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Abstract 
In this paper, we use the generalized binary de Bruijn (GBDB) 
graph as a scalable and efficient network topology for an on-chip 
communication network. Using just two-layer wiring, we 
propose an optimum tile-based implementation for a GBDB-
based Network-on-Chip (NoC). Our experimental results show 
that the latency and energy consumption of generalized de Bruijn 
graph are much less with compared to Mesh and Torus, the two 
common NoC architectures in the literature.  

1. Introduction 
Multi-core processors (MCPs) and multiprocessor 
systems-on-chips (MPSoCs) have experienced a rapid 
development during the last decade. Network-on-Chip 
(NoC) is a promising technique for communication among 
cores in Multi-core processors (MCPs) and multiprocessor 
systems-on-chips (MPSoCs) designs. As the number of 
elements and transactions among cores in MCPs and 
MPSoCs increases, the power consumption and 
performance become a key issue in the design and 
implementation of large scale systems.   
Many researchers have proposed the NoC as a scalable 
communication fabric for MPSoCs and MCPs. Angiolini 
et al. [1] analyze the strengths and weaknesses of NoCs by 
performing a thorough analysis based on actual chip 
floorplans after the interconnection place&route stages 
and after a clock tree has been distributed across the 
layout. Intel has announced an 80-core prototype to deliver 
more than one trillion floating point operations per second 
[2]. In this elaborate chip, each core contains a 5–port 
message passing router as well as the computing element. 
Cores in this chip are connected in a 2D mesh network that 
implements a message passing scheme. Hosseinabady et 
al. [3] propose the generalized de Bruijn graph as a 
reliable network topology. They also propose a reliable 
routing algorithm to detour a faulty switch.  
 The motivation behind this paper is to study the new 
topologies for high-performance massive NoCs as well as 
addressing their implementations. The de Bruijn graph 
(DB graph) as a suitable topology for an on-chip network 
communication is considered in this paper. This graph has 
many advantages such as small and fixed diameter, high 
connectivity, easy routing, and high reliability.  
The DB(2, k), which is called binary de Bruijn graph, can 
be obtained as follows. If we represent a node I by a k-bit 
binary number, say, I = Ik-1Ik-2…I1I0, then its neighbors can 

be represented as Ik-2…I1I00, Ik-2…I1I01, 0Ik-1Ik-2…I1, and 
1Ik-1Ik-2…I1. In other words, this graph corresponds to the 
state graph of a shift register of length k. The shift register 
changes a state by shifting in a digit in the state number in 
one side, and then shifting out one bit digit from the other 
side. 
The two main drawbacks of the de Bruijn graph are its 
expandability and its VLSI implementation. Based on 
these drawbacks, there are just a few implementations of 
this network in parallel processing field. Note that 
expandability is not a concern in the NoC implementation, 
because we do not need to expand an NoC when it is 
implemented on a single chip. The de Bruijn graphs are 
scalable. It means that using the same switch architecture 
and network algorithms (e.g., routing), we can construct a 
de Bruijn graph with any desired number of nodes.  
Generalized binary de Bruijn (GBDB) graph, which is 
explained later, is used in this paper as the on-chip 
interconnection network to communicate between cores in 
an SoC design. We have proposed an optimum tile-based 
implementation for GBDB graph. In this implementation, 
using just two-layer wiring, we can implement the 
interconnection of an NoC with any desired number of 
nodes.  
The rest of this paper is organized as follows: A few 
definitions are explained in the next section as 
preliminaries. Section 3 describes using of generalized de 
Bruijn graph in an NoC design and proposes a switch 
structure. Section 4 deals with the VLSI implementation of 
GBDB graph. Experimental results will be given in 
Section 5. Finally, Section 6 concludes the paper. 

2. Preliminaries 
A few definitions which are used in the rest of this paper 
are explained in this section. 
2.1 Network-on-Chip 
Switches and links are two main parts of an NoC 
architecture. Using a network topology, links connect the 
switches together. A network topology should allow each 
node to send packets to every other node. A routing 
algorithm determines the path along which a packet is 
delivered to the destination node. Source routing, which is 
considered in this paper, is a common routing algorithm in 
which the entire path from a source to a destination is 
known to the sender and is included when sending data.  
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2.2 Generalized binary de Bruijn graph 
Generalized binary de Bruijn graph prepares a high speed 
network to perform the communication among cores in an 
NoC.  This graph can be defined as follow. 
Definition: A generalized binary de Bruijn graph, 
GDB(2,n) (or GBDB(n)), has n nodes, where n can be any 
desired integer value. Each two nodes i and j are 
connected together if they satisfy one of the following 
equations: 
i ≡ 2*j+r (mod n),  r=0 or 1  (1)   
j ≡ 2*i+r (mod n),  r=0 or 1  (2)    

Example 1: Figure 1 shows the generalized binary de 
Bruijn graph for n=10 nodes. As it can be seen in this 
figure, each link in this graph connects two nodes whose 
node numbers satisfy one of the Equations  (1) or  (2). For 
example, Nodes i=8 and j=6 satisfy Equation  (2) with 
r=0, that is 2*8+0 ≡ 6(mod 10).  
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Figure 1 An example of GBDB(2, 10) 

To use the same switch structure for all nodes in an NoC, 
we keep self-loops and redundant links between two 
nodes.  
The generalized de Bruijn graph has a lot of features that 
make it suitable for implementation of reliable networks. 
The most important feature, which is denoted in Theorem 
1, is the logarithmic relationship between the diameter of a 
generalized de Bruijn graph and the number of its nodes.  
Theorem 1: The diameter of a generalized de Bruijn graph 
GDB(d,n), which is defined as the maximum among the 
lengths of shortest paths between all possible pairs of 
nodes, is not greater than  ndlog  [4]. 

3. NoC Architecture 
Using a topology in an NoC, switches are connected 
together. Using this topology and a routing algorithm, 
switches route packets from a source core to destination 
cores. 
In this section we explain a simple switch architecture as 
well as the NoC topology and its corresponding routing 
algorithm. 
A simple virtual channel switch is used to implement our 
NoC [3]. We have considered a generalized binary de 
Bruijn graph as the network topology. Without loss of 
generality, we use the topology of Figure 1 as an example 
to explain our methods on this topology.  
Using Equation (1) and starting from Nodes 0 and n-1(i.e., 
Node 9), we can fined two link-disjoint spanning trees 
which are shown in Figure 2. 

To construct the tree of Figure 2-a, we start from Node 0 
and using the modular Equation (1), we obtain the 
connected nodes to Node 0 (i.e., Node 0, Node 1). This 
equation shows that there is a self-loop around Node 0. 
For the sake of generality and simplicity, we keep this 
self-loop in the tree structure. Node 0 is a parent for Node 
1. The binary complement of the remainder part in the 
Equation  (1) (i.e., r) is used as a label for the link 
connected to corresponding Nodes. Using the Equation  
(1) for Node 1, we can obtain its children (i.e., Nodes 2 for 
r = 0 and 3 for r=1). Note that in this tree (Tree 1 of Figure 
2-a), the node number of a child node is greater than the 
node number of its parent. We construct this tree until all 
children nodes have a node number less than their parents’ 
node number. Starting from Node 9 and using similar 
method, we can construct the spanning tree of Figure 2-b. 
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Figure 2 Two link-disjoint spanning trees for GBDB(14) 

These two spanning trees cover all links and nodes in the 
corresponding generalized de Bruijn graph. Based on 
Figure 2, each node has at most two children and at most 
two parents. A directed link that connects a node to its 
parent represents a Parental relation (P-relation); and a 
directed link that connects a node to its child represents a 
Filial relation (F-relation). For example, the link between 
Nodes 8 and 7 in Figure 2-b shows a P-relation for Node 
8, and an F-relation for Node 7.  Labels that are shown on 
each link in Figure 2 are assigned to each port of the 
switches in an NoC. Using these labels and the link 
relation (Parental or Filial), each switch can distinguish a 
specific output port to route an incoming packet [3].  

4. VLSI implementation 
NoC implementation of multiprocessor systems requires 
the planarization of the interconnect network onto the 
silicon floorplan. Using VLSI technology with two wiring 
layers, the generalized de Bruijn graph can easily be 
implemented. As we discussed in Figure 2, the two binary 
disjoint trees can cover all links in a generalized binary de 
Bruijn graph. Therefore, because a binary tree is a planar 
graph, we can implement the links of the threes in a wiring 



layer without intersection, and similarly we can implement 
the links of the other tree in the second wiring layer.  
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Figure 3  Tile-based generalized binary de Bruijn topology 

Our goal is to map the generalized binary de Bruijn 
topology to a tile-based architecture (Figure 3) to 
minimize the use of bypass links in the implemented NoC. 
In the sequel, we formulate this problem and propose an 
integer linear programming (ILP) method to solve it. 
Let us to show a tile structure with p rows and q columns 
by T(p, q). Starting from left-top corner of the tile 
structure and moving to right, we assign a label from t0 to 
tpq-1 to tiles, like those of Figure 3-a. Therefore 

{ }1210 ...,,, −= pqttttT  is a set containing tiles. We also use 
the set of { }1210 ...,,, −= nggggG  to show nodes in the 
generalized binary de Bruijn graph GBDB(n). 
The tile-based implementation is a mapping TG →:β , 
where ji tg =)(β denotes that the switch gi of the GBDB 
graph is mapped on the switch of tile tj of T. Using a 
binary decision variable with two indices, 

{ }pqnpqjnixX ij ≤−=−== ;1,...,2,1,0;1,...,2,1,0; , we 
can model the tile-based mapping. 



 =

=
otherwise

tgif
x ji

ij 0
)(1 β

 

 (3)   

The following constraints on the binary variables X should 
be considered for our model. First, each switch in the 
GBDB should be mapped on only one tile, that is 

1=∑
i

ijx   (4)   

Second, two different switches in the GBDB should not be 
mapped on the same tile, that is  

1≤∑
j

ijx
 

 (5)   

Considering these two constraints, we have to minimize 
the cost of interconnections between tiles. The total 
interconnection cost can be shown by Equation (6), where 
xij and xkl show that switch i and k of the GBDB are 

mapped on tiles j and l, respectively; αik is a binary 
decision variable that is 1 only when the two switches i 
and k in the GBDB are connected together; and Cjl is the 
cost of connecting the two tiles j and l. 

∑ jlklijik Cxxα
 

 (6)   

The cost, Cjl, is defined as the number of channels along 
the links connecting two tiles j and l in the tile 
architecture. Note that in a tile architecture a channel is the 
connection between each two adjacent tiles. For example, 
in Figure 3-a the C01=1 and C24=3. 
The cost function of Equation (6) has a quadratic form.  
Example 5: Considering GBDB(10) and the tile 
architecture of size 2x5 and 3x4 and solving the 
corresponding integer linear programming problem, 
Figure 3-b, c show the mapping of GBDB on these tile 
architectures. 

5. Experimental Results 
We have implemented the proposed switch and reliability 
technique using RTL synthesizable VHDL code. We have 
also synthesized the switch with UMC 0.18 µm and 
VDD=1.8v technology using Synopsys Design Compiler 
tool. In this section, we discuss the obtained results.  
The synthesizable switch has four different parts: input 
FIFOs, switch fabric, arbiter, and router (containing the 
virtual channel controller). Figure 4 shows dynamic 
power, leakage power, and area of different parts of the 
switch. As shown in this figure, FIFO and router parts 
consume about 88.34 percent of the all dynamic power 
consumption in the switch. In addition, 66.81 percent of 
the leakage power is consumed in FIFO parts. The FIFO 
parts also occupy 63.02 percent of the switch area. 
We have also synthesized the proposed switch structure 
for different sizes of the three network topologies (i.e., 
Mesh, Torus, and Generalized binary de Bruijn).  Figure 5 
compares the area of switches with different sizes in three 
different topologies. As it can be seen in this figure, the 
area of de Bruijn topology is much less than those of Mesh 
and Torus topologies. Note that, the numbers within the 
figure are scaled by the area of the generalized de Bruijn 
graph with 100 nodes. As shown in this figure, the 
generalized de Bruijn graph based NoC is smaller than 
Mesh and Torus. For example for n=100, where n is the 
number of nodes, the Torus switch is 1.19 times and Mesh 
switch is 1.7 times larger than the switch in generalized de 
Bruijn topology; and for n=200, the Torus switch is 1.40 
times and Mesh switch is 1.80 times larger than the switch 
in generalized de Bruijn topology.  



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Area Power leakage

SF
Fifo_vhdl
arbiter
router

45.27%

11.29%

43.07%

0.37%

66.81%

20.98%

11.90%
0.31%0.37%

63.02%

11.72%

24.89%

 
Figure 4 Parameters of different switch parts 
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Figure 5 Switch comparison 

Note that the size of a switch changes by the length of its 
flits. The length of the flit in a switch is determined by 
source address, destination address, and tag bits regarding 
to the topology and size of the network. The length of 
source/destination address has a logarithmic relationship 
with the size of topology; also the tag length has a direct 
relationship with the diameter of the topology.  

The same as the area, power consumption of the 
generalized binary de Bruijn switch is much less than that 
those of the two other topologies. In addition, the power 
consumption of a switch also has a linear relationship with 
the diameter of the topology in which the switch is used. 
Figure 6 compares the leakage power consumption of 
switches in the three different NoC topologies. It can 
easily be seen that the de Bruijn leakage power is much 
less than those of Mesh and Torus for large topologies. 
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Figure 6 leakage power  

Considering the power consumption and latency of the 
simulated traffic, we have computed the consumed energy 
which is shown in Figure 7 after normalization. As it can 
be seen, the GBDB is much suitable for energy efficient 
portable devices.  
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Figure 7 Energy consumption for three topologies 

Using the proposed tile-based implementation of Section 
5, Figure 8 compares the number of channels needed to 
implement the three different NoC topologies with 
different sizes on tiles. 

# of 
Row

# of 
column

# of 
nodes 
of NoC

mesh Torus GBDB

2 5 10 13 26 24
2 7 14 19 38 32
4 4 16 24 48 48
4 5 20 31 62 59
4 5 18 31 62 56
5 6 30 49 98 86
6 6 36 60 120 98
5 8 40 67 134 126
10 5 50 85 170 140
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Figure 8 Layout cost comparison 

6. Conclusion 
In this paper, we have used the generalized de Bruijn 
graph as the on-chip interconnection to communicate 
between cores in an SoC design. We have proposed an 
optimum tile based algorithm to implement the de Bruijn 
graph based NoC. Our experimental results show the 
efficiency of generalized de Bruijn graph to implement an 
NoC. 
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