
A Multiprocessing Approach to Accelerate
Retargetable and Portable Dynamic-compiled

Instruction-set Simulation

Wei Qin
Boston University

Boston, MA, U.S.A.

wqin@bu.edu

Joseph D’Errico
Cavium Networks, Inc.

Marlborough, MA, U.S.A.

joseph.derrico@
caviumnetworks.com

Xinping Zhu
Northeastern University

Boston, MA, U.S.A.

xzhu@ece.neu.edu

ABSTRACT
Traditionally, instruction-set simulators (ISS’s) are sequential pro-
grams running on individual processors. Besides the advances of
simulation techniques, ISS’s have been mainly driven by the con-
tinuously improving performance of single processors. However,
since the focus of processor manufacturers is shifting from fre-
quency scaling to multiprocessing, ISS developers need to seize
this opportunity for further performance growth. This paper pro-
poses a multiprocessing approach to accelerate one class of dynamic-
compiled ISS’s. At the heart of the approach is a simulation en-
gine capable of mixed interpretative and compiled simulation. The
engine selects frequently executed target code blocks and trans-
lates them into dynamically loaded libraries (DLLs), which are then
linked to the engine at run time. While the engine performs simu-
lation on one processor, the translation tasks are distributed among
several assistant processors. Our experiment results using SPEC
CINT2000 benchmarks show that this approach achieves on av-
erage 197 million instructions per second (MIPS) for the MIPS32
ISA and 133 MIPS for the ARM V4 ISA. Compared with the unipro-
cessing configuration under the same general approach, multipro-
cessing offers higher performance and improved speed consistency.
To our best knowledge, this is the first reported approach that uses
multiprocessing to accelerate functional simulation.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and Analysis;
I.6.5 [Simulation and Modeling]: Model Development

General Terms
Performance, Verification

Keywords
instruction set simulator, compiled simulation, retargetable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

1. INTRODUCTION
An instruction-set simulator (ISS) functionally mimics the be-

havior of a target processor on a host workstation. It is an im-
portant tool for the development of both embedded and general-
purpose computer systems. The classic ISS style is interpretation.
It features a simulation loop which repeatedly fetches, decodes and
executes instructions one after another. Over the past two decades,
a few advanced simulation techniques have been developed to im-
prove the performance of ISS’s. These techniques fall into either
the static-compiled or the dynamic-compiled categories. The for-
mer performs binary translation prior to simulation and the latter
does so at run-time. In general, compiled simulation is free of
the instruction fetching and decoding overhead and therefore offers
much faster speed than interpretation.

Traditionally, all ISS’s are developed as sequential software run-
ning on a single processor. As the performance of high-end pro-
cessors continuously improves, ISS’s have been enjoying a free
ride. However, recent trends indicate that microprocessor man-
ufacturers are shifting their focus from frequency scaling toward
multiprocessing. For example, the clock rates of Intel processors
improved by a modest 2.5x over the past five years, in contrast to
a 7.5x from 1995 to 2000 and a 6x from 1990 to 1995 [9]. At
the same time, several multiprocessor implementations have been
introduced, including the STI Cell processor [10], the SUN Nia-
gara processor [11], and dual-cores from AMD, Intel, and IBM [6].
Multiprocessing improves the overall throughput of a computer,
but it is not directly useful for inherently sequential ISS’s. Con-
sequently, ISS developers face a new challenge — to seize the mul-
tiprocessing opportunity so as to keep pace with growing needs of
users. To address this challenge, this paper proposes a multipro-
cessing approach to accelerate dynamic-compiled simulation. The
approach is highly portable and retargetable, and is capable of han-
dling self-modifying code. To our best knowledge, it is the first re-
ported approach that uses multiprocessing to accelerate functional
simulation.

The remainder of this paper has the following organization. Sec-
tion 2 describes related work in the ISS field. We then explain
our method to construct dynamic-compiled simulators in Section 3.
Section 4 presents the experiment results. In Section 5 we compare
different techniques and discuss performance issues. At the end,
Section 6 summarizes our findings and concludes the paper.

2. RELATED WORK
A static-compiled ISS translates a target program to a host pro-

gram with identical functional behavior. Zhu et al. [20] created a

193

static-compiled ISS framework. It translates target instructions to
a virtual representation, and then to either host assembly or to C
code. Finally, the output code is assembled or compiled into host
binary. SyntSim [3] directly uses C as its intermediate representa-
tion. It translates a target program into a huge C function which
may sometimes overflow the C compiler. To alleviate the problem,
it uses a profile of the target program to select only the most fre-
quently executed instructions to translate. The other instructions
are interpreted. Different from SyntSim, FSCS [1] is capable of
translating a complete target program into C++. It does so by di-
viding the target code into blocks, and translating each block into
a C++ function. Since a function is small, it will not overflow the
C++ compiler. Hence, this approach is scalable and has been suc-
cessfully applied to large benchmarks.

Static-compiled ISS’s do not support simulating self-modifying
code. They are also inconvenient to use since for every target pro-
gram to simulate, an instance of the simulator needs to be built.
Therefore, more research has explored the construction of dynamic-
compiled ISS’s. Early work on dynamic-compiled ISS’s focuses on
performance. Shade [4] is likely the first simulator in this class.
Embra [19] used Shade’s dynamic translation technique for full
system simulation. However, none of these simulators is retar-
getable or portable.

More recently, a few retargetable dynamic-compiled simulation
approaches have been proposed. The Strata [17] infrastructure de-
fines an extension interface for adding new targets. However, its
current implementation is tied to the IA32 platform. Porting it to
another host requires extensive effort. In contrast, the JIT-CCS [12]
and the IS-CS [16] are completely based on C/C++ and hence in-
dependent of the host platform. They utilize high-level target ar-
chitecture descriptions for better retargetability. The execution en-
gines of both JIT-CCS and IS-CS have resemblance to interpreta-
tive ISS’s in their fine-grained structure — each calling of a com-
piled routine simulates only one instruction. This imposes sig-
nificant per-instruction overhead. QEMU [2] is an open-source
dynamic-compiled ISS featuring very high performance. Similar
to the work of Zhu et al.[20], it uses an intermediate representa-
tion to simplify the translation of most instructions. However, like
many other just-in-time engines, porting or retargeting QEMU still
requires mixed C/assembly programming and extensive debugging
effort.

In the field of embedded systems, many specialized processors
need to be simulated. Therefore it is highly valuable to have good
retargetability through some abstraction means such as an architec-
ture description language (ADL). It is also desirable to have porta-
bility since host architectures and operating systems never stop
evolving. FSCS, SyntSim, JIT-CCS and IS-CS fully use C/C++
in their implementation and are therefore highly portable. They are
also retargetable through their respective architecture abstraction
means. Consequently, we view these approaches more suitable to
use in design automation tools for embedded systems.

3. PROPOSED APPROACH
Previously in [5], we described an approach to construct retar-

getable and portable dynamic-compiled ISS’s. The approach is
very similar to those of FSCS and SyntSim in use of C++ code as
the intermediate representation of translation. However, it is more
flexible than those approaches since it performs translation during
simulation and therefore supports simulating self-modifying code.
The approach also features significantly higher performance than
JIT-CCS and IS-CS due to its more sophisticated engine. The en-
gine simulates tens of instructions in each calling of a compiled
routine. In contrast, JIT-CCS or IS-CS simulates one instruction in

0x8000: 8d280000 lw $8, 0($9)
0x8004: 1500fffe bnez $8, 8000
0x8008: 21290004 addi $9, $9, 4
0x800c: 01201021 move $2, $9

0x8000: 8d280000 lw $8, 0($9)
0x8004: 1500fffe bnez $8, 8000
0x8008: 21290004 addi $9, $9, 4
0x800c: 01201021 move $2, $9

(a) A 4-instruction page

addr_t page_8000(iss_t *iss, addr_t pc)
{

assert(pc >= 0x8000 && pc < 0x8010);

switch (pc) {
case 0x8000:

L8000: iss->set_reg(8,
iss->mem_read_word(iss->get_reg(9)));

// load MEM[R9] into R8
// fall through to next instruction

case 0x8004:
if (iss->get_reg(8)!=0) {

// run delay slot before jump
iss->set_reg(9, iss->get_reg(9) + 4);
goto L8000;

}
// if (R8!=0)
// goto 0x8000 after delay slot
// fall through to next instruction

case 0x8008:
iss->set_reg(9, iss->get_reg(9) + 4);
// increment R9 by 4
// fall through to next instruction

case 0x800c:
iss->set_reg(2, iss->get_reg(9));
// copy R9 to R2
// end of page

}
return 0x8010;

}

(b) Equivalent C++ code

Figure 1: A translation example

each calling. The following section briefly reviews the approach in
general.

3.1 General Approach
During the simulation of a target program, the proposed dynamic-

compiled simulator decodes and translates portions of the program
into C++ code, which is then compiled by GCC[7] into dynami-
cally loaded libraries (DLLs). The libraries are immediately linked
to the simulation engine at runtime and are called when the sim-
ulated program counter enters the compiled portions of the target
program.

The basic translation unit is a page, that is, a contiguous block
of target instructions. We always translate a page into a C++ func-
tion. Figure 1 illustrates an example of four MIPS32 instructions
before and after translation using this approach. The resultant func-
tion receives the program counter as an argument. Upon entry it
switches execution to the corresponding case block and runs until
the execution flow goes out of the range of the page. In real im-
plementations, pages are much larger so that a single calling of the
function is capable of simulating many instructions. By default, we

194

Fetch Decode Execute

Page
Translated?

To
Translate?

Enqueue

Call Corresponding
DLLyes

no

yes

no

Translation
Queue

To Translation Processes

interpreter

(a) Engine organization

Translate
to DLL

Receive
Dequeue &
Send Binary

Receive &
Load DLL

Send

A Translation ProcessA Communication Thread

Translation
Queue

socket

(b) Inter-process communication

Figure 2: Structure of the simulator

use 512-word pages. To quickly compute page index, all pages are
aligned at page-size boundaries.

The above translation approach is very similar to the one in FSCS
except that we dynamically translate pages into DLLs during run
time. The advantage of dynamic run-time translation is the ca-
pability to simulate self-modifying code, such as in the case of a
boot-loader or a just-in-time engine. To simulate self-modifying
code, we implemented an exception handling mechanism using the
setjmp and longjmp functions of ANSI C. We monitor all mem-
ory instructions in the target program. When an instruction writes
to a page that has been complied, an exception is triggered to in-
terrupt compiled simulation. The simulator will unload the DLL
corresponding to the modified page, and resume simulation. It may
translate the modified page again when the execution flow reaches
the same page.

3.2 Simulator Organization
Because of the latency of compiling translated pages in C++, the

page translation process has some notable delay. In our experi-
ment environment, it takes about 0.9 second to compile a translated
512-instruction page using GCC. If a page is rarely executed after
the translation, there will be little return for the resource spent to
translate it. Therefore, we selectively translate the most-frequently
executed pages run-time profiling.

Figure 2(a) shows the general organization of our simulation en-
gine. It is capable of hybrid interpretative and dynamic-compiled
simulation. The interpreter simulates infrequently executed instruc-

tions and generates profiling statistics for selecting frequently exe-
cuted pages to compile. We use a simple history-based heuristic for
determining frequently executed pages. If, during interpretation,
the dynamic execution count of a page exceeds a predefined thresh-
old, the engine considers the page a candidate for binary translation
and sends it to a translation queue. The engine continues interpret-
ing the instructions in the page while the page awaits translation.
After the page has been translated, the resulting code is linked to
the simulator in the form of a DLL. The engine will invoke the DLL
for future simulation of the instructions in the page.

In our previous single-processor implementation of the engine [5],
the translation queue has zero capacity. In other words, once a can-
didate page is identified, the engine process immediately suspends
simulation, translates the page, and then resumes simulation. This
special case has been demonstrated beneficial for large benchmarks
in our experiments.

In this paper, we propose a more general approach. First, we
use a common queue of infinite capacity to buffer the indices of
candidate pages. Second, we distribute translation tasks to other
processes. The result of this extension is that we can utilize mul-
tiple processors in an asymmetric way in our simulator. A main
processor is always fully utilized in running the the engine process.
While the rest assistant processors actively perform the translation
tasks on demand: whenever the queue becomes non-empty, an idle
assistant processor, if any, pulls the first page from the queue and
translates it. It is worth noting that the processors involved do not
have to be homogeneous. As long as a processor is capable of gen-
erating DLLs compatible with the main processor, it can be utilized
for translation.

In our current implementation of the engine, we used several
light threads to communicate with the translation processes through
sockets. Figure 2(b) shows the interaction between such a com-
munication thread and a translation process. This implementation
choice involves some communication overhead for each translated
page. However, it is highly flexible and allows us to perform exper-
iments in a cluster of low cost workstations. The implementation
can be easily adapted to run on a shared-memory multiprocessor
server with reduced communication overhead.

4. EXPERIMENT RESULTS

4.1 Setup
We implemented the proposed simulation approach in C++. For

retargetability, we used a simple architecture description scheme
to specify the binary encoding and the semantics of target instruc-
tions. We described the user-level subsets of two architectures, the
MIPS32 ISA and the ARM V4 ISA. We used the descriptions to
synthesize the proposed dynamic-compiled ISS’s. In addition, we
also synthesized two interpretive ISS’s as reference simulators.

We performed our experiments on six 2.8GHz Pentium 4 work-
stations, each equipped with 1024KB L2 cache and 1GB RAM.
The workstations run the Linux operating system with the 2.6 ker-
nel. We used GCC 3.3.3 with the -O3 and -fomit-frame-pointer
flags to compile the engine of the ISS’s. The translated pages for
the ISS’s are compiled by the same GCC with the -O flag, which
reduces compilation time without significantly affecting the qual-
ity of translated code. For all experiments, we use a page size of
512 words. Our results are based on simulating C-based SPEC
CINT2000 [18] benchmarks. The benchmarks are compiled using
cross-GCCs with the -O3 flag. For all benchmarks, their first refer-
ence inputs provided by SPEC are used.

195

1

3

5

7

9

11

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip2

30
0.

tw
olf

S
p

ee
d

u
p

Dynamic 1P Dynamic 2P Dynamic 4P

(a) MIPS32

1

3

5

7

9

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip2

30
0.

tw
olf

S
p

ee
d

u
p

Dynamic 1P Dynamic 2P Dynamic 4P

(b) ARM V4

Figure 3: Speedup for benchmarks

4.2 Results
For each architecture, we first ran the interpreter for all bench-

marks. We then ran the dynamic-compiled simulator using 1, 2,
and 4 processors. We used a 2-million-instruction threshold for
page selection. Figure 3 shows the speedup factors of our compiled
simulation configurations with respect to interpretation. From the
results, it is clear that multiprocessing offers consistently superior
performance to interpretation or uniprocessing.

Table 1 summarizes the results from Figure 3 using geometric
means. The results are based on the total CPU time of the sim-
ulation engine, which is a meaningful indication of the delay that
the user will experience when waiting for a target program to finish
simulation.

Several factors affect the speed of the dynamic compiled simu-
lators, including the number of processors and the threshold value.
To understand their effect, we vary the value of the threshold from
1M to 32M, and the number of processors from 1 to 6. Figure 4

Speed (MIPS)/Speedup
MIPS32 ARM V4

Interpreter 38.9/1 31.5/1
Dynamic 1P 138/3.55 90.0/2.86
Dynamic 2P 166/4.27 121/3.84
Dynamic 4P 197/5.06 133/4.22

Table 1: Comparison of speed

3

3.5

4

4.5

5

5.5

1 2 3 4 5 6
Processor Count

S
pe

ed
up

1M

2M

4M

8M

16M

32M

(a) MIPS32

2.5

3

3.5

4

4.5

1 2 3 4 5 6
Processor Count

S
pe

ed
up

1M
2M
4M
8M
16M
32M

(b) ARM V4

Figure 4: Variation of Speedup

shows the resulting speedup factors. The results indicate that the
improvement due to multiprocessing saturates when more than 4
processors are used. In addition, it shows that the threshold value
has mixed effects on performance. Using a smaller threshold means
that more pages will be translated, and that more instructions will
benefit from compiled simulation. However, when only one pro-
cessor is used, the additional translation overhead may dominate
the benefit of the increased percentage of compiled-simulation, re-
sulting in lower performance. In contrast, the use of multiple pro-
cessors significantly reduces such additional translation overhead
and realizes the benefit of the smaller threshold. In general, 2 or
4-million seems a reasonable threshold value to use for all tested
configurations.

5. DISCUSSION

5.1 Multiprocessing vs. Uniprocessing
According to the experiment results in Figure 3, multiprocessing

offers on average 40–50% performance improvement over unipro-
cessing for our dynamic-compiled approach. Such performance
improvement is highly valuable to speed-demanding applications.
For instance, for programmers relying on ISS’s to verify the cor-
rectness of software, faster simulation speed means less waiting
time and hence higher productivity. Another beneficial usage is
in those microarchitecture simulators based on statistical sampling
or distributed methods [13, 8]. Their simulation speed asymptoti-
cally approaches that of the functional ISS when an infinite number

196

workstations are used. Improving the speed of the functional ISS
will proportionally increase the upper speed limit of those microar-
chitecture simulators.

In addition, multiprocessing is free of the speed consistency prob-
lem of uniprocessing. For benchmarks with short execution traces,
a uniprocessing dynamic-compiled ISS is sometimes slower than
an interpreter since the translation overhead cannot be absorbed
by the overall short trace. For example, the 176.gcc benchmark
from SPEC CINT2000 takes 156 seconds on the interpretive MIPS
ISS but 277 seconds on the uniprocessing dynamic-compiled ISS,
a slow-down of 1.78x. Such slow-down effect is prevalent for tar-
get programs with relatively short execution traces, limiting the ap-
plicability of the uniprocessing approach. The problem is over-
come by multiprocessing since it performs translation in parallel
with simulation. In the same 176.gcc case, the simulation took 116
seconds on two processors and 90.5 seconds on four processors,
both faster than interpretation.

For multiprocessing, the average load of each translation pro-
cessor decreases when more processors are employed. When six
or more processors are used, the average load of each translation
processor is below 10% in our experiments. Thus, the proposed
approach does not necessarily require exclusive access to multi-
ple workstations. In contrast, it can be inexpensively deployed to
salvage unused computing power in an enterprise computing in-
frastructure. A translation processor can also be shared by multiple
simulation engines.

5.2 Dynamic vs. Static
Different from interpreters and dynamic-compiled simulators, a

static-compiled simulator is specific to a target program. For each
target program to simulate, an instance of the static-compiled sim-
ulator needs to be constructed. The construction process involves
translating the entire target program – all its code pages – into host
binary. Because of its lengthy construction process, static-compiled
simulation is less convenient to use. It is only beneficial when the
long constructing time is dominated by the total usage time. To
study the difference of the two compiled simulation styles, we con-
structed a set of static-compiled simulators for the benchmarks in
Figure 3. We then ran the simulators with the same inputs, and
tabulated their average speeds in Table 2. The first row in the table
does not include the construction time; the second row assumes that
one processor is used to construct the simulators; and the third row
assumes that four processors perform parallel construction, with
each translating a quarter of the code pages.

Speed (MIPS)/Speedup
MIPS32 ARM V4

Static without overhead 282/7.25 179/5.68
Static with overhead, 1P 46.0/1.18 34.1/1.08
Static with overhead, 4P 123/3.17 86.7/2.75

Table 2: Speed of static-compiled simulation

Comparing Table 2 with Table 1, one can see that the speed
of static-compiled simulation can be interpreted as either faster or
slower than that of dynamic-compiled simulation, depending on
whether the construction overhead of the former is taken into con-
sideration. Clearly, if a target program needs to be simulated for
only once, then dynamic-compiled simulation has the advantage.
On the other hand, if the target program needs to be simulated re-
peatedly for so many times that the initial construction overhead
becomes negligible, static-compiled simulation has a speed advan-
tage of about 40%. To mitigate this speed gap, we implemented a

DLL cache in the host file system for our dynamic-compiled sim-
ulators. In the first simulation run of a target program, the gener-
ated DLLs are stored into the cache. During subsequent simulation
runs, the simulator first looks up the cache to determine whether
the current program has been simulated before. In case of a hit, the
cached DLLs from the previous run will be loaded directly. Our
experiments show that this scheme improves the performance of
subsequent runs of target programs by 20% in the 4-way multipro-
cessing dynamic-compiled case. It effectively reduces the speed
gap by half and makes the dynamic-compiled simulation approach
more appealing.

As mentioned earlier, dynamic-compiled simulators are suitable
to run self-modifying code such as boot-loaders, just-in-time en-
gines, or full operating systems. In addition, the dynamic-compiled
simulators mentioned in Section 4 can be readily extended with a
remote debugging interface to communicate with the popular soft-
ware debugger GDB. The simulators will then become the target
emulation back-ends of GDB, which interprets user commands,
controls simulation progress and queries processor states. User
commands such as adding or deleting a break point require the
back-ends to modify the program code, an impossible task for static-
compiled simulators. Therefore, our dynamic-compiled simulators
are highly valuable to programmers who need to verify and debug
software. The faster speed offered by the multiprocessing approach
makes them even more attractive because of the reduced the latency
between inputing a user command and receiving a response from
the simulator. Smaller latency implies higher productivity of soft-
ware development.

The dynamic-compiled simulators can also offer higher simula-
tion throughput than static-compiled simulators for regression tests,
which are typically performed by compiler developers over a set
of programs on several workstations. As demonstrated by Table 2,
static-compiled simulators pay significant compilation overhead for
each program to simulate since the whole program needs to be
translated. Consequently, their overall throughput is no higher than
interpretation for SPEC CINT benchmarks if each program is sim-
ulated only once. In contrast, dynamic-compiled simulation has
smaller compilation overhead and thus features higher throughput.

5.3 Other Performance Issues
Our dynamic-compiled simulators are significantly faster than

JIT-CCS and IS-CS. As shown in Table 1, for the ARM architec-
ture, the average simulation speed is 90 MIPS with uniprocessing
and 133 MIPS with quad-processing. In comparison, the reported
speed of JIT-CCS was around 7 MIPS on a 1.2GHz Athlon [12]
and that of IS-CS was 12 MIPS on a 1GHz Pentium 3 [16], both
for the ARM ISA. Both are significantly slower than our dynamic-
compiled ISS’s after the difference of the workstations is taken
into account. Most likely this is due to the high overhead of their
fine-grained simulation engine which executes one instruction per-
iteration.

To further improve the simulation speed of our dynamic-compiled
simulators, we are currently studying two optimization opportuni-
ties. Firstly, the history-based page selection heuristic may be re-
placed by a predictive heuristic which proactively compiles pages
before they will be executed. Successful predictions can further re-
duce the number of interpreted instructions. Secondly, multiple op-
timization levels may be used when compiling the translated C++
pages. The current implementation translates code pages using the
-O option of GCC so that DLLs can be quickly generated. How-
ever, it may be profitable to recompile the heavily executed pages at
a higher optimization level. Similar multi-level optimization tech-
niques have been successfully adopted in Java virtual machines.

197

The reported results in Section 4 are all based on simulating stat-
ically linked target programs. In high end target systems with full-
featured operating systems, shared libraries are often utilized. For
such systems, pre-translation of shared libraries is an additional vi-
able means to reduce translation overhead and to improve simula-
tion speed.

6. CONCLUSIONS
In this paper we presented the first approach to construct dynamic-

compiled simulators that benefit from multiprocessing. The ap-
proach involves pure C++ programming and can be quickly ported
to any platform with a C++ compiler and a DLL interface. The ap-
proach not only offers better average performance than our unipro-
cessing dynamic-compiled simulator, but also solves its problem
of speed inconsistency. In conclusion, the approach is suitable to
be used in many design tools for computer systems, such as soft-
ware debuggers or system-level simulators. The proposed simula-
tion approach has been incorporated into our open-source simula-
tors SimIt-ARM [14] and SimIt-MIPS [15]. Both are available for
free public access.

7. ACKNOWLEDGMENTS
This research is partially supported by a UROP Faculty Match-

ing Grant from Boston University. Subhendra Basu contributed to
an early implementation of the presented approach. We thank the
anonymous reviewers for their invaluable comments to improve the
paper.

8. REFERENCES
[1] M. Bartholomeu, R. Azebedo, S. Rigo, and G. Araujo.

Optimizations for compiled simulation using instruction type
information. In Proceedings of the 16th Symposium on
Computer Architecture and High Performance Computing,
pages 74–81, 2004.

[2] F. Bellard. http://www.qemu.org, Sep 2005.
[3] M. Burtscher and I. Ganusov. Automatic synthesis of

high-speed processor simulators. In Proceedings of the 37th
annual International Symposium on Microarchitecture, 2004.

[4] B. Cmelik and D. Keppel. Shade: A fast instruction-set
simulator for execution profiling. In Proceedings of the ACM
SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems, pages 128–137, 1994.

[5] J. D’Errico and W. Qin. Constructing portable compiled
instruction-set simulators – an ADL-driven approach. In
Proceedings of Conference on Design Automation and Test
in Europe, pages 112–117, 2006.

[6] M. J. Flynn and P. Hung. Microprocessor design issues:
Thoughts on the road ahead. IEEE Micro, 25(3):16–31, 2005.

[7] Free Software Foundation, Inc. http://gcc.gnu.org/.
[8] S. Girbal, G. Mouchard, A. Cohen, and O. Temam. DiST: A

simple, reliable and scalable method to significantly reduce
processor architecture simulation time. In Proceedings of the
ACM SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems, pages 1–12, 2003.

[9] Intel Corporation. Intel microprocessor quick reference
quide, http://www.intel.com/pressroom/kits/
quickrefyr.htm, Dec 2005.

[10] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy. Introduction to the Cell
multiprocessor. IBM Journal of Research and Development,
49(4/5), 2005.

[11] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A
32-way multithreaded Sparc processor. IEEE Micro,
25(2):21–29, 2005.

[12] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann. A universal technique for fast and flexible
instruction-set architecture simulation. In Proceedings of
Design Automation Conference, pages 22–27, 2002.

[13] E. Perelman, G. Hamerly, and B. Calder. Picking statistically
valid and early simulation points. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, pages 244–255, 2003.

[14] W. Qin. http://simit-arm.sourceforge.net.
[15] W. Qin. http://simit-mips.sourceforge.net.
[16] M. Reshadi, P. Mishra, and N. Dutt. Instruction set compiled

simulation: A technique for fast and flexible instruction set
simulation. In Proceedings of Design Automation
Conference, pages 758–763, 2003.

[17] K. Scott and J. Davidson. Strata: A software dynamic
translation infastructure. In Proceedings of the IEEE 2001
Workshop on Binary Translation, 2001.

[18] Standard Performance Evaluation Corporation.
http://www.spec.org.

[19] E. Witchel and M. Rosenblum. Embra: Fast and flexible
machine simulation. In Proceedings of the ACM
SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems, pages 68–79, 1996.

[20] J. Zhu and D. D. Gajski. A retargetable, ultra-fast instruction
set simulator. In Proceedings of Conference on Design
Automation and Test in Europe, pages 298–302, 1999.

198

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

