
Layout Aware Design of Mesh based NoC Architectures ∗

Krishnan Srinivasan
Dept. of Computer Science and Engineering

Arizona State University
Tempe, AZ

ksrinivasan@asu.edu

Karam S. Chatha
Dept. of Computer Science and Engineering

Arizona State University
Tempe, AZ

kchatha@asu.edu

ABSTRACT
Design of System-on-Chip (SoC) with regular mesh based
Network-on-Chip (NoC) consists of mapping processing cores
to routers, and routing of the traffic traces on the topology
such that power consumption is minimized, and performance
constraints are satisfied. Technology scaling increases the
contribution of the link power to the overall power consump-
tion of the NoC. Since link power consumption is dependent
on the length of the link, its contribution cannot be accurately
estimated without system-level floorplanning. In this paper,
we propose a novel design technique that integrates system-
level floorplanning into the NoC design flow. Our technique
invokes an existing floorplanner to generate an initial lay-
out of the cores. This is followed by invocation of a novel
low complexity algorithm that generates the mesh based NoC
architecture with complete information of the floorplan. In
comparison to an existing approach, our technique results in
lower total power consumption and much lower link power
consumption.

Categories and Subject Descriptors
B.4 [Input/Output Data Communications]: Intercon-
nections

General Terms
Algorithm, Performance, Design

Keywords
Network-on-Chip, Automated design, Mesh topology

1. INTRODUCTION

∗The research presented in this paper was supported in part
by grants from the National Science Foundation (CAREER
0546462, CSR-EHS 0509540) and Consortium for Embedded
Systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

109

073 8

1

2

6

models
NoC Power/Performance CTG

11 11 4

5

B

Symbolic mesh
Mesh with layoutA

0 617

54

39 810

System−level Floorplanning

models
NoC Power/Performance CTG

11

10

109

8

11 1
2

4
3 0

2

5

System−level Floorplanning

211

Symbolic mesh generation

3069

7

8
4

1

6

9 10 6

4

3

2

Symbolic mesh generation

7
5

5

8

7

1

0

Figure 1: NoC design flows

NoC has been proposed by academia [1] [2] and industry
[3] as the solution for the on-chip communication challenges
of future SoC architectures. NoC is characterized by packet
switching based communication mechanism that is enabled
by on-chip routers. NoC architectures can be classified in to
two categories on the basis on their topologies: custom or
regular. Regular topologies, in particular the mesh topology,
have emerged as popular architecture for NoC design due
their simple structure, ease of implementation, and support
for reuse.

The paper addresses the design of mesh based NoC archi-
tectures for application specific SoC. Examples of such SoC
include high performance multimedia processors for set-top
boxes. NoC design is initiated after the computation archi-
tecture design stage that specifies the computing and stor-
age cores in the SoC. A core in the application specific SoC
implements a limited functionality. Consequently, the inter-
core communication depicts well defined patterns. Thus,
the input to the NoC design problem can be specified as a
communication trace graph (CTG) where the nodes denote
the cores of the computation architectures, and the directed
edges signify communication traces that are annotated with
required bandwidth between the cores.

The optimization problem for mesh based NoC architec-
tures consists of mapping the computation architecture cores
to routers, and routing of the traces such that the total com-
munication power is minimized, and bandwidth constraints
are satisfied. The communication power is composed of the
power consumption of the router elements, and the physi-

136

cal links. The percentage of power consumption in physical
links in a NoC has been found to be more than 30 % of the
total power consumption in 100 nm technology [5]. This
value will be higher with further technology scaling. There-
fore, any NoC design technique must account for link power
consumption in addition to the router power consumption.
The power consumption in the physical links is directly de-
pendent upon the length of the link and bandwidth of traffic
flowing through the link, and can be estimated only after
system-level floorplanning has been performed.

Figure 1 (A) presents the existing NoC design methodol-
ogy that consists of generation of a symbolic mesh, followed
by system-level floorplanning to generate the final SoC archi-
tecture. Since the symbolic mesh is generated without any
knowledge of floorplanning, the final architecture can result
in large link length and corresponding link power consump-
tion. For the example shown in the figure, mapping and
routing were performed by assuming a 4mm inter-router
distance, and there was a deviation of about 50% in link
power consumption, and 80% in wire length between the
symbolic mesh, and the mesh after floorplanning. With fur-
ther shrinking of technology, and increased contribution of
link power to the overall power consumption, this deviation
will result in a significant error between the estimated, and
actual power consumption of the NoC.

This paper obtains a more accurate estimation of the link
lengths by integrating system-level floorplanning in the NoC
design flow. Our design methodology is depicted in Figure
1(B). Given the design specification in the form of a com-
munication trace graph (CTG), our technique invokes an ex-
isting floorplanner with a cost function that minimizes the
weighted sum of layout area and link power consumption.
We then invoke a novel algorithm that generates the sym-
bolic mesh from the given layout. Finally, our technique
invokes a deadlock avoiding routing technique that routes
traces along shortest paths subject to bandwidth constraints
on the router ports. Since we have complete information
about the floorplan, our technique accurately accounts for
link power consumption. For the example shown in the fig-
ure, our technique resulted in 25% less power consumption,
and 60% less wirelength compared to the existing method.

In the following sections, we describe and characterize the
router architecture utilized in the paper, followed by a for-
mal definition of the NoC design problem.

1.1 Router architecture and characterization
The NoC router architecture supported by our technique

has been described in [5]. The router architecture consists
of unit routers that communicate with each other through
the crossbar, and with the neighboring routers. The router
supports wormhole switching of packets. Each unit router
consists of an input and output port for bi-directional data
transfer. Custom routing is achieved by including a com-
munication trace identifier (ID) in every packet header. On
reception of the packet header, the header decoder decides
the output port based on the ID, and requests the arbiter
of the selected output port for access to the output FIFO.
The arbiter controls the crossbar and enables the transfer
of the packet from input to output FIFO. The output link
controller transfers the packet from the output FIFO to the
neighboring router.

The power consumption of both the input and output port
of a NoC router is directly proportional to the bandwidth of

traffic flowing through the ports [5]. Therefore, they can be
characterized as the power consumed per unit bandwidth of
traffic flowing through the ports (or nW/Mbps). The power
consumption in the physical link is directly proportional to
the bandwidth of traffic flowing through it, and its length.
Therefore, the physical link can be characterized by power
consumed per unit bandwidth of traffic per unit length (or
nW/Mbps/mm).

1.2 Problem definition
Given:

• A directed communication trace graph CTG(V, E),
where each vi ∈ V denotes either a processing element
or a memory unit (henceforth called a node), and the
directed edge ek = {vi, vj} ∈ E denotes a communica-
tion trace from vi to vj . For every vi ∈ V , the height
and width of the core is denoted by Hi and Wi, respec-
tively. Every edge ek = {vi, vj} ∈ E has an associated
ω(ek) that denotes the bandwidth requirement of the
communication in bits per second 1.

• Router architecture, where Ω denotes the peak input
and output bandwidth that the router can support on
any one port. Thus, each unit router can support equal
bandwidth on input and output ports. Since a node is
attached to a port of a router, the bandwidth to any
node from a router, and from any node to a router is
less than Ω. Two quantities Ψi and Ψo that denote
the power consumed per Mbps of traffic bandwidth
flowing in the input and output direction, respectively
for any port of the router.

• A physical link power model denoted by Ψl per Mbps
per mm.

Let R denote the set of routers utilized in the synthesized ar-
chitecture, Er represent the set of links between two routers,
and Ev represent the set of links between routers and nodes.
The objective of the NoC design problem is to generate a
system-level floorplan, and a mesh based NoC T (R, V, Er, Ev),
such that:

• for every ek = (vi, vj) ∈ E, there exists a route p ={(vi, ri),
(ri, rj), . . . (rk, vj)} in T that satisfies ω(ek),

• the bandwidth constraints on the ports of the routers
are satisfied, and

• the total NoC power consumption for inter-core com-
munication is minimized.

Once the system-level NoC architecture has been determined,
global and detailed physical routing of the links is performed
by invoking an existing algorithm that either performs chan-
nel routing, or over the cell routing. In Figure 1(B) the dot-
ted lines between the routers denote over the cell routing.

The paper is organized as follows: in Section 2 we discuss
previous work, in Section 3 we present our technique, in
Section 4 we discuss our experimental results, and finally in
Section 5 we conclude the paper.

2. PREVIOUS WORK
Many researchers [6] [7] [8] [9] have presented core map-

ping and routing techniques for regular mesh based NoC
architectures. Guz et al. [10] presented a technique for

1
In the case that there is a wide variation in the bandwidth require-

ments, the designer can specify either average or worst case commu-
nication traffic.

137

link capacity allocation for mesh based NoC architectures.
Angiolini et al. [11] compared the power and performance
of mesh based NoC architectures with AMBA bus archi-
tectures. Steenhof et al. [12] proposed NoC as a solution
to high-end consumer electronics systems, and presented a
SoC with mesh based NoC for a TV system architecture.
Lee et al. [13] implemented a SoC with a hierarchical star
based NoC topology. The above cited papers solve the NoC
mapping problem by either neglecting floorplanning com-
pletely, [6] [7] [8] [10], or invoke the floorplanner after the
NoC mapping problem has been addressed [11] [12] [13].
Due to the increased contribution of link power to the over-
all power consumption, addressing the NoC design problem
without accounting for the link power gives a very poor es-
timate of the total power consumption of the interconnec-
tion architecture. We overcome this problem by integrating
system-level floorplanning with the core to router mapping
stage.

3. MESH BASED NOC DESIGN
Our technique integrates system-level floorplanning with

the core to router mapping problem, thus enabling us to
accurately account for link power consumption, as well as
router power consumption. Our technique operates in three
phases. In the first phase, we invoke an existing system-level
floorplanner with a cost function that minimizes the overall
link power consumption. Once the floorplan is obtained, we
invoke a novel low complexity core to router mapping algo-
rithm that generates the mesh based NoC. Finally, we in-
voke our deadlock avoiding routing algorithm to route traces
by shortest paths subject to bandwidth constraints on the
router ports.

3.1 System-level floorplanning
Floorplanning is a well researched problem, and we utilize

an ILP based floorplanner [5] and an existing floorplanner
called Parquet [14] to generate the layout. The floorplan-
ner minimizes a cost function that is expressed as a linear
combination of the power consumption due to the physical
links, and the area of the layout [5]. The cost function is
given by

α ·
2
4 X

∀e(u,v)∈E

dist(u, v) · Ψl · ω(e)

3
5 + β · area

where dist(u, v) is the Manhattan distance between the cores
u and v, α and β are designer specified constants, and area
represents that total area of the layout. The output of the
system-level floorplanning is a layout of the computation
architecture cores.

3.2 Core to router mapping
We observe that the physical dimensions of the routers

are much lower than the sizes of the cores. This assumption
is supported by Dally et al. [2] who observed that the entire
NoC places an area overhead of 6.6% on the SoC architec-
ture. We also estimated the area consumption of the router
architecture utilized in this paper. For a 5 port router, with
2 virtual channels, a FIFO depth of 8, and a width of 32,
the router architecture consumed an area of 0.21 mm2 in
130 nm technology. On the other hand, the areas of the
computation architecture cores are of the order of several
mm2. Therefore, introducing the mesh based NoC in the

layout, and mapping the cores to routers does not alter the
floorplan significantly.

The objective of core to router mapping and correspond-
ing NoC generation is to maintain the structure of the floor-
plan as far as possible. Since the floorplanner places highly
communicating cores close to each other, maintaining the
structure of the floorplan ensures that highly communicat-
ing cores are mapped to adjacent routers, thus minimizing
router power consumption. Our technique invokes a novel
low complexity algorithm that maps cores to routers row
by row in the Y direction, and column by column in the X
direction respectively, and thus generates the mesh based
NoC.

Our technique generates the symbolic mesh based NoC
by assuming that all cores are placed in the first quadrant
(X ≥ 0, Y ≥ 0). We assume that in the logical mesh, two
adjacent Y-coordinates differ by a unit distance. Similarly,
two adjacent X-coordinates differ by a unit distance. Figures
2, 3, and 4 depict the different stages of our core to router
mapping and NoC generation technique. Initially, the Y-
coordinate of the X axis is set to 0. A core vi is defined to
be closest to the X axis if the following two conditions hold.

• No other core that overlaps vi along its X-offset is
closer to the X axis than vi

• the distance of vi from the X axis is less than the height
of the largest sized core in the floorplan.

Our technique obtains all such cores that are closest to the
X axis. In Figure 2(B) cores {9,10,6,5} form this set. The
selected cores are removed from the floorplan, and their Y-
coordinate in the symbolic floorplan is assigned to be the
Y-coordinate of the X axis. The X axis, and the remaining
floorplan is now shifted up by a unit distance in the Y di-
rection. The procedure is repeated for the remaining cores,
until all cores are assigned a Y-coordinate in the symbolic
mesh.

In Figure 2, sub-figures (B), (C), (D) and (E) depict the
successive stages of assigning Y-locations to the cores. As
shown in Figures 3(A) and 3(B) a similar procedure is in-
voked to assign X-locations to the cores. Once the X and Y
coordinates of the cores are determined, we have the sym-
bolic mesh depicted in Figure 4(A). The actual mesh with
floorplan is shown in Figure 4(B). The mesh is formed by
placing the routers at the lower left hand corners of the cores,
and interconnecting them in accordance with the symbolic
mesh topology. Note that the global and detailed physical
routing algorithm assumed in this paper allows over the cell
routing (as signified by the dotted lines between the routers).

3.2.1 Algorithm
Figure 5 presents the algorithm for our floorplan to sym-

bolic mesh generation. The algorithm invokes two recursive
procedures Get Y locations, and Get X locations that cal-
culate the relative Y and X locations of the cores in the
symbolic mesh based NoC. The procedures take the floor-
plan of the cores, and the current Y location of the X axis
(initially set to 0) as parameters. Line 1 through 3 check if
there are any cores in the floorplan, and exit if the floorplan
is empty. Line 6 obtains the cores that are closest to the X
axis. Lines 7 through 9 update the Y locations of the cores
in the set C. Lines 10 and 11 remove the cores from the
current floorplan, shift the X axis up by one unit. Finally

138

10 6 5

Y= 0

8 3
7

0

99 10 6 5

Y= 0

D

Y = 1

X−axis Y = 2

2

03
4

2
111

8
7

X−axis Y= 0

X−axis Y = 1

BA C

11

4
1

Y = 2

Y = 1

E

X−axis Y = 3

1

9 10 6 5
7

9 10 6 5

11 2

8 03
4

2
111 0

2

8 3
7

0

11

4

7

4
1

9 10 6 5

Y= 0

8 3

Figure 2: Mesh Y-coordinate determination

1

7

6

BA
X = 3X = 2

5

0

4

X = 1

10

2

3

X = 0

9

8

11

10

1
2

4
3 0

6

X = 0

9

8

11

7
5

Figure 3: Mesh X-coordinate determination

line 12 invokes the procedure recursively with the truncated
floorplan and shifted X axis. The Get X locations proce-
dure is similar to the Get Y locations procedure. The only
difference is that instead of the X axis, the Y axis shifts from
left to right, and each call to the procedure determines the
X location of a subset of the cores.

3.2.2 Complexity analysis
The Get X locations and the Get Y locations functions

are called at most O(|V |) times. If the nodes are sorted by
their X and Y co-ordinates respectively, determining the set
of cores in each iteration of the function takes O(|V |) time.
Hence, the overall complexity of the technique is O(|V |2).
3.3 Routing

After the mapping phase, we calculate the power con-
sumption due to the traces assuming that they are routed
through the shortest path, and sort them in the order of de-
creasing power consumption. Let sorted list denote the list
of traces in the sorted order. Our routing technique operates
on the traces in sorted list as follows.

• It routes the traces in the list by invoking the X-Y
routing technique. The X-Y technique routes all traces
along the X direction until X coordinate of the sink
core is reached, and then routes the trace along the Y
direction, until the sink core is reached. X-Y routing
is easy to implement, has an O(1) complexity, and is
known to be deadlock free. However, certain traces
may not be routed due to bandwidth violations on
router ports.

• Our technique adds all such un-routed traces to a list

5

8
3

4

6109

0

1

7

B: Mesh with layout

1

 8 3 7 0

9 10 6 5

411

A: Symbolic mesh

11 22

Figure 4: Symbolic and floorplanned mesh

Generate Mesh(floorplan F)

1 Initialize X = 0, Y = 0

2 Get Y locations(F, X)

3 Get X locations(F, Y)

end Generate mesh

Get Y locations(floorplan F, int X)

1 if F = NULL

2 return

3 end if

4 Fcur = F /* copy Floorplan to local data structure */

5 Xcur = X /* copy X axis local data structure */

6 C = get lowest core set(X) /* get cores closest to X axis */

7 for c ∈ C /* each core in core set C */

8 Yloc (c) = X

9 end for

10 Fcur = Fcur − C /* remove cores C from current floorplan */

11 Xcur = Xcur + 1 /* shift the X axis up */

12 Get Y locations(Fcur , Xcur) /*recursive call*/

end

Figure 5: Generating mesh from floorplan

called tbd trace list. A modified shortest path (MSP)
algorithm is invoked to determine alternative routes
for these traces.

3.3.1 MSP Routing
The MSP router is called for each traffic trace that is left

unmapped at the end of the X-Y routing stage. It attempts
to achieve the following objectives in decreasing order of
priority.

• Routes for the traces must satisfy bandwidth constraints.
It makes sure that traces are not routed through ports
that see a bandwidth violation.

• The routes should minimize power consumption. It in-
vokes Dijkstra’s shortest path algorithm to route traces
such that the number of hops, and corresponding power
consumption is minimized.

• The routes should avoid deadlocks. For deadlock avoid-
ance, we first define the channel dependency graph
(CDG) for the mesh. Given a mesh G(N, L) where
N denotes the set of routers, and L denotes the set
of physical links, and a routing function R, the CDG
is a directed graph G′(V ′, E′), where each edge l ∈ L
has a corresponding unique node v ∈ V ′, and there is
an edge e′ ∈ E′ for two adjacent links in {l1, l2} ∈ L
such that some trace is routed through l1 followed by
l2. A routing technique is deadlock free if the CDG
does not contain cycles [2]. While routing traces, our
algorithm finds shortest paths by avoiding turns that
cause a cycle in the graph and therefore, avoids dead-
locks. If deadlocks cannot be avoided, virtual channels
are introduced to break them.

139

c7 c7
L7L6

L4L3

L2L1

c6,c8

L7

L4

L2L1

(D)

c2,c4,c6c1,c2,c4,c8

c3,c4,c7 L5

E

(G)(F)

c5
c7

c7c2,c4

FD

BA

C

L6

c7
c5

c1

D

C

c6

(A)

c8 c6

c2

MSP routing

X−Y routing
(C)

c3

c2

c4 c8
c2,c4

c8 c6

c4

c7

c7

L3

(E)

B

F
E

A L4

L2L1

c8

(B)

L5c6,c8

c1,c2,c8

c3,c7

c7 c7

c2,c6

L7L6

L4L3

L2L1

c7

c7

L3

L6L7

C

E

FD

BA

L7

L1

c6

c4
c5,c7

c5,c6,c8

c2,c4,c6c1,c2,c4,c8

c3,c4,c7 L5

c7
L7L6

L4L3

L2

D

BA

C L3

L6L7

L4

L2L1
E

F

Figure 6: X-Y and MSP routing

MSP (R, G(N, L), tbd trace list)

1 G′ = obtain CDG(R, G(N, L))

2 for t ∈ tbd trace list

3 for e ∈ L /* For all physical links in I */

4 if (ω(e) + ω(t) > Ω) /* BW violation */

5 edge weight(e) = ∞ else edge weight(e) = 1

6 end if

7 end for

8 S = prevent turns(G′)
9 shortest path(t, I,R, S)

10 update CDG(G′, G)

11 end for

Figure 7: Bandwidth constrained route generation

The MSP algorithm is illustrated in Figure 6. In the fig-
ure, the traces are denoted by cm, where m is the trace
number, and the links are denoted by Ln, where n is the
link number. The MSP initially generates the CDG of the
mesh based on the traces that are routed by X-Y technique.
For the CTG shown in 6(A), 6(B) depicts the core-router
mapping, and the trace routes. The corresponding CDG is
depicted in 6(C). The edges of the CDG are annotated by
the traces that induce them. Traces c4 and c5 are left un-
mapped as they violate the bandwidth constraints. Hence,
they are added to the tbd trace list.

For each trace in tbd trace list, MSP sweeps the links L
of the mesh, and assigns an edge weight of ∞ to all links that
would see a bandwidth violation on the corresponding ports
constituting the links, if the trace was routed through that
link. The algorithm then inspects the CDG, and prohibits
turns that will cause a cycle in the graph. This step is
followed by invoking the Dijkstra’s shortest path algorithm
to find a route for the trace on the mesh, subject to the
prohibited turns. Figure 6(D) depicts the routing of trace
c4 by invoking the shortest path algorithm. The updated
CDG is shown in Figure 6(E).

Since power minimization has a higher priority over dead-
lock avoidance, we allow a deadlock creating turn if any
other turn results in a path that is longer than the shortest
path route for the trace. In case a deadlock creating turn is
taken, an additional virtual channel is assigned to that port
to remove the deadlock. In the figure, trace c5 is routed such
that it creates a deadlock at the router to which core D is
mapped. Hence, a virtual channel is introduced, denoted by
two L7 nodes in the CDG of Figure 6(G).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
Benchmark

Router power Link power
Total power

Figure 8: Power comparisons

0

0.2

0.4

0.6

0.8

1

1.2

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
Benchmark

Area Link length

Figure 9: Area and link length comparisons

3.3.1.1 Algorithm.
Figure 7 details the MSP algorithm. Line 1 generates the

CDG for the mesh corresponding to the traces that have al-
ready been routed. For each trace in the list, lines 2 through
7 set the edge weight of all the links to infinity that result in
bandwidth violations if the trace is routed through that link.
Line 8 generates a list S of turns that have to be avoided to
ensure deadlock freedom. Line 9 invokes Dijkstra’s shortest
path algorithm to find an alternative route for the trace,
subject to the edge weights, and the prohibited turns. Fi-
nally, line 10 updates the CDG.

3.3.1.2 Complexity analysis.
The complexity of the MSP algorithm is dominated by

Dijkstra’s shortest path algorithm for each trace, and has a
complexity of O(E2). Although the worst case complexity
of the routing technique is that of the MSP, the actual com-
plexity is much lower as MSP is invoked only on traces that
violate bandwidth constraints on the router ports.

4. RESULTS
We present experimental results obtained by execution of

our technique on multimedia applications obtained from Hu
et al. [7], and Jalabert et al. [15] (see table 1).

We compared our results with the existing approach that
optimally generates the symbolic mesh based NoC by in-
voking an ILP formulation, and then invokes an existing
floorplanner (Parquet [14]) to generate the final layout. Fig-
ures 8 compares the router power consumption, link power
consumption, and total power consumption respectively, be-
tween our technique and the existing approach. In the fig-

140

1722 21 19

Mesh with layoutSymbolic meshSystem−level floorplan

10

4

12

16 2

20 520

19
21

23

6
15

13

19

23

17

11

7 21

9

336

5

1 0
12

421615

17

18

22

24
1098

7

1114

13

22

01

8

14

13

12

23

36

4

2418

1 0

8

14
5

21615

2418109

7

11 20

Figure 10: Results for 25 node set top box

Benchmark |V | |E| Benchmark |V | |E|
G1: mp3 decoder 5 3 G6: MWD 12 13
G2: 263 encoder 7 8 G7: 263 enc mp3 dec 14 12
G3: mp3 encoder 8 8 G8: mp3 enc mp3 dec 15 12
G4: 263 decoder 8 9 G9: 263 enc mp3 enc 15 17

G5: MPEG4 12 13 G10: Set-top box 25 40

Table 1: Benchmarks

ID Core type Functionality ID Core type Functionality
0 ASIC ME 13 MEM Buf.
1 DSP DCT and IDCT 14 ASIC Demux
2 DSP Qnt & IQnt 15 DSP VLD
3 DSP FP 16 DSP IQ
4 ASIC VLE 17 DSP IDCT
5 CPU MC, and ADD 18 CPU MC/Add
6 MEM FS0, FS1, FS2 19 MEM FS4, FS5
7 DSP FP 20 DSP Huff.dec.
8 DSP FFT, PA model 21 DSP Bitres.
9 DSP Filter, MDCT 22 DSP IMDCT/sum
10 CPU It.enc. 23 MEM Buf.
11 ASIC Bitres. 24 ASIC Synch.
12 ASIC Synch

Table 2: Node descriptions

ure, the bars are normalized to the corresponding value of
the solution produced by the existing approach. On an av-
erage our technique consumed 0.69 times the link power,
1.12 times the router power, and 0.89 times the total power,
compared to the existing approach. As technology shrinks
further, the contribution of link power to the total power
consumption will increase and consequently, the total power
consumption of the designs generated by our technique will
reduce further.

Figure 9 compares the area consumption of the SoC and
the total link length respectively, between our technique
and the existing approach. In this figure as well, the bars
are normalized to the corresponding solutions produced by
the existing approach. The designs produced by our tech-
nique on average consume 0.99 the area and 0.45 times the
link lengths compared to the existing approach. Thus, our
technique generates designs with much lower physical link
lengths with minimal impact on the area.

We applied our technique to a set-top box application that
we obtained from the work presented by Hu et al. [7]. We
refer the reader to [7] for complete description of the CTG.
Table 2 presents the identifier, type, and the functionality
of the cores of the CTG. Figure 10 presents the floorplan,
symbolic mesh based topology, and the actual mesh based
architecture for the application. In the figure, the dotted
lines in part (C) refer to over the cell routing of the wires.

5. CONCLUSION
We presented a novel mesh based NoC design technique

that effectively accounts for the increased link power con-
sumption that is observed in nanoscale technologies. The
technique accounts for the link power consumption by in-

tegrating the system-level layout in to the design process.
The SoC floorplan is generated by optimizing a weighted
sum of the area and link power consumption. The core
to router mapping stage of the technique operates on the
system-level layout of the SoC and attempts to maintain
the overall structure of the floorplan. Thus, the mesh de-
sign is obtained with an awareness of the SoC layout. The
experimental results demonstrate that in comparison to an
approach that first generates the NoC and then obtains the
SoC floorplan, our technique produces solutions with much
shorter link lengths, dramatically lower link power consump-
tion, lower overall power consumption and minimal impact
on area. The benefits of our technique are expected to in-
crease with technology scaling.

6. REFERENCES
[1] Benini et al. ”Networks on Chips: A New SoC Paradigm”.

IEEE Computer, pages 70–78, January 2002.

[2] Dally et al. ”Route Packet, Not Wires: On-Chip
Interconnection Networks”. In DAC, June 2002.

[3] STMicroelectronics Inc.
http://www.st.com/stonline/press/news/year2005/t1741t.htm,
December 2005.

[4] N. Banerjee, P. Vellanki, and K. S. Chatha . “A Power and
Performance Model for Network-on-Chip Architectures ”. In
DATE, Paris, France, February 2004.

[5] Srinivasan et al. . “Linear Programming based Techniques for
Synthesis of Network-on-Chip Architectures” . IEEE
Transactions on VLSI Systems, 14(4):407–420, 2006.

[6] Murali et al.. ”Bandwidth-Constrained Mapping of Cores onto
NoC Architectures”. In DATE, 2004.

[7] Hu et al.. ”Energy-Aware Mapping for Tile-based NoC
Architectures Under Performance Constraints”. In ASP-DAC,
2003.

[8] Manolache et al.. ”Fault and Energy-Aware Communication
Mapping with Guaranteed Latency for Applications
Implemented on NoC”. In DAC, 2005.

[9] Srinivasan et al.. ”A Technique for Low Energy Mapping and
Routing in Network-on-Chip Architectures”. In ISLPED, 2005.

[10] Zvika Guz et al. “Efficient Link Capacity and QoS Design for
Network-on-Chip”. In DATE, March 2006.

[11] Angiolini et al. “Contrasting NoC and a Traditional
Interconnect Fabric with Layout Awareness”. In DATE, March
2006.

[12] Steenhof et al. “Network-on-Chip for High-End Consumer
Electronics TV System Architectures ”. In DATE, March 2006.

[13] Kangmin Lee et al. . “Low Power Network-on-Chip for High
Performance SoC Design ”. IEEE Transactions on VLSI
Systems, 14(2):148–160, 2006.

[14] Adya et al.. ”Fixed Outline Floorplanning: Enabling
Hierarchical Design”. IEEE Transactions on VLSI Systems,
11(6):1120–1135, December 2003.

[15] Jalabert et al.. ”xpipesCompiler: A tool for instantiating
application specific Networks on Chip”. In DATE, 2004.

141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

