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ABSTRACT
Dedicated operating systems for embedded systems are fast
being phased out due to their use of manual optimization,
which provides high performance and small footprint, but
also requires high maintenance and portability costs every
time hardware evolves.

In this paper, we describe an approach based on cus-
tomization of generic operating system modules. Our ap-
proach uses a remote customization server to automatically
generate highly optimized code that is then loaded and ex-
ecuted in the kernel of the embedded device. This process
combines the advantages of generic systems software code
(leveraging portability and evolution costs) with the advan-
tages of customization (small footprint and low overhead).

We have validated our customization infrastructure with
a case study: the TCP/IP stack of the Linux kernel. We
analyzed the performance and size of the customized code
generated on three platforms: a Pentium III (600MHz), an
ARM SA1100 (200Mhz) on a COMPAQ iPAQ, and a 486
(40MHz). The customized code runs about 25% faster and
its size reduces by up to a factor of 20. The throughput of
the protocol stack improves by up to 21%.

Categories and Subject Descriptors
D.4 [Software]: Operating Systems—Organization and De-
sign; C.3 [Special-purpose and Application-based Sys-
tems]: [Real-time and embedded systems]

General Terms
Performance, Design, Experimentation
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1. INTRODUCTION
Traditionally, embedded systems have made use of oper-

ating systems (OSes) that are either proprietary to some
device manufacturer ( e.g., Palm personal digital assistant),
or dedicated to embedded devices ( e.g., QNX). In both situ-
ations, OSes are highly customized for the specific hardware
features, the environment characteristics, and the function-
alities needed by the applications. The customization pro-
cess aims to eliminate unnecessary functionalities and in-
stantiate the remaining ones with respect to parameters of
the device usage context. This process typically consists
of propagating configuration values, optimizing away condi-
tionals depending on configuration values, replacing expen-
sive indirect function invocations with direct ones etc. As a
result, the key systems components such as memory man-
agement and process scheduling are heavily optimized in
time and/or space. For a device manufacturer OS, the cus-
tomization process can be pushed further because the target
is even narrower than for an OS for embedded devices.

Still, this pragmatic approach to developing OSes falls
short of keeping pace with the rapid evolution of hardware
features, environment characteristics and functionalities of
new applications. Indeed, customization is generally per-
formed manually. The process is tedious, error-prone, and
causes a proliferation of OS versions. Also, more funda-
mentally, most OSes for embedded systems are incompati-
ble with mainstream desktop OSes, creating a separation be-
tween these two worlds. Because of these drawbacks, propri-
etary and custom operating systems are slowly being phased
out [5].

In recent years, mainstream OSes like Linux and Microsoft
Windows have been emerging as the industry standards for
embedded systems. A key difference in these OSes is that
they are general purpose. As such, their highly generic de-
sign results in large code size and many levels of perfor-
mance overhead. Nevertheless, the use of these OSes is in-
dispensable for devices to be standards-compliant and inter-
operable at the levels of hardware and software.

In this paper, we propose an approach to reconciling cus-
tom OSes and general-purpose OSes. This approach con-
sists of automatically customizing general-purpose systems
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modules for a given usage context. Upon request, modules
are remotely customized on a server. Once produced, the
customized module is loaded into the kernel of the embed-
ded system. Customized code is faster and occupies less
space. Because it is performed outside the embedded sys-
tem, customization does not incur any significant overhead.
Because customized modules are produced and loaded on-
demand, the embedded system need no longer store large,
generic code bases implementing a wide range of features.

To realize our approach, we have developed a customiza-
tion infrastructure, composed of an architecture, specific
mechanisms, and a customization engine. When an appli-
cation running on a device needs to invoke a customizable
system call, it issues a customization request as early as the
customization values are known. The customization context
is sent via a dedicated channel to a remote customization
server. This server invokes a customization engine with both
the corresponding systems module and the customization
context. Customization automatically produces the highly
optimized module that is then sent to the embedded device
to be loaded and used.

We have validated our customization infrastructure with
a case study: the TCP/IP stack of the Linux kernel. This
case study has demonstrated the benefits of our approach
in terms of code size and performance on three different
hardware platforms.

Specifically, our experiments show that customized code is
notably improved in terms of both execution time and size.
For the UDP subsystem, the code size produced is less than
5% of the size of the generic code. For TCP, this ratio is less
than 3%. The execution time of the code in the case of UDP
decreases by about 26% on a Pentium III running at 600MHz
and the local throughput for 1Kb packets increases by about
13%. For a favorable packet size of 64b, this improvement
is about 16%. On a 486, the increase in throughput for 1Kb
packets is about 27%. For TCP, the throughput increases
by about 10% on the Pentium III and about 23% on the
486. On an iPAQ running an SA1100 processor at 200MHz,
we observe an improvement of about 18% in the throughput
of 1Kb packets for UDP.

The rest of the paper is organized as follows. Section 2
presents the key components of our customization infras-
tructure. In Section 3, our infrastructure is validated with a
case study, namely, the customization of the TCP/IP sub-
system of the Linux kernel. Section 4 details the experi-
ments we conducted to assess the performance benefits of
our approach and the results of the performance analysis.
Section 6 discusses related work. Section 7 concludes and
explores future work.

2. CUSTOMIZATION INFRASTRUCTURE
In this section, we first give an overview of our customiza-
tion infrastructure (see Figure 1) by examining the various
steps involved in requesting and utilizing a customized mod-
ule. This overview is completed by a detailed presentation
of three key parts of our infrastructure, namely, the context
manager, the code manager, and the customization com-
ponent. Finally, we discuss the issues related to potential
latency of system calls caused by on-demand customization.

2.1 A Complete Scenario
The customization infrastructure is defined with respect

to a set of system calls, said to be customizable. Non-
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Figure 1: Remote customization infrastructure

customizable system calls are handled in a standard way
through their generic implementations. A global customiza-
tion interface includes an entry for each customizable system
call aimed to launch its customization for a given context.
For example, assuming the socket send system call is cus-
tomizable, an application can request a customized version
of it by invoking do_customize_send with the file descrip-
tor, the destination address of the packets, the protocol to
use and the associated flags, and socket options. This re-
quest is issued as soon as these customization values become
known. This invocation returns a token that is then used
by the application to refer to the version of the system call,
customized for the specific context. Invoking the customized
version of the send system call is done via customized_send

that takes three arguments less than the former: the cus-
tomization parameters. However, it takes one additional
argument, namely the token. Let us now examine how each
component of our customization infrastructure, depicted in
Figure 1, contributes to request, produce, install and utilize
customized systems code.

An entry of a customization interface corresponds to a
macro (e.g., do_customize_send) that expands into a unique
system call (sys_specialize) that is passed the system call
number and the customization arguments. The customiza-
tion kernel subsystem passes the customization values to
the context manager. The customization values pertinent
for the system call are extracted and used to issue a lookup
request to the code manager. In the send example, the val-
ues such as the destination address and the protocol num-
ber are collected by the context manager. Upon request,
the code manager looks up the cache of customized code.
A cache hit produces the address of the customized version
of a system call for a given context. This address is used
to create a new entry in a local system call table associated
with the corresponding process. The entry number is re-
turned as the customization token to the context manager,
which returns it to the application through the system call.
It serves to later invoke the customized system call (e.g., via
customized_send).

If the cache does not contain the requested customized
system call, then the context manager issues a customiza-
tion request to the server-side context manager, via the con-
text channel, as shown in Figure 1. The server-side context
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manager forwards the request to the customization subsys-
tem. This subsystem consists of a run-time layer and a
customization engine. The run-time layer is responsible for
“virtualizing” the device-side kernel memory with the re-
ceived customization values so that the system call code can
be customized remotely. This operation, further detailed in
Section 2.4.2, enables the customization engine to then run
as if it resided on the device. Once the customized code
is automatically produced, it is passed to the server-side
code manager, which transmits it to the device-side code
manager, via the customized code channel. A new entry is
created in the cache of customized code. The process then
proceeds as in the case of a cache hit, updating the process
system call table and returning a token to the application.

When a customized system call is invoked by the ap-
plication, because the customization has been issued ear-
lier, it is hopefully already loaded in the cache. If not,
the application waits until customization is completed and
the cache is loaded – the potential system call latency is
later discussed in Section 2.5. At this point, the invoca-
tion of the corresponding customization interface entry (e.g.,
customized_send) branches to the code address of the sys-
tem call table of the application process, indexed by the
customization token.

Lastly, when the customized system call is no longer needed,
the application can release the token by passing it to the
function cancel_customize. This operation can free the
corresponding memory space, if no other process points to
this token and/or the device runs low in memory.

Let us give further details and practical insights on the
key parts of the customization infrastructure.

2.2 Context Manager
On the client side. The context manager consists of ex-

tracting the customization values from the arguments of the
application customization request. These values have been
identified by the systems programmer who made the sys-
tem call customizable (discussed in Section 2.4.1), and com-
piled into the context manager for the pertinent system call.
This process is a trade-off in that too fine-grained customiza-
tion values may cause too many customization versions; but,
too coarse-grained customization values may lead to under-
optimized code [12]. In the send example, we decided to
only include in the customization context the values that
are either guaranteed, or do not tend to change within a
connection, such as the socket descriptor, the destination
address etc. This is discussed in more detail in Section 3.

The context manager can also be configured to keep the
number of specialized versions of a given module bounded.
It may do so using one of several policies, such as gradually
ignoring customization parameters to reduce the specificity
of implementations.

Finally, notice that the context manager could also receive
an empty customization context. Such context would lead
the customization server to supply the generic version of the
functionality to the device. It is worth mentioning that al-
though this version will yield the same level of performance,
it will be smaller in size, as even a null specialization con-
text implicitly implies the exclusion of code features that are
not used by the requested functionality. Thus, the result-
ing code can be seen as the result of a simple dependency
analysis where only code that the customized functionality
strictly depends upon is returned.

On the server side. The context manager processes the
customization values in preparation for the customization
phase. This task consists of storing these values in a cus-
tomization table. The index in this table is a hash number
corresponding to the original kernel memory address of the
customization value. The customization table is used by the
customization run time as explained later.

2.3 Code Manager
On the client side. The code manager maintains a cache

of customized code indexed by the system call number and
the customization context. Notice that this cache is shared
across the application processes of the device. The code
manager runs in kernel mode and thus directly loads the
customized code into the kernel, without using intermediate
storage or buffering.

Similar to the policies in the context manager, the code
manager can be configured with a cache-replacement policy.
An LRU policy would cause the Least Recently Used entry in
the cache to be reused if the number of customized versions
for a particular system call exceeded a threshold.

Regardless of the code manager policy, it should be noted
that the customized code produced is several times smaller
than the generic code, as shown by our experimental results
(Section 4). As a result, the system can tolerate up to 20
customizations before it occupies as much space as the orig-
inal code would have on the device.

On the server side. The code manager simply transmits
the customized code to the device via the customized code
channel.

2.4 Customization Component
The customization component consists of a customization

engine and a run-time layer.

2.4.1 Customization Engine
Program specialization [10] is used to perform the cus-

tomization of systems code. Specialization tools have been
successfully used in a number of systems projects to optimize
critical systems code [14, 13]. Conceptually, a specializer
takes a generic program as input along with a specializa-
tion context consisting of values of known data items. It
then evaluates the parts of the program that depend only
on these known values, and produces a simplified program,
which is thus specialized for the supplied specialization con-
text.

Specialization consists of two phases: for a given program
and a description of its customization context, a binding-
time analysis determines all of the computations that can
be performed at customization time. These computations
solely depend on values known at customization time. Then,
for given customization values, the program is specialized by
executing the customization-time operations and producing
code corresponding to computations that depend on non-
customization values.

In this project, we have used the Tempo C specializer [4] to
perform specialization. Unlike other specializers, in Tempo,
the customization context is specified by the programmer
using a high-level declarative language [12]. A declaration
is introduced for each program entity to be considered for
customization.
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2.4.2 Run-Time Layer
The run-time layer plays a key role in enabling both the re-

use of an existing program specializer and the specialization
of kernel code remotely. To do so, the run-time layer handles
(1) the access to kernel memory and (2) the execution of
customization-time functions.

Access to kernel memory. It relies on the customization
table filled by the server-side context manager, introduced
earlier. Then, in the course of specializing some systems
code, a machine instruction may require dereferencing a ker-
nel memory address. This dereferencing raises an exception
handled by the run-time layer. Its task is to interpret the
machine instruction that caused the exception. This inter-
pretation consists of emulating the effects of the machine
instruction, replacing the kernel memory address by the cor-
responding address in the customization table. For example,
consider the instruction MOV al,c021cca0. The run-time
layer computes the corresponding address of c021cca0 in the
customization table and then loads it in register al. Once
this interpretation is completed, the execution of special-
ization is made to resume at the following instruction. A
future optimization for this process will be to create a di-
rect mapping between the target memory addresses and the
specialization context table in the specializing process, so as
to remove this layer of emulation. In this way, the above
translations would be handled by the memory management
unit.

Execution of customization-time functions. It occurs when-
ever a function can be completely executed during customiza-
tion. That is, it solely depends on values known at cus-
tomization time. For example, in the send case, function
sockfd_lookup only depends on the available value of the
socket descriptor. Such functions are detected by the anal-
ysis phase of specialization. A call to these functions, in the
code to be specialized, is replaced by a remote-procedure
call to the device-side kernel.

2.5 Customization Latency
Performing customization on-demand may increase the la-

tency of system calls, as there is some processing that must
be performed before normal operation can resume. We have
quantified this potential latency in Section 4 for our current
setup. Evidently, it directly depends on the time required
to customize code on the server.

Experiments show that such a latency may be eliminated
in practice because the customization context often becomes
available early enough, so that the customized code is pro-
duced and loaded by the time the customized system call is
invoked. In the following, we propose strategies to amortize
or eliminate this latency.

Customizing in advance. Customization may be performed
in advance, anticipating that a system call be used in a
particular context. For example, when an FTP session is
opened, under normal circumstances, customization would
be invoked when the connect system call is called to open a
TCP connection. To reduce latency, customization can be
performed between the time that the destination IP address
and port are specified, and when the user has entered the
login and password.

Using conservative customization contexts. When mak-
ing system calls customizable, the systems programmer may
define a conservative customization context to enable cus-
tomization to be triggered earlier. As a byproduct, this

strategy should increase sharing of customized versions across
the device applications.

Exploiting the intrinsic latency of system calls. Intuitively,
customization can be triggered when some kind of session
is to be opened (e.g., socket connect). At this stage, parts
of the customization context have become known. We can
exploit the time taken by the system call to actually create
the session to perform the customization. As an example of
this latency, the time taken for a TCP three-way handshake
is twice the round-trip time (RTT) between two hosts. In
wide area networks, this can range from a few milliseconds
to the order of one or two seconds over certain radio links
such as GPRS.

3. CASE STUDY: CUSTOMIZATION OF
LINUX TCP/IP

To validate our approach and to assess its benefits, we
have applied our customization infrastructure to the TCP/IP
stack of the Linux kernel (version 2.4.20). This subsystem
consists of nearly 70,000 lines of code, and can take up be-
tween 500 kilobytes and 1 megabyte of space in the kernel
binary.

In this section, we discuss the customization opportuni-
ties in this subsystem and present an example of customiza-
tion using a code fragment from the socket interface to the
TCP/IP stack.

3.1 Customization Opportunities
Identifying specialization opportunities amounts to find-

ing fragments of code that, in a given execution context,
depend on invariants and thus can be evaluated once and
for all at specialization time.

We identified several customization opportunities in the
TCP/IP subsystem that form part of the customization con-
text. Constancy in the relationship between certain enti-
ties, such as file descriptors and low level socket structures
can be used to customize the code, avoiding lookups of low-
level socket structures. Socket options that are usually in-
terpreted can be assumed to be constant over the lifetime
of a data transfer session, and inlined in the code1. Given
these opportunities, the customization engine automatically
performs the following optimizations:

• Protocol layers are flattened through function inlining.
This means that data is processed by a linear stream
of code instead of being transferred from one module
to the other.

• Routing decisions are hoisted and factorized, as in
many cases, routes can be determined at customiza-
tion time from known connection properties.

• Buffer allocations are optimized with the knowledge of
certain sizes of low-level socket buffers that depend on
the type of I/O (blocking or non-blocking) and appli-
cation data unit (ADU).

• Loops are both unrolled and simplified, using con-
stants such as the ADU transferred and the maximum
segment size associated with a TCP connection, which
becomes known during the TCP handshake.

1A detailed presentation of TCP/IP customization is pre-
sented in a technical report [2].
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asmlinkage long sys_sendto(int fd, void * buff, size_t len,
unsigned flags, struct sockaddr *addr, int addr_len)

{

struct socket *sock;
char address[MAX_SOCK_ADDR];
int err;
struct msghdr msg;
struct iovec iov;

sock = sockfd_lookup(fd, &err); /* 1 */

if (!sock) /* 2 */
goto out;

iov.iov_base=buff;
iov.iov_len=len;
msg.msg_name=NULL; /* 3 */

msg.msg_iov=&iov;
msg.msg_iovlen=1; /* 4 */

msg.msg_control=NULL; /* 5 */

msg.msg_controllen=0; /* 6 */

msg.msg_namelen=0; /* 7 */

if(addr) /* 8 */
{

err = move_addr_to_kernel(addr, addr_len, address);
if (err < 0)

goto out_put;
msg.msg_name=address;
msg.msg_namelen=addr_len;

}
if (sock->file->f_flags & O_NONBLOCK) /* 9 */

flags |= MSG_DONTWAIT;

msg.msg_flags = flags;

err = sock_sendmsg(sock, &msg, len); /* 10 */
...

}

Figure 2: The sendto system call

• Conditionals are eliminated, with the knowledge of cer-
tain socket options and flags, such as asynchronous or
synchronous transfer, the keep-alive option, etc.

• etc.

3.2 An Example of Customization
We illustrate how customization opportunities are exploited

in practice, using a code fragment from the implementation
of the socket interface to the TCP/IP stack, displayed in
Figure 2. This code fragment shows variables known at cus-
tomization time, as well as a function call that solely depend
on customization values (i.e., a customization-time func-
tion). These customization elements are invariant through
the scope of the customization (i.e. while the corresponding
token is valid), and are underlined.

As illustrated in Figure 2, the customization context in-
cludes the file descriptor passed to the system call, the flags,
the destination address, and the length of the destination
address.

Let us now examine how the customization engine (i.e.,
the specializer) uses this context to optimize the code shown
in Figure 2. Only the program lines impacted by specializa-
tion have been numbered.

• Line 1. The call to the sockfd_lookup function is
factorized out and reduced at customization time. The
resulting value is inlined into the code. Looking at the

asmlinkage long sys_sendto(void * buff, size_t len)
{

struct iovec iov;
iov.iov_base=buff;
iov.iov_len=len;
msg.msg_iov=&iov;

{
/* sock = 0x3f04bb00 flags=56 ... */
{ ... /* sock_sendmsg inlined */ }
{ ... /* inet_sendmsg inlined */ }
{ ... /* tcp_sendmsg inlined */ }

}
...

}

Figure 3: The customized sendto system call

implementation of this function, we find that it has its
roots in the filesystem subsystem, and can be expected
to hinder the instruction and data caches. Recall that
such a function call translates into a remote-procedure
call from the customization server to the device.

• Line 2. The conditional is eliminated, since it depends
on the socket structure sock, which is known at cus-
tomization time.

• Lines 3-7. Some assignments are factorized out and
memorized at specialization time, as they once again
depend on customization values. It is worth mention-
ing that such optimizations also reduce the amount of
data to be passed through from one layer to the other.

• Lines 8-9. The conditionals are also eliminated as they
depend on customization values.

Finally, control is transferred to the sock_sendmsg function
which, in the original code, goes on to call an indirect ref-
erence to a function. This indirection depends on the pro-
tocol (UDP or TCP) being used. In the customized code
generated, the function is directly inlined, depending on the
protocol specified in the customization context. A sugared
version of the generated code is shown in Figure 3.

It is worth mentioning that, should at any time, an as-
sumption used to generate the specialized code ceased to
be valid, this code would be rendered invalid as well. Al-
though the code has been specialized in such a way that
most events that cause this to happen are highly improba-
ble, they are nevertheless possible, and one needs to ensure
that on their occurrence, the system is returned to a con-
sistent state. This is done using code guards [14]. The dy-
namics of establishing guards and the process of replugging
has been described in considerable detail elsewhere [14].

4. PERFORMANCE ANALYSIS
In this section, we present the results of a series of experi-

ments conducted on our customization infrastructure as part
of the case study described in Section 3. Our setup con-
sisted of three target devices: a Pentium III (PIII, 600MHz,
128MB RAM), a 486 (40MHz, 32MB RAM) and an iPAQ
with an ARM SA1100 (200MHz, 32MB RAM). We used
version 2.4.20 of the Linux kernel for our implementation
and all our experiments. We first describe the experiments
conducted and then go on to present the results.
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4.1 Experiments
The experiments conducted compare the performance of

the original TCP/IP stack to that of the customized code
produced for performing basic data transfer. The measure-
ments were carried out in two stages:

Measuring code speedup. The following experiment was
repeated several times: send a burst of UDP pack-
ets over the local loop-back interface, and record the
number of CPU cycles taken by the pertinent code (i.e.
the socket, UDP and IP layers) in the non-customized
and customized versions. These measurements were
performed in-kernel.

Measuring throughput improvement. The Netperf bench-
mark suite [3] was used to find the impact of cus-
tomization on the actual data throughput, measured
over the local loop-back interface. The results shown
compare the throughput measured by the original im-
plementation of Netperf using the non-customized stack,
to a modified version using the customized code pro-
duced by the customization engine. The latter was
modified to use the customization interface.

Along with the results of these experiments, we also present
the associated overheads in performing customization.

4.2 Size and Performance of Customized Code
Figure 4(a) compares the number of CPU cycles consumed

by the Socket, UDP and IP layers before and after cus-
tomization. We find that there is an improvement of about
25% in the speed of the code. It should be noted that this
value is not affected by other kernel threads running on the
system, as the kernel we have used is non-preemptable.

Figure 4(b) compares the size of the customized code pro-
duced, to the size of the original code. The original code
corresponds to both the main and auxiliary functionalities
required to implement the protocol stack. The customized
code is a pruned and optimized version of the original code
for a given customization context. As can be noticed, the
customized code can be up to 20 times smaller than the
original code.

Figures 5(a) and 5(b) show a comparison between the
throughput of the Socket, UDP and IP layers before and
after customization, measured by the UDP stream test of
Netperf on the PIII. Figure 5(c) shows the same comparison
for the 486 and the iPAQ respectively.

On the PIII, for a favorable packet size of 64b, the im-
provement in throughput is found to be about 16%, and for
a more realistic size of 1Kb, it is about 13%. On the 486, the
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improvement for 1Kb packets is about 27%. For the iPAQ,
again with 1Kb packets, the improvement is about 18%.

Figures 6(a) and 6(b) show a comparison between the
throughput of the Socket, TCP and IP layers before and
after customization, measured by the TCP stream test of
Netperf on the PIII, 486 and iPAQ. Corresponding to a TCP
Maximum Segment Size of 1448 bytes, there is an improve-
ment of about 10% on the PIII, 23% on the 486 and 13% on
the iPAQ.
We observe a general trend that the throughput improve-
ment decreases as the processor gets faster. To understand
this, let us examine the kind of operations involved in both
the customizable code and the uncustomizable code. The
latter code is mainly dominated by operations that are in-
sensitive to clock rate increase, like memory transfers and
device overhead. Consequently, the ratio of the customiz-
able code and the uncustomizable code tends to diminish as
the clock rate increases.

Finally, Figure 7 shows the overhead of performing cus-
tomization with the current version of our customization
engine over an 802.11 (10Mbps) wireless LAN. It should be
noted that the current version of our customization engine
is assembled from components that are implemented as sep-
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Cold cache1 Warm cache
UDP 685ms 285ms
TCP 791ms 363ms

Figure 7: Total customization overhead including
network transfer time.

arate programs, running as independent processes. Also,
they are reloaded into memory every time customization
is performed. We are working on merging these compo-
nents, in particular the specializer and compiler and making
the customization engine a constantly running process. We
expect these changes and other optimizations, such as us-
ing precompiled headers, to improve the performance of the
customization engine dramatically. Indeed, the overhead is
presently dominated by these factors.

For the sake of completeness, if we assume that the above
mentioned inefficiencies are eliminated and that the cus-
tomization server is sufficiently powerful, removing the bot-
tleneck to the data transfer over the network, the overhead
is given by the following expression:

RTT ∗ (χ + �codesize/TCPwindowsize�)

where χ corresponds to the total number of invocations
of customization-time functions (in the network stack case,
only one). Our experiments have shown that the code pro-
duced is small enough to fit in one TCP window (the maxi-
mum size of code produced in the TCP/IP case being about
10 kilobytes). Thus, in an amortized sense, the overhead can
be said to be given by the following simplified expression:
RTT ∗ (χ + 1).

5. DISCUSSION
In this section, we discuss two key issues required to scale

up the application of our approach to an operating system.

5.1 Applicability of our approach
The application of program specialization to OS subsys-

tems is not new. Pu et. al have demonstrated the successful
application of specialization to two important OS subsys-
tems, namely, filesystems and signals [14, 13]. In principle,
specialization can be applied to any subsystem which can
be invoked as a closure of a set of configuration values. In
filesystems, this closure is created when a file is opened, and
associated with a file descriptor. When an operation is in-
voked on this file descriptor, it is carried out in the context
of the values saved in the associated closure. In the network
subsystem, the socket descriptor usually plays the role of
identifying a closure. One of the problems encountered in
these previous works [14, 13] was the lack of such a rela-
tion in the signals subsystem. The problem was solved by
adding an identifier, last_sig_to, in the task structure of
every process to represent the context which was used for
specialization.

We generalize this solution by associating specialization
with a specialization token. The context referred to by this
token, which is specified at the time the system is engineered

1Note: The cache here has no relation to the customized
code cache in the client-side code manager.

for specialization, is collected by the context manager at
specialization time.

Note that although we provide the provisions necessary to
make any given subsystem amenable to specialization, the
actual activity of specialization is not trivial, and needs to
be considered separately for every subsystem in question.

5.2 Module dependencies
Modules in OS components often have dependencies that

mandate that they have certain features in order to interop-
erate. The question that arises in the context of our work,
then, is whether specialization may break interoperability.

One aspect of the question is addressed by program guards,
discussed earlier. If a given module were to access a feature
of another module that has been specialized out, then it
would hit upon the corresponding program guard installed
for the invariant that was used to specialize the feature out.
This situation, in effect, makes it critical that a thorough
analysis of the module to be specialized be done, and that all
possible violations of the invariant be protected by guards.

The other aspect of this question, which involves the com-
position of specialized components in operating system has
not been addressed in the literature. Dominic Duggan pro-
vides some insights into this issue in his work on the Type-
based hot swapping of running modules [6]. This issue, how-
ever, is well beyond the scope of this paper, and we leave it
open for future work.

6. RELATED WORK
The main purpose of customizability in OS research is to

provide flexible mechanisms and policies, so that function-
alities can suit the needs of applications and users. In a
survey on such customizability, Denys et. al [9] classify such
customizability on two bases: (1) The initiator of adaptation
(human, application or OS) and (2) The time of adaptation
(at compile time or run time). Our customization infras-
tructure performs application-driven customization at run
time. In this section, we discuss works in these categories
and then go on to discuss other approaches.

Application-driven and run-time adaptation. Many ap-
proaches are aimed to provide a fixed set of behaviors that
can be selected at run time by the applications. These be-
haviors are developed by the systems programmer, and are
supported by various interfaces and mechanisms. Let us
briefly present three projects along this line.

Exokernel, introduced by Engler et. al [7] tries to elimi-
nate all kernel abstractions and almost lower the kernel in-
terface to the bare hardware. Each customized behavior cor-
responds to a systems program; it is introduced as a special
Library Operating Systems. User programs can then choose
the OS libraries to use at run time. The Kea project [16] in-
troduces customized behavior through a portal. Depending
on the portal an application uses, the kernel decides which
implementation of the requested service to use. Like the
Exokernel, Kea requires the customized behaviors attached
to portal to be developed by a systems programmer. In
SPIN [1], the application developer may program the cus-
tomized behaviors of the OS to match the application re-
quirements.

Other approaches. The VINO project [15] explores the
general purpose automatic approach for customization. VINO
automatically adapts to newly arising situations based on
the periodic retrieval of statistics maintained by each sub-
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system and through traces of requests and results. This
project did not lead to an implementation. One could imag-
ine that such information could be used similarly to drive our
customization infrastructure. OSKit is used to produce cus-
tomized OSes [8]. It consists of a framework and a module
library with interfaces that are used to implement a specific
OS.

Another possible criterion in taxonomy, valuable in our
context is what the customization operates on. Most efforts
to customize OSes operate on functional elements, defining
policies for scheduling [11], efficient implementations of sub-
systems [7] etc. Our customization infrastructure, on the
other hand, operates directly on code. In this way, cus-
tomization can cross-cut functional elements. This is par-
ticularly useful when aiming to reduce the size of the system
footprint, since narrowing the customization context reduces
the code size in proportion. Many OSes use configuration
systems that produce customized binaries with the help of
context-sensitive macros, which expand into context-specific
code. The configuration system of the Linux kernel is one
such example. These systems, however, are highly coarse-
grained and inflexible. Loading code with macros and pre-
processor directives (like #ifdefs) adversely affects its read-
ability. Furthermore, it is virtually impossible to express
customization behaviors with rich customization contexts.

In most adaptive systems, adaptation of mechanisms and
policies are carried out on the same system they reside on.
With our remote customization infrastructure, we separate
out this adaptive step to be executed on a powerful server.
This separation is indispensable in carrying out any non-
trivial run-time customization for a device with limited re-
sources. Indeed, on the device, the customization process
can incur significant overhead both in space and time. As
the gap between the capabilities of mobile systems and main-
stream servers increases, this separation becomes increas-
ingly crucial.

7. CONCLUSION AND FUTURE WORK
Embedded systems use manually customized systems code

due to the performance requirements of small footprint and
low overhead. One of the growing concerns in embedded
systems is the trade-offs between these performance require-
ments and frequent porting and maintenance requirements,
due to the increasing speed of hardware evolution. At the
same time, using generic systems code is an alternative that
suffers from an increasing footprint and decreasing perfor-
mance, due to added functionality that is unnecessary for
embedded systems. In this paper, we describe an approach
based on customization of generic systems code that com-
bines the leverage of generic code with the performance and
footprint advantages of customized code.

Our approach uses program specialization, in particular,
tool-based specialization. We have created a customization
infrastructure, consisting of a customization server, context
managers, and code managers. The customization server
uses specific kernel context to create specialized code from
generic code. We applied our approach to Linux TCP/IP
stack, reducing the code size by a factor of 20, improving the
execution speed by up to 25%, and increasing the through-
put by up to 21%. The portability and maintenance advan-
tages of our approach are demonstrated by our experiments
on three architectures: Pentium III, Intel 486, and ARM.

Among our future projects, we intend to apply our cus-

tomization infrastructure to other subsystems, like mem-
ory management. Also, we plan to explore other general-
purpose operating systems like Windows.
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