
De Bruijn Graph as a Low Latency Scalable Architecture
for Energy Efficient Massive NoCs

Mohammad Hosseinabady

University of Bristol, UK

mohammad@cs.bris.ac.uk

Mohammad Reza Kakoee

University of Tehran, Iran
kakoee@cad.ece.ut.ac.ir

Jimson Mathew

University of Bristol, UK

jimson@cs.bris.ac.uk

Dhiraj K. Pradhan

University of Bristol, UK

pradhan@cs.bris.ac.uk

Abstract
In this paper, we use the generalized binary de Bruijn (GBDB)
graph as a scalable and efficient network topology for an on-chip
communication network. Using just two-layer wiring, we
propose an optimum tile-based implementation for a GBDB-
based Network-on-Chip (NoC). Our experimental results show
that the latency and energy consumption of generalized de Bruijn
graph are much less with compared to Mesh and Torus, the two
common NoC architectures in the literature.

1. Introduction
Multi-core processors (MCPs) and multiprocessor
systems-on-chips (MPSoCs) have experienced a rapid
development during the last decade. Network-on-Chip
(NoC) is a promising technique for communication among
cores in Multi-core processors (MCPs) and multiprocessor
systems-on-chips (MPSoCs) designs. As the number of
elements and transactions among cores in MCPs and
MPSoCs increases, the power consumption and
performance become a key issue in the design and
implementation of large scale systems.
Many researchers have proposed the NoC as a scalable
communication fabric for MPSoCs and MCPs. Angiolini
et al. [1] analyze the strengths and weaknesses of NoCs by
performing a thorough analysis based on actual chip
floorplans after the interconnection place&route stages
and after a clock tree has been distributed across the
layout. Intel has announced an 80-core prototype to deliver
more than one trillion floating point operations per second
[2]. In this elaborate chip, each core contains a 5–port
message passing router as well as the computing element.
Cores in this chip are connected in a 2D mesh network that
implements a message passing scheme. Hosseinabady et
al. [3] propose the generalized de Bruijn graph as a
reliable network topology. They also propose a reliable
routing algorithm to detour a faulty switch.
 The motivation behind this paper is to study the new
topologies for high-performance massive NoCs as well as
addressing their implementations. The de Bruijn graph
(DB graph) as a suitable topology for an on-chip network
communication is considered in this paper. This graph has
many advantages such as small and fixed diameter, high
connectivity, easy routing, and high reliability.
The DB(2, k), which is called binary de Bruijn graph, can
be obtained as follows. If we represent a node I by a k-bit
binary number, say, I = Ik-1Ik-2…I1I0, then its neighbors can

be represented as Ik-2…I1I00, Ik-2…I1I01, 0Ik-1Ik-2…I1, and
1Ik-1Ik-2…I1. In other words, this graph corresponds to the
state graph of a shift register of length k. The shift register
changes a state by shifting in a digit in the state number in
one side, and then shifting out one bit digit from the other
side.
The two main drawbacks of the de Bruijn graph are its
expandability and its VLSI implementation. Based on
these drawbacks, there are just a few implementations of
this network in parallel processing field. Note that
expandability is not a concern in the NoC implementation,
because we do not need to expand an NoC when it is
implemented on a single chip. The de Bruijn graphs are
scalable. It means that using the same switch architecture
and network algorithms (e.g., routing), we can construct a
de Bruijn graph with any desired number of nodes.
Generalized binary de Bruijn (GBDB) graph, which is
explained later, is used in this paper as the on-chip
interconnection network to communicate between cores in
an SoC design. We have proposed an optimum tile-based
implementation for GBDB graph. In this implementation,
using just two-layer wiring, we can implement the
interconnection of an NoC with any desired number of
nodes.
The rest of this paper is organized as follows: A few
definitions are explained in the next section as
preliminaries. Section 3 describes using of generalized de
Bruijn graph in an NoC design and proposes a switch
structure. Section 4 deals with the VLSI implementation of
GBDB graph. Experimental results will be given in
Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries
A few definitions which are used in the rest of this paper
are explained in this section.
2.1 Network-on-Chip
Switches and links are two main parts of an NoC
architecture. Using a network topology, links connect the
switches together. A network topology should allow each
node to send packets to every other node. A routing
algorithm determines the path along which a packet is
delivered to the destination node. Source routing, which is
considered in this paper, is a common routing algorithm in
which the entire path from a source to a destination is
known to the sender and is included when sending data.

978-3-9810801-3-1/DATE08 © 2008 EDAA

2.2 Generalized binary de Bruijn graph
Generalized binary de Bruijn graph prepares a high speed
network to perform the communication among cores in an
NoC. This graph can be defined as follow.
Definition: A generalized binary de Bruijn graph,
GDB(2,n) (or GBDB(n)), has n nodes, where n can be any
desired integer value. Each two nodes i and j are
connected together if they satisfy one of the following
equations:
i ≡ 2*j+r (mod n), r=0 or 1 (1)
j ≡ 2*i+r (mod n), r=0 or 1 (2)

Example 1: Figure 1 shows the generalized binary de
Bruijn graph for n=10 nodes. As it can be seen in this
figure, each link in this graph connects two nodes whose
node numbers satisfy one of the Equations (1) or (2). For
example, Nodes i=8 and j=6 satisfy Equation (2) with
r=0, that is 2*8+0 ≡ 6(mod 10).

0

1

5

9

4

8

2

36

7
Figure 1 An example of GBDB(2, 10)

To use the same switch structure for all nodes in an NoC,
we keep self-loops and redundant links between two
nodes.
The generalized de Bruijn graph has a lot of features that
make it suitable for implementation of reliable networks.
The most important feature, which is denoted in Theorem
1, is the logarithmic relationship between the diameter of a
generalized de Bruijn graph and the number of its nodes.
Theorem 1: The diameter of a generalized de Bruijn graph
GDB(d,n), which is defined as the maximum among the
lengths of shortest paths between all possible pairs of
nodes, is not greater than  ndlog [4].

3. NoC Architecture
Using a topology in an NoC, switches are connected
together. Using this topology and a routing algorithm,
switches route packets from a source core to destination
cores.
In this section we explain a simple switch architecture as
well as the NoC topology and its corresponding routing
algorithm.
A simple virtual channel switch is used to implement our
NoC [3]. We have considered a generalized binary de
Bruijn graph as the network topology. Without loss of
generality, we use the topology of Figure 1 as an example
to explain our methods on this topology.
Using Equation (1) and starting from Nodes 0 and n-1(i.e.,
Node 9), we can fined two link-disjoint spanning trees
which are shown in Figure 2.

To construct the tree of Figure 2-a, we start from Node 0
and using the modular Equation (1), we obtain the
connected nodes to Node 0 (i.e., Node 0, Node 1). This
equation shows that there is a self-loop around Node 0.
For the sake of generality and simplicity, we keep this
self-loop in the tree structure. Node 0 is a parent for Node
1. The binary complement of the remainder part in the
Equation (1) (i.e., r) is used as a label for the link
connected to corresponding Nodes. Using the Equation
(1) for Node 1, we can obtain its children (i.e., Nodes 2 for
r = 0 and 3 for r=1). Note that in this tree (Tree 1 of Figure
2-a), the node number of a child node is greater than the
node number of its parent. We construct this tree until all
children nodes have a node number less than their parents’
node number. Starting from Node 9 and using similar
method, we can construct the spanning tree of Figure 2-b.

0

1

2 3

4

98

765

9

8

76

5

0 1

2 3 4

0

1

5

9

4

8

2

36

7

(a) Tree1 (b) Tree 2

(c) GBDB(10)

0

1 0

00

0

11

1

1

0

0

0

0 0

0

1

11

1

1

1

1

0

1 1

1
1

0

0

0

0

0

0
0

0
1 1

1

0

Figure 2 Two link-disjoint spanning trees for GBDB(14)

These two spanning trees cover all links and nodes in the
corresponding generalized de Bruijn graph. Based on
Figure 2, each node has at most two children and at most
two parents. A directed link that connects a node to its
parent represents a Parental relation (P-relation); and a
directed link that connects a node to its child represents a
Filial relation (F-relation). For example, the link between
Nodes 8 and 7 in Figure 2-b shows a P-relation for Node
8, and an F-relation for Node 7. Labels that are shown on
each link in Figure 2 are assigned to each port of the
switches in an NoC. Using these labels and the link
relation (Parental or Filial), each switch can distinguish a
specific output port to route an incoming packet [3].

4. VLSI implementation
NoC implementation of multiprocessor systems requires
the planarization of the interconnect network onto the
silicon floorplan. Using VLSI technology with two wiring
layers, the generalized de Bruijn graph can easily be
implemented. As we discussed in Figure 2, the two binary
disjoint trees can cover all links in a generalized binary de
Bruijn graph. Therefore, because a binary tree is a planar
graph, we can implement the links of the threes in a wiring

layer without intersection, and similarly we can implement
the links of the other tree in the second wiring layer.

Core Core Core Core

Core Core Core Core

Core Core Core Core

Switc
h

Tile

Bypass
links

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

1

5

9

4

8

2

36

7

0

 3 7 4

 6 8 9

0 1 5 2

0 1 3 6 9

5 2 7 8 4

(a)

(b) (c)
Figure 3 Tile-based generalized binary de Bruijn topology

Our goal is to map the generalized binary de Bruijn
topology to a tile-based architecture (Figure 3) to
minimize the use of bypass links in the implemented NoC.
In the sequel, we formulate this problem and propose an
integer linear programming (ILP) method to solve it.
Let us to show a tile structure with p rows and q columns
by T(p, q). Starting from left-top corner of the tile
structure and moving to right, we assign a label from t0 to
tpq-1 to tiles, like those of Figure 3-a. Therefore

{ }1210 ...,,, −= pqttttT is a set containing tiles. We also use
the set of { }1210 ...,,, −= nggggG to show nodes in the
generalized binary de Bruijn graph GBDB(n).
The tile-based implementation is a mapping TG →:β ,
where ji tg =)(β denotes that the switch gi of the GBDB
graph is mapped on the switch of tile tj of T. Using a
binary decision variable with two indices,

{ }pqnpqjnixX ij ≤−=−== ;1,...,2,1,0;1,...,2,1,0; , we
can model the tile-based mapping.



 =

=
otherwise

tgif
x ji

ij 0
)(1 β

 (3)

The following constraints on the binary variables X should
be considered for our model. First, each switch in the
GBDB should be mapped on only one tile, that is

1=∑
i

ijx (4)

Second, two different switches in the GBDB should not be
mapped on the same tile, that is

1≤∑
j

ijx

 (5)

Considering these two constraints, we have to minimize
the cost of interconnections between tiles. The total
interconnection cost can be shown by Equation (6), where
xij and xkl show that switch i and k of the GBDB are

mapped on tiles j and l, respectively; αik is a binary
decision variable that is 1 only when the two switches i
and k in the GBDB are connected together; and Cjl is the
cost of connecting the two tiles j and l.

∑ jlklijik Cxxα

 (6)

The cost, Cjl, is defined as the number of channels along
the links connecting two tiles j and l in the tile
architecture. Note that in a tile architecture a channel is the
connection between each two adjacent tiles. For example,
in Figure 3-a the C01=1 and C24=3.
The cost function of Equation (6) has a quadratic form.
Example 5: Considering GBDB(10) and the tile
architecture of size 2x5 and 3x4 and solving the
corresponding integer linear programming problem,
Figure 3-b, c show the mapping of GBDB on these tile
architectures.

5. Experimental Results
We have implemented the proposed switch and reliability
technique using RTL synthesizable VHDL code. We have
also synthesized the switch with UMC 0.18 µm and
VDD=1.8v technology using Synopsys Design Compiler
tool. In this section, we discuss the obtained results.
The synthesizable switch has four different parts: input
FIFOs, switch fabric, arbiter, and router (containing the
virtual channel controller). Figure 4 shows dynamic
power, leakage power, and area of different parts of the
switch. As shown in this figure, FIFO and router parts
consume about 88.34 percent of the all dynamic power
consumption in the switch. In addition, 66.81 percent of
the leakage power is consumed in FIFO parts. The FIFO
parts also occupy 63.02 percent of the switch area.
We have also synthesized the proposed switch structure
for different sizes of the three network topologies (i.e.,
Mesh, Torus, and Generalized binary de Bruijn). Figure 5
compares the area of switches with different sizes in three
different topologies. As it can be seen in this figure, the
area of de Bruijn topology is much less than those of Mesh
and Torus topologies. Note that, the numbers within the
figure are scaled by the area of the generalized de Bruijn
graph with 100 nodes. As shown in this figure, the
generalized de Bruijn graph based NoC is smaller than
Mesh and Torus. For example for n=100, where n is the
number of nodes, the Torus switch is 1.19 times and Mesh
switch is 1.7 times larger than the switch in generalized de
Bruijn topology; and for n=200, the Torus switch is 1.40
times and Mesh switch is 1.80 times larger than the switch
in generalized de Bruijn topology.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Area Power leakage

SF
Fifo_vhdl
arbiter
router

45.27%

11.29%

43.07%

0.37%

66.81%

20.98%

11.90%
0.31%0.37%

63.02%

11.72%

24.89%

Figure 4 Parameters of different switch parts

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000
2000000

0 50 100 150 200 250 300 350
Number of nodes in the topology

A
re

a
um

2

Mesh
Torus
de Bruijn

1

1.19
1.7

1.13

1.58

2.04

Figure 5 Switch comparison

Note that the size of a switch changes by the length of its
flits. The length of the flit in a switch is determined by
source address, destination address, and tag bits regarding
to the topology and size of the network. The length of
source/destination address has a logarithmic relationship
with the size of topology; also the tag length has a direct
relationship with the diameter of the topology.

The same as the area, power consumption of the
generalized binary de Bruijn switch is much less than that
those of the two other topologies. In addition, the power
consumption of a switch also has a linear relationship with
the diameter of the topology in which the switch is used.
Figure 6 compares the leakage power consumption of
switches in the three different NoC topologies. It can
easily be seen that the de Bruijn leakage power is much
less than those of Mesh and Torus for large topologies.

0

1

2

3

4

5

6

7

8

14 16 20 30 36 40 50 80 100 140 200 300

Mesh
Torus
de Bruijn

Number of nodes

Le
ak

ag
e

Po
w

er
 (u

W
)

Figure 6 leakage power

Considering the power consumption and latency of the
simulated traffic, we have computed the consumed energy
which is shown in Figure 7 after normalization. As it can
be seen, the GBDB is much suitable for energy efficient
portable devices.

En
er

gy
 c

on
su

m
pt

io
n

Number of Nodes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100 120 140 160

Mesh
Torus
GBDB

Figure 7 Energy consumption for three topologies

Using the proposed tile-based implementation of Section
5, Figure 8 compares the number of channels needed to
implement the three different NoC topologies with
different sizes on tiles.

of
Row

of
column

of
nodes
of NoC

mesh Torus GBDB

2 5 10 13 26 24
2 7 14 19 38 32
4 4 16 24 48 48
4 5 20 31 62 59
4 5 18 31 62 56
5 6 30 49 98 86
6 6 36 60 120 98
5 8 40 67 134 126
10 5 50 85 170 140

Tile dimension # of used channel in the tile

Figure 8 Layout cost comparison

6. Conclusion
In this paper, we have used the generalized de Bruijn
graph as the on-chip interconnection to communicate
between cores in an SoC design. We have proposed an
optimum tile based algorithm to implement the de Bruijn
graph based NoC. Our experimental results show the
efficiency of generalized de Bruijn graph to implement an
NoC.

Acknowledgments
This work is funded by the Engineering and Physical
Science Research Council (EPSRC). The authors would
like to thank the reviewers of this paper for very insightful
suggestions and comments for improving the paper.

References
[1] F. Angiolini, P. Meloni, S. M. Carta, L. Raffo, and L.

Benini, “A layout-aware analysis of Networks-on-Chip and
traditional interconnects for MPSoCs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 3, 2007.

[2] “Teraflops Research Chip,” http
http://www.intel.com/research/platform/terascale/teraflops.h
tm.

[3] M. Hosseinabady, M.R. Kakoee, J. Mathew, and D. K.
Pradhan, “Reliable Network-on-Chip Based on Generalized
de Bruijn Graph,” IEEE International High Level Design
Validation and Test Workshop (HLDVT’07), pp. 3-10,
2007.

[4] D. Z. Du, and F. K. Hwang, “Generalized de Bruijn
digraphs,” Networks, Vol. 18, pp. 27-38, 1988.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

