
Application-specific Workload Shaping in
Multimedia-enabled Personal Mobile Devices

Balaji Raman Samarjit Chakraborty
Department of Computer Science, National University of Singapore

E-mail: {ramanbal,samarjit}@comp.nus.edu.sg

ABSTRACT
Today, most personal mobile devices (e.g. cell phones and
PDAs) are multimedia-enabled and support a variety of con-
currently running applications such as audio/video players,
word processors and web browsers. Media-processing ap-
plications are often computationally expensive and most of
these devices typically have 100 – 400 MHz processors. As a
result, the user-perceived application response times are of-
ten poor when multiple applications are concurrently fired.
In this paper we show that by using application-specific dy-
namic buffering techniques, the workload of these applica-
tions can be suitably “shaped” to fit the available processor
bandwidth. Our techniques are analogous to traffic shaping
which is widely used in communication networks to opti-
mally utilize network bandwidth. Such shaping techniques
have recently attracted a lot of attention in the context of
embedded systems design (e.g. for dynamic voltage scaling).
However, they have not been exploited for enhanced schedu-
lability of multiple applications, as we do in this paper.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and application-based systems—Real-time and embedded sys-
tems

General Terms
Algorithms, Performance, Design

Keywords
Multimedia systems, schedulability analysis, mobile devices

1. INTRODUCTION
The last few years have seen a huge proliferation of per-

sonal mobile devices such as PDAs, cell phones, portable
audio/video players and gaming devices. Many of these de-
vices now support multiple functionalities, have an operat-
ing system running on them and allow multiple applications
to be run concurrently. For example, a common use scenario
for a PDA is to play an audio or a video clip, and at the
same time use a Datebook application. These applications
often exhibit poor response times when run on the 100 –
400 MHz processors found in most personal mobile devices.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

Figure 1: Setup for dynamic workload shaping.

Clearly, this problem will become more acute as the user de-
mand increases in terms of the number of applications being
concurrently run, they becoming increasingly rich in graph-
ics/animation and the increasing use of audio/video content
in mobile devices.

Although a lot of existing work from the processor schedul-
ing domain (especially in the context of multimedia appli-
cations) addresses this problem, in this paper we look at it
from a different perspective. We show that by using dynamic
buffering techniques, the workload of different concurrently
running applications can be appropriately shaped to fit the
available processor bandwidth. Although buffering is a well-
established technique to smooth out the variabilities associ-
ated with continuous media streams, it has predominantly
been used in the context of streaming media (i.e. when the
audio/video data is downloaded from the network before be-
ing processed). To ensure continuous playout, the buffering
time or playout delay in such cases is determined based on
the network conditions.

However, much less importance is attached to buffering in
the case of stored media. Here, the playout delay is typi-
cally very small and is chosen in an ad hoc fashion, without
taking into account the characteristics of the application or
the media stream being processed. More importantly, the
playout delay is chosen independently of the other tasks run-
ning on the processor. Further, current processor scheduling
techniques do not exploit buffering as a means for shaping
the workload associated with the tasks being scheduled. We
show that by appropriately addressing these three issues, the
schedulability of multiple concurrently running tasks can be
substantially enhanced.

Our contribution: Towards this, we present a mathemat-
ical model that can be used to analyze applications process-
ing continuous media streams, and setups where such appli-
cations concurrently run with other applications processing
more static input data. More specifically, we show that the
choice of the playout delay has a significant impact on the
workload generated by such applications. Given the avail-
able processor bandwidth, our model can be used to calcu-
late the minimum playout delay using which an application

4

may be supported by this available bandwidth. We also
show that the buffer fill level can be dynamically changed
at runtime to periodically free up sufficient processor band-
width to support other concurrently running applications.
The parameters of such dynamic scheduling and buffer man-
agement policies are application specific and can be calcu-
lated using our model. Determining these parameters by
trial and error and repeatedly validating them using simu-
lation is expensive in terms of the simulation time involved
and is also highly error prone. On the other hand, our model
requires each application to be simulated only once, and in
isolation, using representative input data (or audio/video
clips) to determine the values of certain parameters char-
acterizing the application. These parameters then serve as
input to our mathematical model and are used to determine
scheduling and buffer management policies when multiple
applications run concurrently. Simulating the execution of
each application in isolation is considerably easier than a full
system simulation where multiple applications run together
and get preempted by the scheduler.

Relation to previous work: The basic idea we exploit
in this paper is similar to traffic shaping, which is a well-
established technique in the communication networks do-
main [1, 5, 6]. A traffic shaper is used to buffer network
packets from an incoming packet stream and delay them
so that the outgoing stream from the shaper conforms to
a pre-defined traffic specification. Such shaping is used to
smooth out the burstiness in the packet stream, thereby pre-
venting such burstiness to accumulate as the stream passes
from one network node to the next. This results in improved
network bandwidth utilization and reduces global buffer re-
quirements. We, on the other hand, exploit buffering to
smooth out the variabilities in the execution requirements
of media processing applications. The aim is to shape the
workload arising from such applications, so that it can be
served at an “average” rate by appropriately choosing the
initial playout delay or buffering time. Further, we dynami-
cally change the amount of buffering associated with a run-
ning application to free up sufficient processor bandwidth in
response to new tasks fired by an user. The novelty of our
work stems from the analogy we establish between our rep-
resentation of the variability in the execution requirements
of an application, and existing models for quantifying bursti-
ness in network traffic.

Recently shaping techniques have also attracted a lot of
interest within the embedded systems domain. Shaping has
been used as a means for aggregating the workload of media-
processing applications (e.g. video decoders) to create idle
periods. Such idle periods are then exploited to shut-off a
processor or scale down its operating voltage/frequency to
save power (see [2, 3, 9, 11] for applications of this scheme
in different setups). Very recently, shaping has also been
used in the particular context of designing multi-processor
System-on-Chip (SoC) architectures. It has been shown that
shaping on-chip traffic leads to reduced on-chip global buffer
requirements and improves overall system performance and
predictability [8, 14]. Similar techniques have also been
shown to be useful when applied to Networks-on-Chip (NoC)
architectures, where again they result in improved worst-
case response times and global buffer requirements (which
in turn lead to reduced chip area and power consumption)
[10]. Our work in this paper follows this line of research and
specifically shows that application-specific buffering can be

Figure 2: Dynamically controlling the playout buffer fill

level as two applications are being scheduled.

used to shape the workload of real-time applications process-
ing continuous media streams, and such shaping can be ex-
ploited to significantly improve the overall schedulability of
a pre-defined set of applications.

Organization of the paper: In the next section we present
an example to illustrate how the amount of buffering asso-
ciated with a running application is dynamically changed
as new tasks are triggered for execution. More specifically,
we use this example to identify the scheduling/buffer man-
agement parameters associated with each application. In
Sections 3 and 4 we then show how the values of these pa-
rameters can be estimated from our model for characteriza-
tion the execution demand of an application on a specified
processor architecture. Further, Section 3 shows that the
workload of an application is heavily influenced by the ini-
tial playout delay or buffering time associated with it. The
model proposed in this section is used to quantitatively cap-
ture this tradeoff. This model is then used in Section 4 to
describe our dynamic buffering policy. Finally, our experi-
mental results in Section 5 show how the proposed schemes
can be used to improve the schedulability of a pre-defined
set of tasks consisting of media-processing and interactive
text-processing (e.g. Datebook) applications.

2. ILLUSTRATIVE EXAMPLE
Figure 1 is a high-level view of our setup. It shows a

processor running two tasks, an MPEG-2 decoder and a
Datebook application that is commonly supported on PDAs.
The input to the decoder is a compressed video stream that
arrives at the input buffer b. This buffer is read by the
decoder and the decoded video stream is written into the
playout buffer B, which in turn is read by the playout (or
display) device at a pre-defined rate (e.g. 25 frames/sec).
Throughout this paper we assume that the tasks running
on the processor are scheduled using some proportional-share
scheduler [4, 7] which allocates a specified amount of CPU
bandwidth to each task. Our goal in this paper is to show
how such a scheduler1 can exploit dynamic buffering to en-
hance the schedulability of a set of applications. Towards
this, we modify the scheduler to dynamically change the
processor share allocated to each task at runtime. These
shares, as we show in this paper, are determined by the fill-
level of the playout buffer B, the execution demands of the
running tasks (which we characterize using a mathematical
model in Section 3), and the set of tasks in the ready-queue
of the scheduler (see Figure 1).

1Our scheme can be applied to other scheduling disciplines as
well. But for simplicity of exposition, we only restrict ourselves
to proportional-share schedulers in this paper.

5

To illustrate our scheme, let us consider the scenario shown
in Figure 2. We assume that our processor has an effective
bandwidth of fmax MHz available for running user appli-
cations (i.e. after supporting operating system tasks). At
time t = 0, the user triggers the MPEG decoder applica-
tion, which is started immediately. However, the playout
from the buffer B only starts at t = tpd, which is the play-
out delay. With tpd as the playout delay, the decoder occu-
pies a processor bandwidth of fav MHz. At time t = t′ the
user now triggers the Datebook application which requires
a processor bandwidth of fdb. However, it turns out that
fmax − fav < fdb and hence the Datebook task cannot be
executed (immediately). In response to this, the scheduler
increases the processor bandwidth allocated to the decoder
task, from fav to fhi (where fhi ≤ fmax). With this band-
width, the average decoding rate is higher than the con-
sumption rate of the output device from the playout buffer
B. This results in the fill-level of B to increase till the
time t = t′ + tfill, when the allocated bandwidth to the
decoder is reduced to flo (< fav). flo is chosen such that
the freed bandwidth (i.e. fmax − flo) sufficient to support
the Datebook task. Hence, this task starts at t = t′ + tfill

and continues till t = t′ + tfill + tdrain. During the time
interval [t′ + tfill, t′ + tfill + tdrain) the fill-level of B contin-
uously decreases because the bandwidth flo is not sufficient
to sustain the playout rate demanded by the output device.
t′ + tfill + tdrain is the earliest time2 at which B is fully
drained. At this time, the processor bandwidth allocated
to the decoder is again increased to fhi for the next tfill

time units and this cycle is repeated till the Datebook task
is terminated by the user.

Note that this scheme will work if tfill is relatively small
compared to tdrain. For many applications such as Date-
book, which involves interactive text processing and input
from an user, this is indeed the case and the (small) peri-
odic time intervals during which the task is suspended are
tolerable.

Schedulability analysis: To formally analyze this setup,
we model the Datebook application as a periodic task, with
an execution requirement, period and deadline. Such a
model is general enough to capture a wide variety of applica-
tions. The decoder application, on the other hand, processes
a continuous media stream and is modelled differently. The
performance constraint that needs to be satisfied in this case
is that the output device should always be able to read a
decoded video frame from the playout buffer B. Given the
playout rate of the output device, this translates to the con-
straint that the playout buffer should never underflow.

Hence, our problem reduces to a schedulability analysis
problem where a system designer has to estimate whether
the media-processing task can satisfy its buffer underflow
constraint and the periodic task its deadline constraint. How-
ever, in contrast to classical schedulability analysis prob-
lems, here it leads to the following question: Given the exe-
cution demands of the two tasks (which we formally model in
Section 3) does there exist tfill, tdrain and flo, such that the
buffer underflow and the deadline constraints are satisfied?
For setups where the answer to this question is “yes”, the

2The rate at which the decoded video is written into B is variable,
because of the data-dependent variability in the decoding time of
each video frame/macroblock. Hence, it might take longer for B
to become empty.

designer would additionally want to know all possible values
of tfill, tdrain and flo which lead to a schedulable system. In
the following sections we show how to address this problem.

In summary, we would like to emphasize that our scheme
attempts to shape (lower-bound) the output from the play-
out buffer B to closely match the consumption pattern of the
output (display) device. This in turn shapes the workload
of the media-processing application to create slacks which
are used to accommodate a periodic task.

3. BUFFERING TIME VERSUS WORKLOAD
In this section we present a model to characterize the

workload of continuous media-processing applications (e.g.
the MPEG decoder described in Section 2). Our main result
is that the processor bandwidth required to sustain a speci-
fied playout rate depends heavily on the initial playout delay
tpd. We show that our model can be used to quantitatively
characterize this tradeoff. Our dynamic buffering scheme
exploits this observation and in Section 4 our model is used
to develop the schedulability test we outlined in Section 2.

Before presenting the model, we would first like to explain
the intuition behind our scheme. Most multimedia applica-
tions exhibit data-dependent variability in their execution
requirements. In other words, when such an application
processes a stream of data items (e.g. macroblocks or frames
in the case of MPEG decoding), the number of processor
cycles required to process each data item is highly variable.
The ratio of the worst-case and the average load on a proces-
sor running such an application can be as high as a factor
of 10 [12]. The playout rate associated with the application
imposes certain real-time constraints on it. When the play-
out delay is negligible, such constraints translate to an upper
bound on the time that can be spent in processing each data
item. Since the number of processor cycles required by each
data item is variable, the minimum processor bandwidth is
determined by the item which requires the maximum num-
ber of processor cycles. When the playout of the applica-
tion is delayed (i.e. the processed data items are buffered
before being played out), the minimum required processor
bandwidth decreases. For any given delay, the “amount”
of decrease is proportional to the variability in the execu-
tion requirement of the stream. With a sufficiently large
playout delay, the minimum required processor bandwidth
corresponds to the average processor cycle requirement per
data item.

Further, many multimedia tasks have variable input-output
rates, i.e. the number of input data items consumed to
produce one processed data item at the output is variable
[13]. For example, the variable length decoding task in an
MPEG decoder consumes a variable number of bits to pro-
duce one partially decoded macroblock. This provides ad-
ditional possibility for reducing the required processor fre-
quency by buffering the decoded frames before playout.

3.1 System Model
In what follows, we show how to precisely characterize

these variabilities in the execution demand and input/output
rates and how this translates into quantifying the trade-
off between processor bandwidth and playout delay. Once
again, we use the setup shown in Figure 1.

For the media-processing application (MPEG decoder)
We assume that the input bit stream to be processed is fed
into the buffer b at a constant rate of r bits/sec. Further,

6

for the sake of generality, we will consider a stream to be
made up of a sequence of stream objects. A stream object
might be a macroblock in the case of video decoding or a
granule in the case of audio decoding tasks. Now, given a
stream to be decoded, let x(t) denote the number of stream
objects arriving at b over the time interval [0, t]. Due to
the variability in the number of bits constituting a stream
object, the function x(t) varies from stream to stream even
when their arrival rates are fixed at r bits/sec. We define
two functions αl(Δ) and αu(Δ) to bound the variability in
the arrival process of the stream objects at b. These two
functions are defined as:

αl(Δ) ≤ x(t + Δ) − x(t) ≤ αu(Δ)

for all t and Δ ≥ 0, where αl(Δ) and αu(Δ) denote the
minimum and maximum number of stream objects that can
arrive at b within any time interval of length Δ, respectively.

To compute αl(Δ) and αu(Δ), we introduce two functions
φl(k) and φu(k). The former denotes the minimum number
of bits constituting any k consecutive stream objects in a
stream, and the latter denotes the corresponding maximum
number of bits. In the case of an MPEG decoder, these two
functions can be obtained by analyzing a number of video
clips that are representative of the clips to be processed by
the target decoder (e.g. clips having the same resolution
and bitrate).

Given the functions φl(k) and φu(k), it is possible to com-
pute the pseudo-inverse of these two functions, denoted by

φl−1
(n) and φu−1

(n), where the argument n is the number

of bits. φl−1
(n) and φu−1

(n) return the maximum and min-
imum number of stream objects that can be constituted by
n bits respectively. Since we assume the input bit stream
arrives at b at a constant rate of r bits/sec, we have:

αl(Δ) = φu−1
(rΔ) and αu(Δ) = φl−1

(rΔ)

Similarly, we can characterize the variability in the num-
ber of processor cycles required to process any stream object
using two functions γl(k) and γu(k). Both these functions
take the number of stream objects k as an argument. γl(k)
returns the minimum number of processor cycles required to
process any k consecutive stream objects and γu(k) returns
the corresponding maximum number of processor cycles.

Finally, we assume that the playout buffer B is read by
the output device at a constant rate of c stream objects/sec,
after a playout delay of tpd seconds. Let the function C(t) be
the number of stream objects readout by the output device
over the time interval [0, t], then obviously,

C(t) =

�
0 if t ≤ tpd

c(t − tpd) if t > tpd

Now, given the input bitrate r, the functions φl(k), φu(k),
γl(k) and γu(k) characterizing the possible set of media clips
to be decoded, and the function C(t), we can compute the
minimum processor bandwidth fav to sustain the playout
rate of c stream objects/sec. As mentioned in Section 2,
this is equivalent to requiring that B never underflows. Let
y(t) denote the total number of stream objects written into
B over the time interval [0, t]. Then the playout buffer un-
derflow constraint is equivalent to requiring that y(t) ≥ C(t)
for all t ≥ 0.

Let the processor bandwidth allocated by the scheduler
to the media-processing application be f Hz (cycles/sec).

This results in the media stream receiving a service of β(Δ),
which like αl(Δ), represents the minimum number of stream
objects that are guaranteed to be processed (if available in
the buffer b) within any time interval of length Δ. It can be
shown that y(t) ≥ (αl ⊗ β)(t),∀t ≥ 0, where ⊗ is the min-
plus convolution3 operator (see [1, 5] for details). Hence, for
the constraint y(t) ≥ C(t),∀t ≥ 0 to hold, it is sufficient
that the following inequality holds:

(αl ⊗ β)(t) ≥ C(t), ∀t ≥ 0 (1)

It is known from the duality between the min-plus convo-
lution and deconvolution operators, that for any three func-
tions f , g and h, h ≥ f � g if and only if g ⊗ h ≥ f (see
[1] and the references therein). By applying this result to
inequality (1) we obtain:

β(t) ≥ (C � αl)(t), ∀t ≥ 0 (2)

Note that β(t) in inequality (2) is defined in terms of the
number of stream objects that need to be processed within
any time interval of length t. To obtain the equivalent ser-
vice in terms of processor cycles, we can use the function
γu(k) defined above. The minimum service that needs to
be guaranteed by the processor to ensure that the playout
buffer never underflows is given by:

γu(β(t)) = γu((C � αl)(t)) = γu(C(t) � φu−1
(rt)) (3)

processor cycles for all t ≥ 0. Hence, the minimum processor
bandwidth that the scheduler needs to allocate to the media-
processing task, to sustain its playout rate is given by:

fav = min{f | ft ≥ γu(β)(t), ∀t ≥ 0} (4)

In other words, if the scheduler allocates this bandwidth
then it can be guaranteed that the playout buffer B will
never underflow, provided the output device starts consum-
ing stream objects after a delay of tpd time units. From
Eqs. (3) and (4), it can be shown that as the playout de-
lay tpd is increased, fav decreases till a certain value, after
which it stabilizes. This corresponds to the “average” rate
at which the stream needs to be processed to sustain the
playout rate. Eqs. (3) and (4) can therefore be used to
quantify the tradeoff between the playout delay (or amount
of buffering) and the required processor bandwidth.

4. DYNAMIC BUFFERING
In this section we use the model proposed above to develop

the schedulability test outlined in Section 2. Recall from our
example in Section 2 that such a schedulability test amounts
to computing feasible values of the parameters tfill, tdrain

and flo.
We first formulate the two constraints outlined in Sec-

tion 2, i.e. (i) the playout buffer associated with the media-
processing task should not underflow, and (ii) that the peri-
odic task should meet its deadline. Recall that our schedul-
ing strategy involves a cyclic repetition of two stages:

Stage 1 Once the periodic task is triggered (say at time t′), the
processor bandwidth allocated to the media-processing
task is increased to fhi to fill up the playout buffer B.
For simplicity, we assume that fhi is equal to fmax

3For two functions f and g, (f⊗g)(t) = inf0≤s≤t{f(t−s)+g(s)}.
Similarly, the min-plus deconvolution operator � is defined as
(f � g)(t) = sups≥0{f(t + s) − g(s)}.

7

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15
x 10

5

macroblock index (k)

#
 b

its

φl(k)

φu(k)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4

analysis interval (Δ)

m

ac
ro

bl
oc

ks

αl(Δ)

αu(Δ)

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

7

macroblock index

pr

oc
es

so
r

cy
cl

es

γl(Δ)

γu(Δ)

Figure 3: The functions φ, α and γ characterizing a high bitrate, high resolution class of video clips.

(which is the available bandwidth for running user ap-
plications). During this stage, the periodic task is sus-
pended (if fhi < fmax then it runs with a processor
bandwidth of fmax − fhi). This stage lasts during the
time interval [t′, t′ + tfill).

Stage 2 Now the media-processing task receives a bandwidth
of flo and the remaining bandwidth of fmax − flo is
allocated to the periodic task. This stage lasts during
interval [t′ + tfill, t

′ + tfill + tdrain).

To satisfy the buffer underflow constraint, the fill level of B
should be greater than or equal to zero at time t′ + tfill +
tdrain. In order to mathematically formulate this constraint,
let βhi be the service provided to the media-processing task
when it is allocated a processor bandwidth of fhi. Clearly,

βhi(Δ) = γu−1
(fhi · Δ), where γu−1

is the pseudo-inverse
of γu; it takes as an argument a certain number of proces-
sor cycles and returns the minimum number of stream ob-
jects that are guaranteed to be processed using these cycles.
Similarly, let βlo denote the service corresponding to the
processor bandwidth flo.

The change in the fill-level of B over the time interval
[t′, t′ + tfill + tdrain) can now be lower bounded by (i.e. the
fill-level of B cannot decrease by more than this amount):

(αl ⊗ βhi)(tfill) − c · tfill + (αl ⊗ βlo)(tdrain) − c · tdrain (5)

With a slight abuse of notation, let us refer to the above
expression Eq. (5). The first term of this sum captures the
change in fill-level over the interval [t′, t′ + tfill) and the
second term corresponds to the interval [t′ + tfill, t

′ + tfill +
tdrain). Clearly, if Eq. (5) is greater than or equal to zero,
then the playout buffer underflow constraint is satisfied.

Next, we formulate the second constraint, i.e. the peri-
odic task should meet its deadline. Let the execution re-
quirement, period and deadline of this task be e, p and d,
with p ≥ d. Clearly, this task is schedulable if:

tfill + tdrain ≤ p (6)

and (fmax − flo) · tdrain ≥ e (7)

Hence, our task set is schedulable if there exists tfill,
tdrain and flo for which Eq. (5) ≥ 0 and Eqs. (6) and (7)
are satisfied. Unfortunately, this system of equations can-
not be solved to obtain a closed-form solution to tfill, tdrain

and flo. Hence, we compute Eq. (5) for all possible values
of tfill, tdrain and βlo and then identify the combinations
of (tfill, tdrain, βlo) for which Eqs. (6) and (7) are satisfied.
Such combinations then constitute schedulable solutions.

5. EXPERIMENTAL EVALUATION
As mentioned in Section 1, our scheme requires a one-time

simulation of the applications that are to be scheduled on

the mobile device. Unlike desktops, personal mobile devices
typically run a small set of predefined applications. We re-
quire each of them to be simulated in isolation to determine
their execution requirements. For applications that do not
involve the processing of any continuous media stream (e.g.
the Datebook), the parameters to be determined are their
execution time, period and deadline. For media-processing
applications, the parameters involved are the functions φ
and γ, the input bitrate r and the consumption rate c by
the playout device. We first describe our simulation setup
that is used to obtain φ and γ for a high-resolution, high-
bitrate class of video streams. These functions are then used
to implement our schedulability analysis for a decoder appli-
cation running on a mobile platform along with a periodic
task.

5.1 Simulation Setup
We modelled our processor using the sim-profile config-

uration of the SimpleScalar instruction set simulator. Our
media-processing task was an MPEG-2 decoder, whose source
code was annotated with start and stop counters to record
the number of processor cycles consumed by each stream
object. To characterize the execution requirement of the de-
coder, we used a set of video clips having an average bitrate
of 6000 kbps and a resolution of 704 × 480 pixels. The dis-
play rate of these clips was 30 fps. Figure 3 shows the three
functions φ, α and γ for this class of video clips. Recall from
Section 3.1 that φ characterizes the variability in the num-
ber of bits constituting each macroblock in the compressed
video stream, α characterizes the variability in the arrival
pattern of the video stream at the buffer b and γ captures
the variability in the execution requirement of each mac-
roblock. Clearly, such a characterization is more expressive
than traditional best/worst bounds which are overly opti-
mistic/pessimistic.

5.2 Schedulability Analysis
Recall the example described in Section 2. To estimate the

processor bandwidth fav occupied by the MPEG decoder
for different values of playback delay tpd, we use Eq. (4)
from Section 3.1. Figure 4 shows how fav decreases with
increasing tpd, starting with tpd = 10 ms. With no other
tasks running on processor, tpd is typically chosen to be a
relatively small value. However, Figure 4 shows the potential
for decreasing the allocated bandwidth to the decoder by
increasing the fill-level of the playout buffer B.

Let us now consider a setup where the MPEG-2 decoder
concurrently runs with a periodic task on a 510 MHz proces-
sor (bandwidth available for user applications). The peri-
odic task is characterized by a period of 500 ms, which is
also equal to its deadline and has an execution requirement
of 100 × 106 cycles. Hence, fhi = 510 MHz. We would like

8

10 30 50 70 90 110 130 150 170 190
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

8

Playout Delay (ms)

F
re

qu
en

cy
 (

cy
cl

es
/s

ec
)

Figure 4: Buffering time versus workload.

to estimate if this system is schedulable, i.e. whether there
exists feasible tfill, tdrain and flo.

Figure 5 shows the value of Eq. (5) for this setup for dif-
ferent values of tfill and tdrain with flo set to zero. Note
that the vertical axis (z-axis) of this plot corresponds to the
number of (excess) decompressed macroblocks in the play-
out buffer after one cycle of tfill + tdrain. The region of this
plot that is above the plane z = 0 corresponds to values of
tfill and tdrain for which the playout buffer does not un-
derflow. This region is labelled as the feasible region. The
region below z = 0 corresponds to values of tfill and tdrain

for which the playout buffer underflows (i.e. its fill level de-
creases after the tfill + tdrain cycle). This region is labelled
as the infeasible region. Clearly, we are interested in the fea-
sible region. However, this region (or a subset of it) also has
to satisfy the constraints given by Eqns. (6) and (7) for the
periodic task to be schedulable. The subset of the feasible
region that satisfies these two equations is labelled as the
schedulable region.

150

200

250

300

350

150
200

250
300

350
400

−5000

0

5000

10000

t
fill

 (ms)
t
drain

 (ms)

m
bs

 in
 B

 a
fte

r
t fil

l +
 t dr

ai
n

feasible
region

schedulable
region

infeasible
region

Figure 5: Schedulability region of a schedulable system.

Finally, Figure 6 shows the schedulability regions for three
different values of flo. The lowermost surface corresponds
to flo = 0 MHz, the middle surface corresponds to flo =
50 MHz and the topmost corresponds to flo = 100 MHz.
All other parameters, such as fhi and those describing the
periodic task remain the same as before. Note from Figure 6
that the system is schedulable for all these three values of flo.
However, the schedulable values of tfill and tdrain change
with different values of flo. It may be noted that different
values of tfill and tdrain are also associated with different
scheduling overheads and buffer requirements. Our model
offers the possibility of quickly visualizing the design space
for selecting the appropriate scheduler parameters.

6. CONCLUDING REMARKS
Our proposed technique can be exploited to enhance the

schedulability of media-processing applications when con-

150 160 170 180 190 200
200

300

400
−4000

−2000

0

2000

4000

6000

8000

10000

t
fill

 (ms)

t
drain

 (ms)

m
bs

 in
 B

 a
fte

r
t fil

l +
 t dr

ai
n

infeasible
region

feasible
region

schedulable
region

Figure 6: Schedulability regions for different flow.

currently run with other applications that can be modelled
as periodic tasks. The underlying idea was to accurately
model the variability in the processing requirements of media-
processing applications and appropriately use buffering to
periodically free up a portion of the processor’s bandwidth
to support other tasks. Our results can be useful for design-
ing and tuning application-specific schedulers for personal
mobile devices which run a restricted set of applications.

Acknowledgements: We thank Wei Tsang Ooi for the
numerous helpful discussions that led to this paper.

7. REFERENCES
[1] J.-Y. Le Boudec. Some properties of variable length packet

shapers. IEEE/ACM Transactions on Networking,
10(3):329–337, 2002.

[2] L. Cai and Y.-H. Lu. Energy management using buffer memory
for streaming data. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(2):141–152,
2005.

[3] C.-F. Chiasserini and R. R. Rao. Improving battery
performance by using traffic shaping techniques. IEEE Journal
on Selected Areas in Communications, 19(7):1385–1394, 2001.

[4] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT)
scheduling: supporting latency-sensitive threads in a
general-purpose scheduler. In ACM Symposium on Operating
System Principles (SOSP), 1999.

[5] A. Elwalid and D. Mitra. Traffic shaping at a network node:
Theory, optimum design, admission control. In INFOCOM,
1997.

[6] L. Georgiadis, R. Guérin, V. G. J. Peris, and K. N. Sivarajan.
Efficient network QoS provisioning based on per node traffic
shaping. IEEE/ACM Transactions on Networking,
4(4):482–501, 1996.

[7] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU scheduler
for multimedia operating systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 1996.

[8] S. Heithecker and R. Ernst. Traffic shaping for an FPGA based
SDRAM controller with complex QoS requirements. In DAC,
2005.

[9] J. Hu and Y.-H. Lu. Buffer management for power reduction
using hybrid control. In IEEE Conference on Decision and
Control and the European Control Conference, 2005.

[10] S. Manolache, P. Eles, and Z. Peng. Buffer space optimisation
with communication synthesis and traffic shaping for NoCs. In
DATE, 2006.

[11] C. Poellabauer and K. Schwan. Energy-aware traffic shaping for
wireless real-time applications. In IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2004.

[12] M.J. Rutten, J.T.J. van Eijndhoven, and E.-J.D. Pol. Design of
multi-tasking coprocessor control for eclipse. In CODES, 2002.

[13] G. Varatkar and R. Marculescu. On-chip traffic modeling and
synthesis for MPEG-2 video applications. IEEE Transactions
on VLSI, 12(1):108–119, January 2004.

[14] E. Wandeler, A. Maxiaguine, and L. Thiele. Performance
analysis of greedy shapers in real-time systems. In DATE, 2005.

9

