
Generic Multi-Phase Software-Pipelined Partial-FFT
on Instruction-Level-Parallel Architectures and SDR

Baseband Applications
Min Li†, David Novo†, Bruno Bougard†, Liesbet Van Der Perre† Francky Catthoor†

† Nomadic Embedded System Division, IMEC, Leuven, Belgium
Email: {limin, novo, bougardb, vdperre, catthoor}@imec.be

Abstract—The PFFT (Partial FFT) is an extended FFT where
only part of input or output bins are used. By pruning the
useless dataflow, the PFFT can potentially achieve a significant
speedup in many important applications. Although theoretical
aspects of the PFFT have been thoroughly studied in past
three decades, efficient implementations were rarely reported.
The most important obstacle is the highly irregular dataflow
and the associated control flow. In addition, a size-N PFFT
has 2N dataflow possibilities, so that delivering both flexibility
and efficiency in the same implementation is very challeng-
ing. This paper presents a generic scheme to map the highly
irregular dataflow of arbitrary PFFT onto ILP architectures
with highly efficient SWP (SoftWare-Pipelining). Constraints
and opportunities of algorithms and architecture are carefully
analyzed and exploited. We introduce a multi-phase partitioning,
bringing heterogeneous control structures and heterogeneous
software pipelining schemes to minimize control overheads and
to maximize the efficiency of SWP. The proposal has been tested
with 10 representative benchmarks extracted from baseband
applications. In experiments cycle-counts, instructions, NOPs,
L1D/L1P access/miss/hit are thoroughly analyzed. Comparing to
full FFTs with efficient SWP, our work reduces 20.5% - 87.5%
cycle-counts, 11.2% - 86.5% instructions, 16.1% - 79.4% L1D
cache accesses and 19.5% - 87.1% L1P cache accesses. To the
best of our knowledge, this is the first reported work about the
generic software-pipelined PFFT on ILP architectures.

I. INTRODUCTION

The FFT (Fast Fourier Transform) is doubtlessly one of
the most important and fundamental techniques in the signal
processing world. Among the countless hardware and software
implementations, the vast majority of them handle the cases
in which the entire set of the input/output bins are required.
However, in many real-life applications this is not the case.
Long lists of examples can be found in the references of this
paper [1-2][4-11]. These partial output/input cases are extraor-
dinarily important for the future wireless systems [1], such
as the OFDMA (Orthogonal Frequency Division Multiplexing
Access) and cognitive radio [2].

Since we do not want to pay the price of the full FFT
for only part of the input/output bins, the redundant dataflow
can be pruned without changing the I/O behaviors. This
is called PFFT (Partial FFT). A small example of PFFT
dataflow graph is shown in Fig.1. In many applications the
percentage of required input/output bins is very small. For
instance, in the 3GPP LTE (Long Term Evolution), if the
OFMDA symbol size is 1024 and 12 users equally share

the available 600 sub-carriers, only 50 of the 1024 FFT
output bins (4.88%) are required for each mobile terminal
[3]. Hence, the computation/memory-access operations and
shuffling operations saved by the PFFT on practical platforms
will be very attractive.

Unfortunately, although the research of the PFFT can be
traced back to 1971 [4] and the theoretical aspects of the PFFT
have been thoroughly studied in the last three decades [1-2][4-
11], there were not many breakthroughs in the implementation.
We find very few papers about the PFFT in real-life systems.
The most important obstacle is that the data-flow and control-
flow in the PFFT destroy the full and nice regularity of the
FFT, so that efficient implementations on parallel architectures
become very difficult. The irregularity can be can be observed
in Fig.1. In addition, a size-N PFFT have 2N possibilities
regarding the input or output patterns. Clearly, delivering
full-flexibility and high-efficiency at the same time is very
difficult. These challenges are imposed on not only hardware
implementations but also software-based implementations.

Our work targets parallel programable architectures. In deep
sub-micron era, the none-recurring-engineering-cost soars up
and the time-to-market stress drastically increases. Hence,
leveraging programmable architectures and implementing sig-
nal processing in softwares are becoming popular in many
important application areas, such as the audio processing, the
video processing and the the SDR (Software Defined Radio)
[12]. Especially, the VLIW (Very Long Instruction Word) [13]
and the CGA (Coarse Grain Array) [14], as two of the ILP
(Instruction Level Parallel) architecture instances, have clearly
shown their promising potentials.

This paper presents a generic scheme to map the highly
irregular dataflow of the PFFT onto ILP architectures with
efficient SWP (SoftWare-Pipelining).

To eliminate the hardware and energy overhead of the run-
time instruction scheduler for ILP, the SWP was proposed as
an effective and efficient compilation/scheduling technique to
optimize the ILP resource-utilization at design-time [15]. The
key idea of the SWP is, if the loop is qualified, initializing
loop iteration i + 1 without completely finishing iteration i
with a fixed interval. In this way, multiple loop-iterations
will overlap with each other, executing simultaneously on ILP
architectures.

However, SWP of the PFFT is not straightforward at all.

978-3-9810801-3-1/DATE08 © 2008 EDAA

Fig. 1. Simple Example of Dataflow Graph in Partial FFT

The SWP is very sensitive to the regularity in loops [15].
Irregular dataflow in the innermost loop might disqualify the
loop for the SWP. Unfortunately, in many important PFFT ap-
plications such as the multi-resolution spectrum-scanning and
practical OFDMA demodulators, the PFFT data-flow is indeed
highly irregular. Hence, when developing a generic scheme for
software pipelining an arbitrary PFFT, the challenges are not
trivial.

In our work, opportunities and constraints of algorithms
and architectures are thoroughly analyzed and exploited. First,
different FFT dataflow variants are exploited to enable aggres-
sive optimizations in subsequent steps. Then, we propose to
partition the PFFT into three phases, so that heterogeneous
control flow structures and heterogeneous SWP schemes are
elaborately combined inside the PFFT. The control struc-
tures work on a very compact table with encoded dataflow
information, so that the flexibility is fully supported. Our
proposal achieves significant reductions in terms of cycle-
counts, instructions, L1D/L1P accesses/misses and so on. To
the best of our knowledge, this is the first reported work about
the generic software-pipelined PFFT on ILP architectures.

The remaining part of the papers consists of the following
sections: Section II surveys the related work; Section III
present our work; Section IV brings experiment results and
detailed analysis; Section V concludes the paper.

II. RELATED WORK

The PFFT research can be traced back to 1971. In [4] the
author first presented the idea of pruning useless dataflow in
FFTs. Later on, the theoretical aspects of PFFT had been
extensively studied in different application contexts [1-2][4-
11]. In [9] the frequency-shift property is used to increase
complexity-reduction. Various dataflow pruning algorithms are
studied and compared in [8]. In [2] the complexity reduction
is analyzed in the context of OFDM. In [1] the lower and
upper bounds of complexity-reductions are analyzed. The
above work focuses on the abstract complexity analysis, no
implementation aspects are not taken into account.

In [10] a bit-serial systolic-array based ASIC (Application
Specific Integrated Circuit) of PFFT is presented. The dataflow

is pruned with the help of the LDIF (Lattice Decomposition in
Frequency). The application context in [10] is OFDM systems
with a single-block output. However, it is not clear whether
the systolic array is flexible enough to handle arbitrary PFFT.
In [[6]] the general FFT pruning algorithm was introduced
with some implementation considerations. The proposed im-
plementation scheme is based on a N × log2N table with
0/1 elements, and a ”1” means a valid/useful dataflow. A
modified scheme is introduced in [11] for OFDM systems.
A software implementation is also introduced in this paper,
but the targeted platform is a desktop processor, not a low
power ILP architecture.

Although the SWP of PFFT is not studied yet, the SWP of
full FFTs is very mature. The SWP of a full FFT is based
on the hierarchical structure. A Radix-2 Cooley-Tukey full
FFT is hierarchically composed by the following elements:
(1) Butterfly: a pair of operation defined by a twiddle factor
on a given pair of memory locations. (2) Butterfly-groups: a
group of butterflies that are next to each other in a consecutive
way. (3)Stages: a Radix-2 Cooley-Turk FFT consists of log2N
stages. Each stage of the FFT consists of a fixed number of
butterfly-groups. There are two popular schemes for FFT with
SWP.

The first scheme (SWP-1) is the SWP with butterfly-groups.
SWP-1 is implemented as a 3-level loop-nest. The outmost
handles stages, the inner one handles groups, and the inner-
most loop handles different butterflies in each butterfly-group.
Different butterflies do not depend on each other so that the
innermost loop can be easily software-pipelined. In addition,
the memory locations of different butterflies are next to each
other, so that the addresses can be easily generated [16].

The second scheme (SWP-2) is the SWP without butterfly-
groups. the SWP-2 is implemented as a 2-level loop-nest. The
innermost one handles all butterflies in each stage. With SWP-
2 the addresses for different butterflies need to be generated
with bit-and, shift and addition operations. The address gen-
eration schemes has been maturely studied [17].

III. GENERIC MULTI-PHASE SOFTWARE-PIPELINED PFFT
ON ILP ARCHITECTURE

A. Principles of The Design

The input and output-pruning in the FFT/IFFT are dual
problems and they can be solved in a similar way [1][4-8]. In
this paper we focus on output-pruning because it is important
for modern wireless baseband [2] [1].

Our goal is to delivery full-flexibility and high-efficiency
at the same time. In another word, the work is expected to
efficient enough while being applicable for arbitrary cases.
Our design exploits the opportunities and constraints in FFT
algorithms, ILP architectures and their interactions.

First of all, the abundant flexibility of FFT algorithms is
exploited. As we will show later, exploring FFT dataflow
variants enables aggressive optimizations in subsequent steps.

Second, we introduce heterogeneous control flow structures.
Specifically, different stages in the PFFT are partitioned into
3 phases, and different control flow structures are introduced

TABLE I
ADVANTAGES AND DISADVANTAGES OF SWP-1 AND SWP-2

Advantages Disadvantages
SWP-1 Minimal overhead for address-

generation, minimal twiddle-
factor access

Very high SWP overhead
(prologue and epilogue) when
group-size is small

SWP-2 Minimal SWP overhead (pro-
logue and epilogue)

High address-generation over-
head, redundant twiddle-factor
access

in the 3 phases. This is to preserve SWP-efficiency well and
minimize the control-overhead.

Third, based on the detailed analysis of different SWP
schemes, we apply heterogeneous SWP schemes in the 3
phases. The advantages and disadvantages of different SWP
schemes are summarized in Talble.I. Elaborately combining
multiple SWP schemes will leverage their advantages while
avoiding their negative sides.

Clearly, heterogeneities are introduced in our design. For
signal processing ASICs, regular and homogeneous structures
are preferred because higher structure-complexity incurs sig-
nificantly increased area and design-time. However, in pro-
grammable implementations the structure-complexity can be
easily implemented at low expenses. With appropriate opti-
mizations, the cost of the structure-complexity is just increased
code-size and slightly increased instruction-cache misses. We
will prove this in experiments with detailed profiling statistics.

B. The Exploration of Dataflow Variants

For PFFT with partial outputs, we explored different FFT
dataflow variants and selected the DTSO (Decimation-in-
Time Shuffling-on-Output) FFT as the dataflow structure.
The example shown in Fig.1 is a DTSO PFFT. This variant
is favored because of the following characteristics: (1) All
butterflies in the same butterfly-group share the same twiddle
factor. Hence, when applying the SWP-1 (with butterfly-
group), only entire butterfly-group need only one memory-
loading for twiddle-factor. (2) A significant part of the bit-
reversal operation can be pruned because it is on the output.
(3) We can structure the different stages into three phases, then
apply heterogeneous control structures and SWP schemes in
different phases, resulted in aggressive optimizations of cycle-
counts, number of instructions, memory accesses and so on.

C. SWP and Control Structures in Multiple-Phase PFFT

1) Overview: In the PFFT we can fully exploit the charac-
teristics of the ILP and the SWP. With heterogenous control
structures, SWP schemes and address-generation schemes, we
can achieve efficient memory access, minimized numbers of
instructions and maximized utilization of hardware-resources.
We propose the multiple-phase partitioning to bring-in and
organize the heterogeneity.

In Fig.1 the concept of multiple-phase partitioning is illus-
trated with a simple example. Note that in practical PFFT
applications the size and irregularity might be far beyond
the small example. In Fig.1, 7 stages of the DTSO PFFT
are partitioned into three phases: The phase-1 (stage 1,2,3)
consists of stages that are exactly the same as full FFT; The

phase-2 (stage 4,5) consists of stages containing large butterfly
groups; The phase-3 (stage 6,7) consists of stages containing
very small butterfly groups.

With the partitioning, heterogenous control structures, SWP
schemes and address-generation schemes can be introduced.

2) The phase-1: The phase 1 of the PFFT is exactly the
same as that in a full FFT, so that no extra control structure
is needed. Moreover, in phase-1 the size of butterfly-groups
is large enough to enable a long loop-body for the SWP-1
(with butterfly-group). Comparing to the SWP-2, the SWP-
1 brings minimized number of instructions and minimized
twiddle-factor accesses. Note that the optimization is enabled
because we select DTSO PFFT. With other FFT variants we
may have to apply the SWP-2 to reduce the SWP overheads,
at the expense of significant memory and address generation
overhead.

3) The phase-2: The left-boundary of the phase-2 is then
fixed because of the phase-1. The right-boundary of the phase-
2 is determined to ensure that the size of butterfly-groups
in phase-2 is still large enough to fill-in the parallel FUs
(Function Units) in the given ILP architecture. Hence, the
SWP-1 is applied in phase-2 as well. This again results in
minimal overhead for address-generations and loadings of
twiddle-factors.

In addition, the PFFT phase-2 requires extra control struc-
tures. In order to minimize the control-overhead, the con-
trol operations is on the granularity of butterfly-groups. In
addition, instead of always processing full butterfly-groups,
we differentiate the groups as that shown in Fig.3. These
groups have different innermost loop implementations. In this
way, significant amount of redundant computation and non-
computation operations can be eliminated. Note that the SWP
is not degraded by the control flow at all, the overhead of
control flow is minimized as well.

(a) (b) (c)
Fig. 3. Different butterfly-groups in Phase 2. (a): Full butterfly-group. (b):
Upper-half butterfly-group. (c): Lower-half butterfly-group. Differentiating the
groups is to eliminate redundant computation and memory-access operations
as much as possible.

4) The phase-3: The phase-3 is very different. As shown
in Fig.1, the total number of butterflies in the phase-3 is much
smaller than that in phase-1 and phase-2. In addition, the size
of butterfly-groups in the phase-3 becomes very small. The
total number of butterfly-groups is much larger.

According to the above observations, the SWP-1 will incur
large overhead because groups are small and number of groups
is large. Hence, we apply the SWP-2 (without butterfly-group).
Each stage needs only one prologue and one epilogue for
SWP-2, so that the overhead of SWP is minimized in the
phase-3. In this phase the control-operation is on individual
butterflies. Since the number of butterflies in the phase-3 is
small, the total overhead for SWP-2 is still relatively low when
comparing to the entire PFFT.

PFFT

Full Stages without Extra Control Flow (Phase 1)
SWP with butterfly-group (SWP-1)

Partial Stages with Extra Control Flow
Mixed SWP Schemes (SWP-1 and SWP-2)

Stages with Large Groups (Phase 2)
SWP with butterfly-group (SWP-1)

Full Groups

{
Group #0
. . .

Upper-Half Groups

{
Group #0
. . .

Lower-Half Groups

{
Group #0
. . .

Stages with Small Groups (Phase 3)
SWP without butterfly-group (SWP-2)

{
Butterfly #0
. . .

Fig. 2. The ILP-Friendly Software-Pipelined PFFT Described with Hierarchical Tree Structure

The above phase-partitioning with associated SWP schemes
are summarized as a tree-structure in Fig.2. By introducing
heterogeneity, the control-overhead is minimized. In addition,
the advantages of different SWP schemes are well combined
whereas the individual disadvantages are avoided.

TABLE II
ENCODED INFORMATION FOR MULTI-PHASE PFFT

Phase Encoded Information
1 The right-boundary of the phase-1
2 The total number of groups, offsets of individual group
3 The total number of butterflies, offsets of individual butterfly

D. Encoding Scheme for Dataflow Information

We encode the dataflow information in a very compact table
to enable full-flexibility. The encoding scheme is summarized
in Table.II. The entire phase-1 is described with only one
element. The elements (butterfly-groups or butterflies) in the
phase-2 and the phase-3 are described with total numbers and
the offsets of individual elements to the previous one.

With this scheme, for the stage 4 (the first stage in phase 2)
in Fig.2, there are 4 full butterfly-groups: group 1,2,4,5, so that
the encoded information associated with them is {4, 0, 1, 2, 1},
where ′4′ is the total number of full butterfly-groups, ′0′ is the
offset of the first group, ′1′(2 − 1) is the offset of the second
group to first group, ′2′(4 − 2) is the offset of the third to
second, and ′1′(5 − 4) is the offset of the fourth to third.
Similarly, the information for upper-half groups is {3, 2, 4, 1}.
The encoding scheme for the phase 3 is similar to phase 2,
except that the information in phase 3 describes butterflies but
not butterfly-groups.

The encoding scheme results in a highly compressed table:
The phase 1 is described with only one element; The phase
2 is compactly encoded because the description is on large
butterfly-groups containing many operations; The phase 3 is on
butterflies but the total number of butterflies is small. The com-
pact table is also an advantage of the heterogeneous control
structure. In the next section, we will show that the control-
overhead is relatively small because the PFFT significantly
reduces cycle-counts, instructions, memory accesses and so
on.

IV. EXPERIMENTS AND ANALYSIS

A. Benchmarks Set

We extracted 10 representative benchmarks from practical
baseband signal processing functionalities, include OFDMA
demodulation and the multi-resolution broad-band spectrum
scanning. The benchmarks are summarized in Table III.

The benchmarks cover a wide variety of irregular PFFT
dataflow patterns. In previous work, the studied PFFTs were
often with regularly-spaced (comb) output or block-output
with size being 2k. However, practical applications often
have much more complex scenarios. For instance, in the
specification of 3GPP LTE, the size of sub-carrier resource
block is an odd-number 25, not 2k. There might be multiple
size-25 blocks dispersed over available sub-carriers. Moreover,
for comb output in high-mobility 3GPP LTE demodulation
the spacing is not 2k neither. The output bins might consist of
many small-size clusters. These practical settings incurs highly
irregular dataflow in PFFT. It is very important to include these
practical scenarios in the benchmark set.

In order to evaluate the maximum potentials for the
benchmarks, we plot the abstract-complexity reduction-rate
in Fig.4. The reduction-rate of complex-multiplications,
complex-additions and shuffling-distances are plotted. The
shuffling-distance is defined as the sum of memory-location
distances in all shuffling-involved operations, such as bit-
reversal and butterflies.

TABLE III
SUMMARY OF BENCHMARKS

ID Baseband
Func.

FFT
Size

Output Indexes of Output Points Regularity

1 Spe.Scan 1024 128 {1,9,..,1017} High
2 Spe.Scan 2048 64 {256,257,..,383} High
3 Spectrum

Scan
2048 64 {1, 2, ..., 32} and

{256,260,..,508}
Low

4 OFDMA 512 25 {51, 52, ..., 75} Low
5 OFDMA 1024 50 {51, 52, ..., 75} and {151, 152,

..., 175}
Very
low

6 OFDMA 1024 125 {900, 901, ..., 1024} Low
7 OFDMA 512 25 {26, 31, ..., 146} Low
8 OFDMA 1024 50 {26, 31, ..., 271} Low
9 OFDMA 1024 50 {26, 51, ..., 251}, {27, 52, ...,

252}, {28, 53, ..., 253}, {29, 54,
..., 254} and {30, 55, ..., 255}

Very
low

10 OFDMA 1024 50 {1, 11, ..., 241} and {775, 715,
..., 1015}

High

B. Implementations and References

In this paper we include the results on VLIW, one of
the most important instances of ILP architectures. Since
the TMS320C6000 family is often used to benchmark
loop optimization and compilation techniques for (clustered)
VLIW [18] [19], we give reproducible experiment results
on the commercially-available and accessible TMS320C6713.
TMS320C6713 is a typical VLIW DSP supporting 8 32-
bit instructions per-cycle. The 8 FUs are organized as two
clusters. The Level-1 memory includes 4K-byte direct-mapped
instruction cache (L1P) and 4K-byte 2-way data cache (L1D).

Because the memory access of our work is highly deterministic
and predictable, Level-2 memory of the DSP is configured
as non-cache and controlled by software. In order to gain
enough insights into the proposed scheme, we perform ex-
tensive profiling on fine-grain details of executions, including
(1) cycle-count, (2) number of instructions, (3) NOP (No
Operation) instruction, (4) L1D access/hit/miss and (5) L1P
access/hit/miss.

The proposal is implemented in C code and iteratively
optimized according to the feedback from compilation and
profiling, ensuring a satisfactory SWP efficiency on the given
ILP architecture.

Aiming at fair comparisons, we implemented three refer-
ences in our work: The first (Ref-1) is the full FFT using
the SWP-1 (with butterfly-group). The second (Ref-2) is the
full FFT using the SWP-2. The third (Ref-3) is the proposed
”General FFT Pruning” implementation in [6].

C. Detailed Comparison and Analysis on Statistics

1) Comparisons to The Existing PFFT Scheme (Ref-3):
First we compare the proposed ”General FFT Pruning” im-
plementation (Ref3) to full FFT implementations. The Ref-3
is based on a N × log2N table with dataflow information
encoded. From 4 (b) we can observe that the proposed PFFT
in [6] does not reduce cycle-counts at all. The key reason
is that the irregular dataflow and extensive conditions in the
innermost loop are extremely inefficient on ILP architectures.
This clearly indicates that elaborate optimizations are nec-
essary when mapping the irregular dataflow on to parallel
architectures.

In the following, we will compare the proposed scheme to
the Ref-1 and the Ref-2. Detailed profiling statistics will be
compared and thoroughly analyzed.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

ID of Benchmarks

Reduction−Rate of Computation−Complexity

Complex ADD
Complex MUL
Shuffling Distance

(a)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

x 10
5

ID of Benchmarks

Device Cycle−Count

Ref 1
Ref 2
Ref 3

(b)

Fig. 4. Benchmarks and References. (a) Complexity reduction in bench-
marks(b) Cycle-count of all references

2) Cycle Count and Number of Instructions: Fig.5 (a)
plots the cycle-count. We can observe that the proposed
scheme achieves significant cycle-count reductions for all of
the benchmarks. Comparing to the Ref1, the PFFT achieves
32.5% to 87.5% cycle-count reductions; comparing to Ref2,
the PFFT achieves 20.5% to 85.4% cycle-count reductions.
Surprisingly, the reduction-ratio of cycle-count is even higher
than the reduction-ratio of abstract-complexity shown in Fig.
4. The reasons behind this can be found out in Fig.5 (b) and
(c).

As discussed before, the SWP-1 in the Ref-1 incurs minimal
overheads for address generations, but it suffers from the a
low SWP efficiency when the size of butterfly-groups is too
small because prologues and epilogues of the SWP will be
dominant. On the contrary, the SWP-2 in the Ref-2 signifi-
cantly reduces the overhead for setting-up SWP, but suffers
from large overhead for address generations and redundant
twiddle-factor access. This has been verified in experiments.
In Fig.5 (b) the total number of instructions in the Ref-
2 is significantly larger than the Ref-1. Because many FUs
are idle in the prologues/epilogues and SWP-1 needs more
prologues/epilogues, the number of NOP instructions in the
Ref-1 is significantly larger than the Ref-2,

Although both the SWP-1 and the SWP-2 have disad-
vantages, the proposed scheme combines the advantages of
different SWP schemes but the disadvantages are avoided. In
the phase-1 and phase-2 the SWP-1 is applied because group
is large enough. In phase-3 SWP-2 is applied because group
is small and number of group is large. The heterogeneous
SWP schemes in significantly reduce the total number of
instructions and cycle-count comparing to both Ref-1 and Ref-
2. Specifically, the PFFT reduces 11.2% to 74.8% instructions
comparing to the Ref1, reduces 55.9% to 86.5% instructions
comparing to the Ref2. The cycle-count reduction-rate of
the proposed PFFT is even higher than that of abstract-
complexities, because the disadvantages of both SWP schemes
are elaborately avoided. The reduction in cycle-count and
overhead clearly prove that the overhead in our scheme is
very small when comparing to the large gain. Full-flexibility
and high-efficiency have been delivered at the same time with
our proposal.

3) Cache Access and Hit/Miss: The reductions of cache
accesses are presented in Fig.5 (d)(e). On L1D, the proposal
reduces 16.1% to 78.1% accesses comparing to the Ref-1,
reduces 21.2% to 79.4% accesses comparing to the Ref-
2. The SWP-2 loads twiddle-factor from data memory for
each butterfly, whereas the SWP-1 in Ref-1 loads twiddle
factor only once for the entire butterfly-group. Hence, Ref-
2 incurs more L1D accesses than Ref1. Again, with increased
structure-complexity the proposed PFFT elaborately combines
the advantages of different SWP schemes.

On L1P we have similar observations. SWP-2 incurs large
overheads for address-generations and memory-accesses so
that more instructions and L1P accesses are needed. The
heterogenous control structures and SWP schemes in the
proposal minimize the overhead for both address generations
and control operations, bringing 19.5% to 78.5% reduction
comparing to the Ref1 and 51.1% to 87.1% reduction com-
paring to the Ref2.

The L1 cache hit rate is plotted in Fig.5 (f)(g). We can
observe that the hit rate is very high. However, the proposal
incurs slight hit-rate degradations for some of the benchmarks.
This is a natural phenomenon, because PFFT pruned some of
the computations so that the accesses on the same piece of
data are less than that in a full FFT. Again, the reductions in
L1D and L1P accesses clearly prove that the overhead in our

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14
x 10

4

ID of Benchmarks

CPU Cycle−Count

Ref 1
Ref 2
This Work

(a)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

x 10
5

ID of Benchmarks

Executed Instructions

Ref 1
Ref 2
This Work

(b)

1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

ID of Benchmarks

NOP Instructions

Ref 1
Ref 2
This Work

(c)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12
x 10

4

ID of Benchmarks

L1D Access’

Ref 1
Ref 2
This Work

(d)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

x 10
4

ID of Benchmarks

L1P Access’

Ref 1
Ref 2
This Work

(e)

1 2 3 4 5 6 7 8 9 10

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

ID of Benchmarks

L1D Hit Rate

Ref 1
Ref 2
This Work

(f)

1 2 3 4 5 6 7 8 9 10
0.988

0.99

0.992

0.994

0.996

0.998

1

ID of Benchmarks

L1P Hit Rate

Ref 1
Ref 2
This Work

(g)

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

ID of Benchmarks

L1D Miss’

Ref 1
Ref 2
This Work

(h)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

ID of Benchmarks

L1P Miss’

Ref 1
Ref 2
This Work

(i)
Fig. 5. Detailed Comparison of Profiled Statistics on The Architecture

scheme is very small comparing to the large gain.
The absolute numbers of L1 cache misses are plotted in

Fig.5 (h)(i). These figures are very important because the
accesses to large memory in hierarchy are energy-hungry
operations. We can observe that the proposed PFFT brings
reduction in L1D misses as well. However, in (i) we observe
that the number of L1P misses significantly increases. In the
proposal the increased heterogeneity and structure-complexity
unavoidably incur penalties in L1P misses. Fortunately, the
number of increased misses in L1P is very small when
comparing to the reduced L1D misses. Taking into account the
significant reductions in combined L1P and L1D accesses, we
can safely conclude that the energy consumption in memory
sub-system is aggressively optimized with our proposal.

V. CONCLUSION

Although the theoretical aspects of PFFT have been in-
tensively studied in past decades, efficient implementations
were rarely reported. We proposed an generic scheme to
software-pipeline the irregular dataflow of arbitrary PFFT onto
ILP architectures. The proposal achieves significant reductions
in cycle-counts, instructions, L1D/L1P accesses and misses.
The reduction-rate of cycle-counts is even larger than that of
the abstract complexity-reductions. Full-flexibility and high-
efficiency have been delivered at the same time.

In the deep-sub micron era, programmable-architecture
based systems become more and more popular for the
sake of time-to-market and non-recurring-engineering-cost is-
sues. In this context, we advocate the design-flow which
performs architecture-aware explorations and transformations
from the very beginning of the design-flow, so that the con-
staints/opputunity of programmable-architecture can be better
exploited.

REFERENCES

[1] Z.Hu and H. Wan, ”A novel generic fast Fourier transform pruning
technique and complexity analysis,” IEEE Trans. Signal Process., Jan.
2005 Volume: 53, page(s): 274- 282.

[2] Murphy, C.D. ”Low-complexity FFT structures for OFDM transceivers”,
IEEE Trans. on Signal Process., Volume: 50, Issue: 12 On page(s): 1878-
1881, Dec 2002.

[3] 3GPP LTE TR 25.814: Physical layer aspects for E-UTRA.
[4] J. D. Markel, FFT pruning, IEEE Trans. Audio Electroacoust., vol. 19,

pp. 305-311, Dec. 1971.
[5] S. S. He and M. Torkelson, Computing partial DFT for comb spectrum

evaluation, IEEE Signal Process. Lett., vol. 3, pp. 173-175, Jun. 1996.
[6] Alves, R.G. Osorio, P.L. Swamy, M.N.S. General FFT pruning algorithm,

the 43rd IEEE Midwest Symposium on Circuits and Systems, 2000
[7] S. R. Rangarajan and S. Srinivasan, Generalized method for pruning an

FFT type of transform, Proc. Inst. Elect. Eng. Vis. Image Signal, vol. 144,
pp. 189-192, 1997.

[8] H. V. Sorensen and C. S. Burrus, Efficient computation of the DFT with
only a subset of input or output points, IEEE Trans. Signal Process., vol.
41, pp. 1184-1200, Mar. 1993.

[9] K. Nagai, Pruning the decimation-in-time FFT Algorithm with frequency
shift, IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, pp.
1008-1010, Aug, 1986.

[10] Shousheng He, Torkelson, M. VLSI computation of the partial DFT for
(de)modulation inmulti-channel OFDM system, IEEE PIMRC 1995. Sep
1995

[11] R.Rajbanshi, A. M. Wyglinski, and G. J. Minden, An Efficient Im-
plementation of NCOFDM Transceivers for Cognitive Radios, IEEE
CrownCom 2006.

[12] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti
and K. Flautner , SODA: A High-Performance DSP Architecture for
Software-Defined Radio, IEEE Micro 2007

[13] Ta. Kumura, M. Ikakawa et al, VLIW DSP for mobile Applications,
IEEE Signal processing magazine July 2002

[14] B. Mei, S. Vernalde, D. Verkest, R. Lauwereins, Design Methodology
for a Tightly Coupled VLIW/Reconfigurable Matrix Architecture: A Case
Study, Proc. of DATE 2004, pp. 1224-1229,

[15] V. Allan, R. Jones, R. Lee, and S. Allan. Software Pipelining. ACM
Computing Surveys, 27(3), September 1995.

[16] TMS320C64x DSP Library Programmer’s Reference (Rev. B)
[17] Yutai Ma, ”An Effective Memory Addressing Scheme for FFT Proces-

sors,” IEEE Trans. Signal Process., vol. 47, Issue 3, pp. 907–911, March
1999

[18] Y. Qian, S. Carr and P. Sweany. ”Loop Fusion for Clustered VLIW
Architectures”, In Proceedings of the ACM 2002 Joint Conference on
Languages, Compilers and Tools for Embedded Systems and Software
and Compilers for Embedded Systems, Berlin, Germany, June 19-21,
2002.

[19] Z. Shao, C. Xue, Q. Zhuge, B. Xiao and E. H.-M. Sha, Loop Scheduling
with Timing and Switching-Activity Minimization for VLIW DSP, ACM
Transactions on Design Automation of Electronic Systems, vol. 11, no. 1,
pp. 165-185, Jan. 2006.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

