and the overheads incurred in abstracting components.

The rest of the paper is organized as follows: Section 2
states the compositional schedulability analysis problem and
Section 3 briefly describes the techniques developed in this
paper. Section 4 develops a supply bound function for peri-
odic resource models in the presence of context switch over-
heads. Section 5 gives the interface generation algorithm
under EDF schedulers and Section 6 describes a similar al-
gorithm for RM schedulers. Section 7 gives the algorithm to
compose component interfaces and also describes a mech-
anism to account for context switch overheads. Section 8
compares the results of this paper with earlier work and
Section 9 concludes the paper.

2. PROBLEM STATEMENT
In this paper we assume that each real-time task is an in-

dependent periodic task with deadline equal to the period.
For schedulability analysis using our approach, the compo-

273

nent must export its worst case resource demand which de-
pends on the task model and the scheduler. Any task model
for which the component can compute its worst case resource
demand can be used in our framework. Independent tasks
are assumed because our focus in this paper is on component
abstraction and composition. Matic and Henzinger [19] have
addressed the issue of abstracting a set of interacting peri-
odic tasks with data dependences using buffers, and their
technique can be applied in our framework. A real-time
component consists of a real-time workload and a schedul-
ing policy for the workload.

Definition 1 (Simple Component). A simple real-time
component C is defined as,

C = 〈{T1, · · · , Tn}, RM/EDF 〉 where Ti = (pi, ei) is a
real-time task with period pi and worst case execution time
ei. Deadline of Ti is assumed to be same as pi. The tasks
in the component are scheduled using either rate monotonic
(RM) or earliest deadline first (EDF) scheduler [17].

Definition 2 (Complex Component). Components in
a hierarchical system that comprise of other components will
be called complex components. A complex component C is
defined as,

C = 〈{C1, · · · , Cn}, RM/EDF 〉 where each Ci is either
a simple component or another complex component. These
components are scheduled among themselves using either RM
or EDF scheduler.

The term component will be used to refer to both simple
as well as complex components in this paper. The context
should make the meaning clear and we will explicitly make
a distinction wherever necessary. The resource demand of a
real-time component is the collective resource requirements
that the tasks in the component request under the schedul-
ing algorithm of the component. The demand bound func-
tion [23] gives the maximum resource demand of a compo-
nent within a given time interval. Demand bound function
for a component with tasks {T1, · · · , Tn} and using EDF
scheduler is given in Eq. (1). Demand bound function for a
task Ti in a component with tasks {T1, · · · , Tn} and using
RM scheduler is given in Eq. (2) where HP (Ti) represents
a set of tasks in the component having priority higher than
that of Ti.

dbf(t) =
nX

i=1

(�t/pi�ei) (1)

dbfi(t) =
X

Tk∈HP (Ti)

(�t/pk�ek) + ei (2)

A resource model is a model for specifying the timing
properties of a real-time resource. Supply bound function
gives the minimum resource supply that the resource model
is guaranteed to provide within a given time interval. A
resource model R will satisfy the resource demand of a real-
time component C if the maximum resource demand of C
is less than the minimum resource supply of R for any time
interval. In this paper, we consider the periodic resource
model R = (Π,Θ) [23], which guarantees a minimum re-
source supply of Θ units in any time interval consisting of Π
units. This resource supply can be provided in any arbitrary
fashion within the time interval. The supply bound function
sbfR(t) of the periodic resource model R = (Π, Θ) is given

RM

EDF

EDF RM

EDF

dbf (t) ≤ sbfR(t)

CC1

Θ4 = Θ′ + D

Θ′ = Θ1 + Θ2

Θ5 = Θ3 + Θ4

CC2

I1 I2

I3I4

I5

C1 C2

C3

{C1, C2}

{CC1, C3}

Figure 1: Hierarchical Real-Time System with In-
terfaces

in [23] for the time interval length t as

sbfR(t) =

8><
>:

t − (k + 1)(Π − Θ) If t ∈ [(k + 1)Π − 2Θ,

(k + 1)Π − Θ]

(k − 1)Θ Otherwise

(3)
where k = max(1, �(t−(Π−Θ))/Π�). A linear lower bound,
lsbfR(t), for the supply bound function is given in [23] as

lsbfR(t) = Θ/Π[t − 2(Π − Θ)]. (4)

In this paper, we address the compositional schedulability
analysis problem for a hierarchical real-time system. Fig-
ure 1 shows such a hierarchical system. At each level in
the hierarchy, we have a set of real-time components and/or
complex components along with a scheduler for scheduling
them. In Figure 1, CC1 is a complex component composed
from components C1 and C2, and CC2 is a complex compo-
nent consisting of components C3 and CC1. For schedula-
bility analysis, the resource demand of each component will
be abstracted into a component interface such that if the
interface is schedulable then the component is also schedu-
lable. Interface for a complex component will be generated
by composing the interfaces of individual components in the
complex component. Since the components in the hierarchi-
cal system change dynamically, it is desirable to make this
composition associative.

Context switches play an important role in schedulabil-
ity analysis because they consume real-time resources. In
a hierarchical system, context switches can occur at each
level of the hierarchy. In this paper, context switches occur-
ring within a simple component will be called task context
switches and those occurring between components will be
called component context switches. In Figure 1, context
switches occurring within components C1, C2 and C3 are
task context switches and those occurring between compo-
nents C1 and C2 or CC1 and C3 are component context
switches. We assume that the task level context switch
overhead is accounted for in the demand bound functions

274

of simple components. This can be achieved by bounding
the number of preemptions within a component using equa-
tions given in [9]. The compositional schedulability analysis
problem that we address can now be stated as follows.

Problem 1. Given a hierarchical real-time system,

1. Generate interfaces for each real-time component such
that

• schedulability of the interface guarantees schedu-
lability of the component

• interface takes into consideration component con-
text switch overhead

2. Compose interfaces such that

• schedulability of the composed interface guaran-
tees schedulability of the individual interfaces

• composition is associative

3. Minimize the abstracted resource demand for the hi-
erarchical system

3. OVERVIEW OF OUR APPROACH
In this section we give an outline of our approach for gen-

eration and composition of component interfaces.

3.1 Component Interface Generation
A component interface must abstract the resource require-

ments of the component as a resource model. This will hide
the complexity of the task set and the scheduler from higher
level components in the system. If the abstracted resource
model is schedulable then the underlying component is also
schedulable. Schedulability conditions for a component C
and resource model R can be given using demand and sup-
ply bound functions [23, 15]. Let dbf(t) denote the demand
bound function of a component C using EDF scheduler and
lsbfR(t) denote the linear supply bound function of a peri-
odic resource model R = (Π, Θ). Further, let LCM denote
the least common multiple of the periods of all the tasks in
component C. Component C is schedulable using resource
model R if,

∀t ∈ (0, LCM], dbf(t) ≤ lsbfR(t) (5)

Similarly, for a component C using RM scheduler with de-
mand bound function dbfi(t) for each task Ti, C is schedu-
lable using resource model R if,

∀i,∃t ∈ (0, pi], dbfi(t) ≤ lsbfR(t) (6)

We will use linear supply bound function in schedulability
conditions to make the interface generation algorithms de-
scribed later tractable, even though this linearization leads
to only sufficient schedulability conditions. If instead we
used supply bound functions, then the algorithms will be
required to iterate over different values of Θ making them
intractable. The interface generation procedure described
in this paper uses schedulability conditions given in Eqs. (5)
and (6) to compute resource models that guarantee com-
ponent schedulability. We will abstract components as pe-
riodic resource models such that each component interface
will consist of a set of periodic resource models with differ-
ent values for the period. For each period, it will give the
minimum resource capacity required from a periodic model
to guarantee schedulability of the component.

Definition 3 (Component Interface). An interface
for a real-time component C is defined as,

I ={(Π, Θ)|1 ≤ Π ≤ P ∗}
such that ∀(R = (Π,Θ)) ∈ I, lsbfR(t) satisfies schedulabil-
ity conditions given by Eq. (5) or (6) where demand bound
function is given by Eq. (1) or (2). P ∗ is the system de-
signer defined upper bound for the period of resource models
in component interfaces.

In this paper we assume that for values of Π greater
than P ∗, the periodic resource model in I is either (Π, Π) if
(P ∗, Θ) ∈ I satisfies Θ ≤ P ∗ or (Π,Π + 1) otherwise. Pe-
riodic resource models in interfaces are assumed to have at
least 100% utilization for period values greater than P ∗. In
this paper we also assume that P ∗ = LCM for simple com-
ponents and have shown in our technical report [8] that such
interfaces are good approximations under certain reasonable
assumptions.

3.2 Compact Interface Representation
Under assumptions stated in Section 3.1, the size of an

interface given by Definition 3 will be O(P ∗). In order to
reduce the space requirements for an interface, we give below
a compact representation that uses schedulability conditions
given by Eqs. (5) and (6).

Definition 4 (Compact Interface Representation).
Compact interface representation for a component C is given
as,

RI = {RIj = 〈Π, tj , dbf(tj)〉|jmin ≤ Π ≤ jmax, 1 ≤ j ≤ k}
where, 1min = 1, kmax = P ∗ and ∀j, jmin = (j − 1)max + 1.

For a range of values of period Π, the compact representa-
tion gives a value for time instant and a value for the demand
bound at that time instant. The resource capacities of pe-
riodic resource models for this range of period values can
be obtained by substituting the time instant and demand
bound function values in Eq. (5) or (6). Converting a com-
pact interface representation RI to a component interface
I then involves computing the resource capacities Θ for all
values of the period from 1 to P ∗. For example, a single in-
terface representation 〈[1, P ∗], 75, 9〉 is sufficient to compute
the entire component interface as given by Definition 3. For
each value of period in the interval [1, P ∗], the correspond-
ing periodic resource model for component interface can be
computed by substituting the values t = 75 and dbf(t) = 9
in Eq. (5) for EDF scheduler or in Eq. (6) for RM scheduler.

3.3 Interface Composition
Interface composition aims to compose a set of interfaces

representing a set of lower level components into a single in-
terface for the complex component. This interface must ac-
count for the context switch overhead incurred by the com-
plex component and also satisfy schedulability conditions.
Interface composition will be associative if the same in-
terface is generated for a complex component, irrespective
of the order in which components are added to the com-
plex component. Consider a situation where some under-
lying simple component is modified leading to a change in
the workload of the complex component. If composition is
associative then the new interface for the complex compo-
nent can be directly computed using the old interface of

275

the complex component as well as old and new interfaces
of the modified simple component. Associativity is essen-
tial for efficient schedulability analysis of systems in which
components are added and deleted from the system dynam-
ically. One way to compose interfaces maintaining associa-
tivity would be to add the corresponding minimum resource
demand for each resource period. Schedulability of the com-
posed interface then guarantees schedulability of each of the
individual interfaces. Since the result of this composition is
another interface, this technique can be applied iteratively.
After each composition, the composed interface will be mod-
ified to account for the context switch overhead incurred by
it when scheduled with other interfaces in the system.

As shown in Figure 1, component C1 is abstracted as in-
terface I1, C2 as I2 and C3 as I3. Component CC1 comprises
of components C1 and C2. Hence interface I4 is generated
by addition of interfaces I1 and I2 along with component
context switch overhead D. For period values greater than
P ∗, the periodic models in interface I4 are assumed to be
equal to (Π,Π + 1).

I4 ={(Π, Θ1 + Θ2 + D)|(Π, Θ1) ∈ I1, (Π, Θ2) ∈ I2,

1 ≤ Π ≤ P ∗}
[

{(Π, Π + 1)|Π > P ∗}

3.4 Resource Demand Minimization
Once a single interface is generated for the top-level com-

ponent in the hierarchical system, the top-level component
will pick one value for the resource period which will be used
by all the interfaces in the system. Our composition tech-
nique dictates that in order for the analysis to be correct,
all the interfaces in the system must use the same resource
period. This value is picked such that the corresponding
periodic model in the interface at the topmost level has the
least resource demand as compared to other periodic models
in that interface. This periodic resource model will then be
exported to the operating system for scheduling purposes.
The periodic models for each of the components in the sys-
tem can then be obtained from their corresponding inter-
faces using the same value for period. Using a single value
for the period means that all the interfaces at any level in the
system have the same priority under RM or EDF scheduler.
We assume that the scheduler at any level will assign arbi-
trary priorities to the interfaces at that level in each period
of execution.

As shown in Figure 1, interfaces I3 and I4 are composed
to generate interface I5. Since there is only one interface
at this level (topmost level), no component context switch
overhead is added to I5. The entire system is schedulable
if there exists some (Π, Θ) in interface I5 such that Θ ≤ Π.
The system can then select a value for Π that minimizes the
resource demand (least Θ/Π) for interface I5.

4. SUPPLY BOUND FUNCTION WITH
CONTEXT SWITCH OVERHEAD

Component level context switch overhead depends on the
period of the resource model chosen for the component in-
terface. A smaller period will, in general, result in a larger
number of context switches. We would like to select a re-
source period that minimizes both the context switch over-
head as well as the resource demand. For this reason, we
would like to account for context switch overheads in the
interface resource demand itself. In this section we will de-

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

C1 C1

C2C2

Context switch overhead D

C2

C1

0 Π 2Π

Figure 2: Component Level Context Switch Over-
head

rive a supply bound function for periodic resource models
that accounts for this context switch overhead. This supply
bound function will be used in schedulability conditions that
will be used for generation of component interfaces.

Since context switching will use some resource capacity,
given the linear supply bound function in Eq. (4), the ac-
tual supply that will be available to the component in any
time interval of length Π will be less than Θ. Let D denote
an upper bound on the overhead associated with each con-
text switch as shown in Figure 2. We assume without loss
of generality that this overhead is incurred by the compo-
nent at the end of its execution. Since the periods of all
the interfaces in the hierarchical system will be fixed to one
value by the top-level component, interfaces will have the
same priority under both RM and EDF scheduler. We as-
sume that all the interfaces at any level in the system will be
assigned arbitrary priorities by the scheduler at that level,
within each period of execution. The supply bound function
must then account for one context switch overhead in every
time interval of length Π. Since every component executes
exactly once (begins execution only if it is the highest pri-
ority component among all components that have not yet
executed) in each period, there will be exactly one context
switch associated with that component. If Θ is the resource
supplied, (Θ − D) will be the actual resource available to
the component. Also, the worst case delay in the supply of
this resource will be at most 2(Π − Θ + D).

Definition 5. Let D be the execution overhead associ-
ated with every component context switch. Linear supply
bound function with context switch overhead is,

lsbfR(t) = (Θ − D)/Π[t − 2(Π − (Θ − D))] (7)

Schedulability conditions stated in Eqs. (5) and (6) can be
modified to account for component context switching over-
head by using the linear supply bound function given in
Eq. (7).

5. INTERFACE GENERATION FOR COM-
PONENTS WITH EDF SCHEDULER

In this section we give an algorithm to generate an inter-
face for components that use EDF scheduler. The algorithm
uses the schedulability condition given in Eq. (5) to generate
a periodic resource set over varying resource periods repre-
senting the component interface. The algorithm generates
a compact representation for this interface which is then
exported to higher levels for composition.

5.1 Interface Generation Algorithm
Algorithm 1 takes as input a real-time component C using

EDF scheduler and outputs a compact interface representa-
tion RI for C that satisfies schedulability condition given in

276

t
p

lsbfR1(t)

lsbfR2(t)

pmin LCM

Candidate points for list X

2(Π − Θ1 + D)
2(Π − Θ2 + D)

ldbf(t)
dbf (t)

Figure 3: Schedulability Condition under EDF

Eq. (5). Computation of Θ+ in line 1 of Algorithm 1 can be
done in time O(LCM) because we only need to look at time
instants at which some task has its deadline. These are time
instants at which lsbfR(t) can intersect dbf(t) guarantee-
ing schedulability. As shown in Figure 3 the linear demand
bound function ldbf(t) intersects with the demand bound
function dbf(t) at t = LCM . Since any linear supply bound
function lsbfR(t) must always be greater than dbf(t) to en-
sure schedulability, optimal lsbfR(t) must intersect dbf(t)
at some point earlier than or equal to t = LCM . If it does
not intersect dbf(t), then lsbfR(t) will not be optimal and Θ
can be decreased further. As shown in Figure 3, for period
Π, lsbfR1(t) is the optimal supply bound function for the
demand bound function dbf(t).

Algorithm 1 initially finds a point p of intersection be-
tween dbf(t) and optimal lsbfR(t) for Π = 1. It then deter-
mines candidate points of intersection between dbf(t) and
lsbfR(t) for higher values of Π using procedure Relevant-
PointsEDF(X) (line 7). Procedure RelevantPointsEDF(X)
given in Algorithm 2 takes as input a list X consisting of
a single time instant representing intersection of optimal
lsbfR(t) with dbf(t) for period value 1. List Q in proce-
dure RelevantPointsEDF(X) only consists of time instants
at which some task has its deadline. Assuming (Π−Θ+D)
is a non-decreasing function of Π for optimal Θ, we can
show that the point of intersection of lsbfR(t) with the time
axis is non-decreasing. Further, if optimal lsbfR(t) for pe-
riod Π intersects dbf(t) at some point t1, then we can show
that optimal lsbfR(t) for period (Π+1) will intersect dbf(t)
either at t1 or at a point on dbf(t) which is smaller than
t1 and has the least slope with t1. Procedure Relevant-
PointsEDF(X) updates list X with such a sequence of rele-
vant time instants. Due to lack of space, the proof of correct-
ness of Algorithm 1 is given in the technical report [8]. Run-
ning time of Algorithm 1 is O(LCM)+O(LCM ln LCM) =
O(LCM ln LCM) where procedure RelevantPointsEDF(X)
runs in time O(LCM ln LCM).

Example 1. Let component C1 in Figure 1 consist of three
tasks T1 = (45, 2), T2 = (65, 3) and T3 = (85, 4) and com-
ponent C3 in Figure 1 consist of two tasks T1 = (45, 1) and
T2 = (75, 2). Interface I1 for component C1 and I3 for C3

are plotted in Figure 4 for values of period between 1 and 30.
Compact representations for interfaces I1 and I3 generated

Algorithm 1 Interface Generation under EDF Scheduler

1: Solve Θ+ = maxΘ[∀t ∈ (0, LCM]{ Eq. (5) }] with Π = 1

2: if Θ is maximized at t = pmin = mini{pi} then
3: Set RI = {RI1 = 〈Π, pmin, dbf(pmin)〉|(1 = 1min) ≤

Π ≤ (1max = LCM)}
4: Terminate
5: else
6: Initialize list X with p where Θ is maximized at t = p
7: Perform RelevantPointsEDF (X)
8: Initialize j = 1, Z = 1
9: for Π = 2 to LCM do

10: if X has only one element then
11: RI = RI

S{RIj = 〈Π′, t, dbf(t)〉|jmin =
Z, jmax = LCM} where t is first element in X

12: Terminate
13: else
14: Solve Eq. (5) to compute Θ1 with t equal to first

element in X
15: Solve Eq. (5) to compute Θ2 with t equal to the

next element in X
16: if Θ2 > Θ1 then
17: RI = RI

S{RIj = 〈Π′, t, dbf(t)〉|jmin =
Z, jmax = (Π − 1)} where t is first element in
X

18: Update Z = Π, j = j + 1
19: Remove the first element of X
20: end if
21: end if
22: if Π = LCM then
23: RI = RI

S{RIj = 〈Π′, t, dbf(t)〉|jmin =
Z, jmax = LCM} where t is first element in X

24: end if
25: end for
26: end if

Algorithm 2 RelevantPointsEDF (X)

1: Initialize t′ to the first element of X, s′ to 0
2: Let Q be a list of tuples 〈t, s〉 where t is a point on the

time axis and s is the slope of a line segment connecting
dbf(t) to dbf(t′) such that t < t′

3: Sort Q such that the resulting list has non-decreasing
slope

4: for Each element 〈t, s〉 of Q taken in sorted order do
5: if t < t′ and s > s′ then
6: Append t to X
7: Update s′ = s, t′ = t
8: end if
9: end for

277

using Algorithm 1 are given in Table 1. The size of these
compact representations is much smaller than the LCM of
the periods of tasks in the components.

Given a period value, say Π = 10, the optimum resource
capacities for the interfaces can be computed using the com-
pact representations given in Table 1 and schedulability con-
dition given in Eq. (5). For interface I1, substituting Π =
10, t = 90 and dbf(t) = 11 in Eq. (5) gives a resource ca-
pacity of Θ = 1.607. Similarly, for interface I3, putting
Π = 10, t = 90 and dbf(t) = 4 in Eq. (5) gives a resource
capacity of Θ = 0.662.

Interface I1 Interface I3

Π t dbf(t) Π t dbf(t)

[1,1] 9945 1369 [1,1] 675 33
[2,4] 2210 304 [2,6] 225 11
[5, 6] 270 117 [7,16] 90 4
[7,21] 90 11 [17,∞] 45 1
[22,∞] 45 2

Table 1: Representation for Interfaces I1 and I3

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

In
te

rf
ac

e
U

til
iz

at
io

n

Interface Period

Interfaces

I5
I4
I2
I1
I3

Figure 4: Interface Plots: Period vs. Utilization

6. INTERFACE GENERATION FOR COM-
PONENTS WITH RM SCHEDULER

In this section we describe algorithms to generate an in-
terface for a real-time component that uses RM scheduler.
Schedulability conditions given in Eq. (6) are used by the
algorithm to generate the interface. We will first give an
algorithm to generate interfaces for each task in the compo-
nent separately. We later show how to combine interfaces
of individual tasks to generate an interface for the entire
component.

6.1 Interface Generation for a Single Task
Algorithm 3 computes interface RIki for a task Ti in

component Ck that uses RM scheduler. In line 1 of Algo-
rithm 3 we take the minimum value of Θ because that gives
a periodic resource model which minimizes the resource de-
mand for task Ti. Schedulability condition for task Ti re-
quires that the linear supply bound function lsbfR(t) in-
tersect the demand bound function dbfi(t) at some point

within (0, pi]. For each period Π, Algorithm 3 computes
the minimal Θ that guarantees schedulability of the compo-
nent. As shown in Figure 5, lsbfR1(t) is the optimal sup-
ply bound function for dbfi(t) with period Π. Procedure
RelevantPointsRM(X) in line 7 of Algorithm 3 is similar
to Algorithm 2 given in Section 5.1 with the condition in
line 5 replaced with [(t > t′) ∧ (s > s′)]. Also, list Q only
contains time instants t such that some task is released at
instant t + δ for a very small fixed δ as shown in Figure 5
and p < t ≤ pi where p is the first element in X. These
are time instants at which the resource demand for the in-
terface can be minimized still guaranteeing schedulability of
the component. If t1 represents a time instant where optimal
lsbfR(t) for period Π intersects dbfi(t), then we can show
that the optimal lsbfR(t) for period (Π + 1) will intersect
dbfi(t) either at t1 or at a point greater than t1 and hav-
ing least slope with t1. Procedure RelevantPointsRM(X)
computes such a list of relevant time instants and stores it
in X. Procedure RelevantPointsRM(X) can be executed in
time O(pi ln pi) giving an overall running time of O(pi) +
O(pi ln pi)+O(LCM) to Algorithm 3. Correctness of Algo-
rithm 3 has been proved in [8].

Algorithm 3 Interface Generation under RM Scheduler

1: Solve Θ− = minΘ[∀t ∈ (0, pi]{ Eq.6 }] with Π = 1
2: if Θ is minimized at t = pi then
3: Set RIki = {RI1

ki
= 〈Π, pi, dbfi(pi)〉|(1 = 1min) ≤

Π ≤ (1max = LCM)}
4: Terminate
5: else
6: Initialize list X with p where Θ is minimized at t = p
7: Perform RelevantPointsRM(X)
8: Initialize j = 1, Z = 1
9: for Π = 2 to LCM do

10: if X has only one element then
11: RIki = RIki

S{RIj
ki

= 〈Π′, t, dbfi(t)〉|jmin =

Z, jmax = LCM} where t is first element in X
12: Terminate
13: else
14: Solve Eq. (6) to compute Θ1 with t equal to first

element in X
15: Solve Eq. (6) to compute Θ2 with t equal to next

element in X
16: if Θ2 < Θ1 then
17: RIki = RIki

S{RIj
ki

= 〈Π′, t, dbfi(t)〉|jmin =

Z, jmax = (Π − 1)} where t is first element in
X

18: Update Z = Π, j = j + 1
19: Remove the first element in X
20: end if
21: end if
22: if Π = LCM then
23: RIki = RIki

S{RIj
ki

= 〈Π′, t, dbfi(t)〉|jmin =

Z, jmax = LCM} where t is first element in X
24: end if
25: end for
26: end if

As a passing note, Algorithm 3 can also be used to com-
pute the optimal CPU execution frequency for a task set
under RM scheduler. Optimal execution frequency is the
minimum execution frequency of the CPU that guarantees

278

t
pip

Candidate Points for list X

lsbfR1(t)

lsbfR2(t)

2(Π − Θ1 + D)
2(Π − Θ2 + D)

dbfi(t)

Figure 5: Schedulability Condition under RM

schedulability of the component. This problem has already
been solved for components that use EDF scheduler [3, 2]
or RM scheduler [21]. Our algorithm provides an alternate
solution to this problem, details of which can be obtained
from our technical report [8].

6.2 Combining Task Interfaces to Generate
Component Interface

Let RIk1 , · · · , RIkn denote interface representations for
tasks T1, · · · , Tn respectively generated by Algorithm 3 and
let Ik1 , · · · , Ikn denote the corresponding task interfaces. In
this section we describe a procedure for combining these in-
terfaces to generate an interface Ik for component Ck that
satisfies the schedulability condition for the component. Let
GiveTheta(Iki , Π) return the value of Θ such that (Π, Θ) ∈
Iki . Also, let GiveModel(Iki , Π) return the periodic re-
source model (Π, Θ) such that (Π,Θ) ∈ Iki . Algorithm 4
generates the component interface Ik for component Ck given
task interfaces Ik1 , · · · , Ikn . For each period Π, Algorithm 4
computes the maximum required resource supply from among
interfaces of all the tasks in the component. This is the min-
imum resource supply that must be provided by a periodic
resource with period Π to satisfy schedulability condition of
component Ck.

Algorithm 4 Composing Task Interfaces into a Component
Interface
1: for Π = 1 to LCM do
2: Compute l = arg maxi(GiveTheta(Iki , Π))
3: Ik = Ik

S{GiveModel(Ikl
, Π)}

4: RIk = RIk

S{〈Π, t, dbf(t)〉 ∈ RIj
kl
|jmin ≤ Π ≤ jmax}

5: end for
6: Ik = Ik

S{(Π, Π + 1)|Π > LCM}

Example 2. Let component C2 in Figure 1 consist of three
tasks T1 = {35000, 2000}, T2 = {55000, 3000} and T3 =
{75000, 4000}. Its interface I2 for period values between
1 and 30 is given in Figure 4 and the compact represen-
tation for I2 generated using Algorithm 3 is given in Ta-
ble 2. Again, the size of the compact representation is much
smaller than the LCM of component.

Given a period value, say Π = 10, the corresponding re-
source capacity for interface I2 can be computed by substi-

tuting the values Π = 10, t = 70000 and dbf(t) = 14000
from Table 2 in Eq. (6). Then, Θ = 2.0004 is the optimum
resource capacity for interface I2 with period Π = 10.

Interface I2

Π t dbf(t)

[1,22192] 70000 14000
[22193,∞] 35000 2000

Table 2: Representation for Interface I2

7. INTERFACE COMPOSITION
Interface generated from a simple component already ac-

counts for the context switch overhead incurred by that com-
ponent. Hence these interfaces can be composed directly.
But, as will be seen later in this section, interfaces gener-
ated by composing other interfaces do not account for the
context switch overhead. In this section we will first describe
interface composition that guarantees schedulability and is
associative. We will then show how to modify a composed
interface so that it accounts for the context switch overhead
incurred by that complex component.

7.1 Associative Composition
As described in Section 3, we compose interfaces by sim-

ply adding the individual resource demands for each value
of period. Since addition is an associative operation, this
technique will make the composition associative.

Definition 6 (Composed Interface). Let I1, · · · , In

denote a set of interfaces for the components of a com-
plex component CC with LCM1, · · · , LCMn denoting the
least common multiples of the corresponding task periods.
Let P ∗ for the composed interface be either LCMmin =
min{LCM1, · · · , LCMn} or U × p for some p > 1 where
U is the utilization of component CC. Composed interface
I is given by,

I ={(Π,

nX
i=1

Θi)|Π ∈ [1, P ∗]}
[

{(Π, Π + 1)|Π > P ∗}

where ∀1 ≤ i ≤ n, (Π, Θi) ∈ Ii

Interface composition can be repeated at each level of the
hierarchical system which will result in a single interface at
the topmost level. Composition and interface guarantees at
each level then ensure that the entire system is schedula-
ble if the interface at the topmost level is schedulable. An
interface I is schedulable if and only if,

∃Π ≥ 1, (Θ, Π) ∈ I and Θ ≤ Π (8)

If the interface at the topmost level is schedulable, then
the top-level component will pick a value Π∗ for period Π
that minimizes the resource demand (Θ/Π) of the system.
Every component in the system will then receive a resource
supply corresponding to the periodic resource model for pe-
riod Π∗ given in the interface for that component.

279

2(Π − Θ)
2(Π − Θ + D)

t

Slope = Θ/Π

Slope = (Θ − D)/Π

lsbfR1=(Π,Θ)(t)

lsbfR2=(Π,Θ−D)(t)

Figure 6: Supply Functions with Context Switch
Overhead

7.2 Interface Modification for Context Switch
Overhead

The schedulability condition used to generate an inter-
face for a simple component uses linear supply bound func-
tion given in Eq. (7). Hence interfaces generated for sim-
ple components using Algorithm 1 or Algorithm 3 account
for the context switch overhead incurred by those compo-
nents. But interfaces composed from other interfaces using
resource capacity addition as described in Section 7.1 do not
account for this overhead. Consider a higher level compo-
nent providing a minimum supply of resource to an interface
composed as in Section 7.1. Since a portion of this supply
will be required for context switching, the interface will not
be schedulable with this minimum supply. This scenario
is shown in Figure 6 where lsbfR1=(Π,Θ)(t) is the supply
provided by a higher level interface and the actual supply
available after discounting the context switch overhead D
is lsbfR2=(Π,Θ−D)(t). This means that if the supply bound
function of the composed interface (interface generated in
Section 7.1) for a specific period is lsbf(Π,Θ−D)(t), then the
supply bound function of the exported interface (component
interface that will be exported to higher levels) for the same
period must be lsbf(Π,Θ)(t).

Definition 7 (Schedulability Condition). A com-
posed interface is schedulable by an exported interface if and
only if for each period Π,

∀t ∈ (0, Π], (Θ−D)/Π(t−2(Π−Θ+D)) ≥ Θ′/Π(t−2(Π−Θ′))
(9)

where lsbfCI(t) = Θ′/Π(t − 2(Π − Θ′)) is the linear supply
bound function of the composed interface and lsbfEI(t) =
Θ/Π(t−2(Π−Θ)) is the linear supply bound function of the
exported interface.

Setting Θ = Θ′ + D satisfies Eq. (9) exactly. Thus given
a composed interface, we can generate an exported interface
by adding the context switch overhead D to the minimum
resource demand for each value of period.

In Figure 4, interface I4 is obtained by composing inter-
faces I1 and I2 with context switch overhead D = 0.1 and
interface I5 is obtained by composing interfaces I4 and I3.
The minimum resource demand for the composed interface
I5 occurs when period Π = 8 as shown in Figure 4. The
corresponding utilization value is 0.435 and is shown in Ta-
ble 3.

8. COMPARISON TO EARLIER WORK
The interface generated at the topmost level of a hierar-

chical system is used by the top-level component to choose a
period for the periodic resource model such that the result-
ing model has the least resource demand among all mod-
els in that interface. This resource model is then used for
scheduling the lower level interfaces and components. The
same period is also used to determine the periodic resource
models to be used for scheduling all other components in
the system. This is in contrast to the compositional frame-
work developed by Shin and Lee [23] in which each real-time
component itself chooses the period for its periodic resource
abstraction. Since the periods of resource abstractions are
chosen independently, they are all not necessarily the same.
Hence to compose these abstractions, their supply bound
functions are first transformed to suitable demand bound
functions by treating each periodic abstraction (Π,Θ) as a
periodic task with period Π and worst case execution time
Θ. Schedulability conditions are then used to generate a
periodic resource abstraction for the demand bound func-
tions. This results in the composition being not associative
and also induces an overhead in the composed abstraction
due to transformation of supply bound functions to demand
bound functions.

Example 3. Let I ′
1, I

′
2, I

′
3, I

′
4 and I ′

5 denote interfaces gen-
erated by the compositional framework in [23] correspond-
ing to interfaces I1, I2, I3, I4 and I5 in Figure 1. We assume
that each component determines its interface period such
that resource demand is minimized locally. Then from Fig-
ure 4, I ′

1 = (6, 0.932), I ′
2 = (148, 29.8) and I ′

3 = (9, 0.593).
Using schedulability conditions given in [23], interface I ′

4 =
(4, 1.563) and I ′

5 = (2, 1.100). If we compose all three in-
terfaces I ′

1, I
′
2 and I ′

3 at a time, like I ′′
5 = I ′

1||I ′
2||I ′

3, then
I ′′
5 = (5, 2.248). As shown in Table 3, in both cases, the

minimum resource demand generated is greater than the
minimum resource demand of interface I5 generated by our
approach.

The single period restriction can force a component in-
terface to use a much smaller period than required, thereby
increasing its context switching overhead. As shown in Ta-
ble 3, interface I2 will be forced to use a period value of 8
even though component C2 can be scheduled using an in-
terface with a much larger period. This can increase the
number of context switches incurred by component C2, as
compared to when it is abstracted using the approach given
in [23]. Our on-going work aims to compare the increase in
context switching overhead as a result of the single period
restriction versus the decrease in collective resource demand
as a result of the associative composition.

9. CONCLUSION
In this paper we have described algorithms for abstracting

components that use RM or EDF as the real-time scheduler.
The algorithms run in time polynomial in the least common
multiple of the periods of tasks in the component and gener-
ate efficient interfaces in practice. Interfaces account for task
level context switching overhead incurred by the component
and represent the resource requirements as periodic resource
models. Each interface is represented as a set of periodic
resource models for different values of period. This repre-
sentation makes it possible to determine a periodic model

280

Π Θ Θ/Π
I5 = (I1||I2)||I3 8 3.4808 0.435

I ′
1 6 0.932 0.155

I ′
2 148 29.8 0.201

I ′
3 9 0.593 0.066

I ′
4 = I ′

1||′I ′
2 4 1.563 0.391

I ′
5 = I ′

3||′I ′
4 2 1.100 0.550

I ′′
5 = I ′

1||′I ′
2||′I ′

3 5 2.248 0.450

Table 3: Interface Models with Minimum Utilization

that minimizes the resource demand of the interface among
all periodic models in that interface. Interface composition
is achieved by addition of resource demands of individual
interfaces. This composition takes into consideration the
component context switch overhead incurred by the system.
The composition is associative thereby simplifying analysis
of systems with dynamically changing components.

In order to make the composition associative, periodic re-
source models with the same period are selected for all the
interfaces in the system. It is an open problem whether in-
cremental schedulability analysis can be achieved using in-
terfaces represented as periodic resource models with vary-
ing period values.

10. ACKNOWLEDGMENTS
The authors would like to thank all the anonymous re-

viewers for their valuable inputs.

11. REFERENCES
[1] L. Almeida and P. Pedreiras. Scheduling within temporal

partitions: response-time analysis and server design. In Proc.
of the Fourth ACM International Conference on Embedded
Software, September 2004.

[2] H. Aydin, R. Melhem, D. Mosse, and P.M. Alvarez.
Power-aware scheduling for periodic real-time tasks. IEEE
Transactions on Computers, 53(5):584–600, 2004.

[3] Hakan Aydin, Rami Melhem, Daniel Mosse, and Pedro
Mejia-Alvarez. Determining optimal processor speeds for
periodic real-time tasks with different power characteristics. In
13th Euromicro Conference on Real-Time Systems
(ECRTS’01), page 225, 2001.

[4] R. I. Davis and A. Burns. Hierarchical fixed priority
pre-emptive scheduling. In Proc. of IEEE Real-Time Systems
Symposium, December 2005.

[5] L. de Alfaro and T. A. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on Foundations
of Software Engineering. ACM Press, 2001.

[6] L. de Alfaro and T. A. Henzinger. Interface theories for
component-based design. In Proceedings of the First
International Workshop on Embedded Software, pages pp.
148–165. Lecture Notes in Computer Science 2211,
Springer-Verlag, 2001.

[7] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in
an open environment. In Proc. of IEEE Real-Time Systems
Symposium, pages 308–319, December 1997.

[8] Arvind Easwaran, Insik Shin, Insup Lee, and Oleg Sokolsky.
Associative composition of hierarchical real-time systems.
Technical Report MS–CIS–06–06, University of Pennsylvania,
2006.

[9] Arvind Easwaran, Insik Shin, Insup Lee, and Oleg Sokolsky.
Bounding preemptions under EDF and RM schedulers.
Technical Report MS–CIS–06–07, University of Pennsylvania,
2006.

[10] X. Feng and A. Mok. A model of hierarchical real-time virtual
resources. In Proc. of IEEE Real-Time Systems Symposium,
pages 26–35, December 2002.

[11] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A
time-triggered language for embedded programming.
Proceedings of IEEE, 91:84–99, 2003.

[12] T. A. Henzinger and S. Matic. An interface algebra for
real-time components. In Proc. of IEEE Real-Time
Technology and Applications Symposium, pages 253–263,
April 2006.

[13] T.-W. Kuo and C.H. Li. A fixed-priority-driven open
environment for real-time applications. In Proc. of IEEE
Real-Time Systems Symposium, pages 256–267, December
1999.

[14] G. Lipari and S. Baruah. Efficient scheduling of real-time
multi-task applications in dynamic systems. In Proc. of IEEE
Real-Time Technology and Applications Symposium, pages
166–175, May 2000.

[15] G. Lipari and E. Bini. Resource partitioning among real-time
applications. In Proc. of Euromicro Conference on Real-Time
Systems, July 2003.

[16] G. Lipari, J. Carpenter, and S. Baruah. A framework for
achieving inter-application isolation in multiprogrammed
hard-real-time environments. In Proc. of IEEE Real-Time
Systems Symposium, December 2000.

[17] C.L. Liu and J.W. Layland. Scheduling algorithms for
multi-programming in a hard-real-time environment. Journal
of the ACM, 20(1):46 – 61, 1973.

[18] Mathworks. Models with multiple sample rates. In Real-Time
Workshop User Guide, pages 1–34, The MathWorks Inc, 2005.

[19] S. Matic and T. A. Henzinger. Trading end-to-end latency for
composability. In Proc. of IEEE Real-Time Systems
Symposium, pages 99–110, December 2005.

[20] A. Mok, X. Feng, and D. Chen. Resource partition for
real-time systems. In Proc. of IEEE Real-Time Technology
and Applications Symposium, pages 75–84, May 2001.

[21] S. Saewong and R. Rajkumar. Practical voltage-scaling for
fixed-priority RT-systems. In Proc. of IEEE Real-Time
Technology and Applications Symposium, pages 106–115, May
2003.

[22] S. Saewong, R. Rajkumar, J.P. Lehoczky, and M.H. Klein.
Analysis of hierarchical fixed-priority scheduling. In Proc. of
Euromicro Conference on Real-Time Systems, June 2002.

[23] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. In Proc. of IEEE Real-Time Systems
Symposium, pages 2–13, December 2003.

[24] I. Shin and I. Lee. Compositional real-time scheduling
framework. In Proc. of IEEE Real-Time Systems Symposium,
December 2004.

[25] E. Wandeler and L. Thiele. Real-time interface for
interface-based design of real-time systems with fixed priority
scheduling. In Proceedings of the 5th ACM International
Conference on Embedded Software (EMSOFT ’05), pages
80–89, October 2005.

[26] E. Wandeler and L. Thiele. Interface-based design of real-time
systems with hierarchical scheduling. In Proc. of IEEE
Real-Time Technology and Applications Symposium, pages
243–252, April 2006.

281

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

