
Synthesizing Synchronous Elastic Flow Networks

Greg Hoover and Forrest Brewer
{ghoover, forrest}@ece.ucsb.edu

University of California, Santa Barbara

Abstract

This paper describes an implementation language and
synthesis system for automatically generating latency in-
sensitive synchronous digital designs. These designs de-
couple behavioral correctness from design performance by
allowing any sub-component to dynamically stall without
changing correct system activity. This is accomplished by
imposition of global invariants and use of local control
in the form of Synchronous-Elastic Flow (SELF) networks,
which are directly synthesized. This design description for-
mat reduces the complexity of implementing correct SELF
networks and does not require pre-design of a correct con-
ventional synchronous design. The design description is a
specialized guarded atomic action language which is par-
ticularly suited for succinctly describing SELF designs. We
present the language syntax, semantics and synthesis tech-
niques illustrated by the design of a latency tolerant cache
controller.

1 Introduction
System designers face substantial challenges when it

comes to behavioral verification and component integration.
IP-reuse enables ever-greater system functionality with re-
duced development time, but at cost to communication
and control, which must facilitate sharing and synchroniza-
tion between distributed components while simultaneously
respecting physical and temporal constraints. Latency-
insensitivity[2] has been proposed as one method for coping
with this growing problem. In such a design model, com-
ponents are expressed in terms of time-independent behav-
ioral abstractions. Effectively, the designer need not specify
any sequencing or scheduling information beyond behav-
ioral causality and is assured that the design will function
correctly despite dynamic latency changes in any of the ar-
chitectural components. Thus the resulting designs are in-
herently tolerant to dynamic computation and communica-
tion delays. Composition of system components is greatly
simplified since component interfaces are not bound to tem-
poral constraints. A direct benefit of this design style is re-

EHB EHB

V

S

V

S

Figure 1. Elastic Buffer (EB) implemented as
pair of Elastic Half-Buffers (EHB)

moval of a large number of critical nets that are required in
conventional designs to mediate communication or opera-
tion latency changes.

Automatic implementation techniques for latency-
insensitive circuits, however, have largely eluded designers.
The conventional preference to construct centralized con-
trollers consistently leads to implementations that require
substantive hardware and control overhead due to unknown
signaling or transaction latencies, especially in large de-
signs. Recently, the advent of Synchronous-ELastic Flow
(SELF)[5, 4] provides a protocol and supporting circuit im-
plementations for creating efficient and scalable implemen-
tations of elastic systems. Using only two signals (in its
basic form) and a handful of atomic control circuits, the
designer can compose complex control structures that are
completely elastic and therefore immune to latency varia-
tions. In addition, these control structures are inherently
distributed, providing numerous benefits over global con-
trol techniques. Finally, SELF is built on half-cycle or
latch-level timing where data-path components are only
clocked when necessary. Thus system implementations can
achieve higher performance and, through use of naturally
gated clocks and relaxed timing margins, lower power con-
sumption. Moreover, this clocking structure is entirely syn-
chronous, allowing use of conventional design flows for
synthesis and timing analysis.

To date, realizing SELF control structures is a manual,
error-prone process, where even small designs become dif-
ficult to debug. Rather, it is desirable to have a technique for
synthesizing such structures from a high-level specification
such that appropriate SELF circuits are inserted as a conse-
quence of behavioral connectivity requirements. Unfortu-

978-3-9810801-3-1/DATE08 © 2008 EDAA

nately, classical HDL languages are at odds with an elastic
implementation technology as they are built on execution
models that assume fixed temporal relationships between
statements. Nearly all hardware specification models re-
duce to centralized control mechanisms (due to the assump-
tion of control signal locality), resulting in implementations
whose performance is bounded by critical paths which are
not apparent in the specification. These critical paths often
stem from timing assumptions and lack of modularity in the
control specification.
An exception are languages based on guarded atomic

actions (GAA)[11, 9]. In a GAA language, functionality
is encapsulated within time-independent tasks that are trig-
gered (or guarded) by conditional expressions. By treating
these expressions as token acceptors and their tasks as to-
ken producers, the resulting model becomes similar to that
of the SELF protocol, where the representative dependency
network is synthesizable. The designer is able to focus on
functional reasoning over procedural sequencing, but at the
cost of design performance predictability as the language
has no intrinsic timing characteristics. In this approach, tim-
ing constraints are applied as optimization criteria, rather
than as specified integral attributes of the design behavior.
In this way, a design is guaranteed to be functionally correct
over a range of target implementations offering the designer
a landscape on which to define implementation characteris-
tics.
In this paper, we present a synthesis strategy for con-

structing SELF elastic control networks from a rule-based
language. The language has been designed from a practi-
cality standpoint, emphasizing constructs for common con-
trol operations, including speculation, multi-way decision
points and out-of-order execution, while expressing much
of the underlying SELF protocol semantics through use of
token-based control flow. The remainder of this paper is or-
ganized as follows: Background work is presented in Sec-
tion 2. A brief overview of the rule-based language is pre-
sented in 3. The execution semantics of synthesized ma-
chines are described in Section 4. And the synthesis tech-
nique is presented in Section 5. Concluding remarks are
made in Section 6.

2 Background
This work draws from existing work related to the SELF

control networks and guarded atomic action languages. In
this section we present prior work related to our synthesis
of these two technologies.

2.1 Synchronous-Elastic Flow (SELF)
Synchronous-ELastic Flow (SELF) defines a formal pro-

tocol and circuit primitives for creating elastic networks.
These networks are a collection of elastic modules (circuits)
and channels that conform to the SELF protocol. Channels
are comprised of two control wires that implement a sim-

EHBV
S

EHB V
S

EN EN

Figure 2. Execution model illustrating cou-
pling of control and data.

ple handshake between sender and receiver. Forward prop-
agation occurs over a ‘valid’ (V) wire with backpressure
being asserted over a ‘stop’ (S) wire. SELF networks are
token propagating networks, where the absence of a token
is a bubble and all modules agree on the following channel
states:

• (T) Transfer, (V, ¬S): the sender provides valid data
and the receiver accepts it.

• (I) Idle, (¬V): the sender does not provide valid data.

• (R) Retry, (V, S): the sender provides valid data but
the receiver does not accept it.

Elastic Buffers (EB) replace traditional flip-flop-based
storage nodes, dividing master and slave flip-flop phases
into two distinct buffers. An EB can be implemented as
a pair of Elastic Half-Buffers (EHB), where the EHBs are
triggered on opposing clock phases as shown in Figure 1.
Elasticity is seen when an asserted stop signal puts a chan-
nel into a retry state. While similar to traditional interlocked
pipelines, functional separation of clock phases (EHB) al-
lows segmentation of the stall path. This is possible because
tokens propagate on half cycles, but enter the network only
on cycle boundaries, effectively adding a half-cycle buffer
between tokens. This slack between tokens allows dynamic
buffering within the pipeline without additional hardware.
This is a major advantage over interlock pipelining, where
stall paths must span many pipeline stages resulting in po-
tential critical paths. Finally, the use of latch-based storage
offers recovery of much of the space and potential for sig-
nificant power reduction by selectively clocking only those
components with valid data. From a timing point of view,
the network functions synchronously, with guarded clocks
based only on activity of the previous cycle.

Decision points are a requirement for any practical con-
trol system. In SELF, decisions are facilitated by anti-
tokens generated at non-local control points[3, 8]. Tokens
and anti-tokens annihilate each other, creating a bubble in
the network where they meet. Anti-tokens may take on ac-
tive and passive forms enabling them to propagate or remain
stationary in the control network; and enable early evalua-
tion.

2.2 Guarded Atomic Actions
Hoe and Arvind[7] proposed an operation-centric hard-

ware abstraction model useful for describing systems that
exhibit a high degree of concurrency. In this model, oper-
ations are specified as atomic actions, permitting each op-
eration to be formulated as if the rest of the system were
frozen. As a specification medium, rule-based languages al-
low the designer to specify functional tasks independently
of the rest of the system. This characteristic allows func-
tional isolation which greatly reduces the effort in reasoning
about composed system behavior. The syntax of a rule has
the form: antecedent → actions, where the antecedent
is an expression used to trigger execution of the rule’s ac-
tions. Machine behavior is the aggregate set of causal rela-
tionships between rules, irrespective of any temporal con-
straints.
Our use of the term re-writing paradigm largely exploits

the evaluation freedom inherent in the semantic model. We
are not currentlymaking use of term re-writing based syntax
translation or semantic matching beyond the dynamic status
of tokens. Alternative uses of term re-writing for hardware
and even pipeline synthesis are exemplified by the work
of Marinescu [9][10] and Ayala-Rincon[1]. These systems
make extensive use of term re-writing to create particular
instances of algorithms or functional mappings within hard-
ware constraints. Essentially, rules are used to provide de-
sign refinement in the form of mapped structure bound to
rule execution. Our aim is to automate the process of cre-
ating a distributed token network which efficiently manages
the behavior exploring architectural changes in the design.
This pattern is similar to the use of these systems by Hoe[6].

Algorithm 1. Specification language grammar

modu l e d e c l a r a t i o n : : = module r u l e d e c l a r a t i o n s endmodule
r u l e d e c l a r a t i o n s : : = r u l e { r u l e }
r u l e : : = a n t e c e d e n t → a c t i o n { , a c t i o n } ;
a n t e c e d e n t : : = a n t e c e d e n t f u n c | t o k en
a n t e c e d e n t f u n c : : = and | or (token , t o k en { , t o k en })
a c t i o n : : = t ok en | a c t i o n k i l l | f u n c t i o n | i f s t m t

| c a s e s tm t
a c t i o n k i l l : : = k i l l (t o k en { , t o k en })
f u n c t i o n : : = i d e n t i f i e r ()
i f s t m t : : = i f (f u n c t i o n) a c t i o n { a c t i o n }

{ e l s e s t m t } e n d i f
e l s e s t m t : : = e l s e a c t i o n { a c t i o n }
c a s e s tm t : : = c a s e (f u n c t i o n) c a s e o p t i o n

{ c a s e o p t i o n } end c a s e
c a s e o p t i o n : : = number : a c t i o n { a c t i o n }
t o k en : : = i d e n t i f i e r
number : : = r ’{[}0−9]+ ’
i d e n t i f i e r : : = r ’{ [} a−zA−Z]{ [} a−zA−Z0−9 −]{*}’

3 Language
Our language, TDL, is a modular, GAA language that

exposes the underlying semantic execution model by using
token-based control flow in the language syntax. The lan-
guage grammar is shown in Algorithm 1, where the rule

structure expression → functions, tokens recognizes
positive expressions of tokens and triggers creation and ex-
ecution of tokens and functions respectively. This struc-
ture parallels SELF elastic semantics since rule sequencing
is temporally ambiguous, as are dynamic delays between
SELF EHBs. Control feedback is supported through if-else
and case selection constructs in the action clause.
TDL is complemented by Verilog HDL for describing

the supporting datapath functionality. Function data is an-
notated to allow identification of shared variables and syn-
thesis of datapaths, as well as network optimization and re-
source sharing. Shared variables are referenced by name
and synthesized to physical register locations upon output.
Verilog functions are particularly well suited for atomic
(unit time) semantics since they are, by definition, stateless.
In systems requiring substantial context or persistent state,
it becomes inefficient to replicate data throughout the con-
trol network. A processor register file, for instance, should
probably be arbitrated rather than propagated to every de-
pendent pipe-stage. Data annotations allow unambiguous
identification of such contention points; and arbitration can
be automatically synthesized. Optimizations can subse-
quently be performed on the control network to improve the
performance of target sections.

4 Execution Semantics
Unlike conventional description languages which, at

best, promote data locality at the module level, TDL cou-
ples data and control locally. This tight coupling can be
seen in Figure 2, where the enable output of each elastic-
half-buffer (EHB) selectively enables its coupled data reg-
ister. This model may appear familiar since it is commonly
used in pipeline constructions, allowing the designer to di-
vide functionality into a series of semi-autonomous stages.
TDL takes this one step further by exploiting SELF elastic-
ity, making each stage fully-autonomous and allowing func-
tional reasoning independently of other system behaviors.
A small set of connector circuits preserves the global invari-
ants that facilitate SELF elasticity throughout the control
network. These circuits provide well-defined mechanisms
for control branch (fork) and synchronization (join), allow-
ing synthesis by composition of a few circuit primitives. La-
tency freedom creates possibilities for non-standard com-
ponents like variable delay execution units and memories,
as well as low-overhead speculation and arbitration mecha-
nisms. Furthermore, selective clocking offers opportunities
for lowering power consumption, and improved design lo-
cality aids in physical layout and verification.

5 Synthesis Technique
TDL aims to provide a sound functional implementation

base from which system constraints can be reliably inferred
without impacting correctness. To this end, the synthesis
process constructs a behavioral graph that is amenable to a

number of different optimizations, allowing exploration of a
range of implementations while preserving behavioral cor-
rectness. Simple heuristics guide graph construction from a
specification rule set and infer connector circuits as neces-
sary. To clearly demonstrate our technique, we follow the
design of a cache controller from specification through the
stages of compilation and synthesis.

Algorithm 2. Cache controller specification.
module Ca c h eCo n t r o l l e r
Re s e t −> MemoryArbi ter ,

k i l l (Reques t , Read , ReadDone ,
ReadFromMemory , ReadFromBus , Wri te ,
WriteToMemory , Wri teDone) ;

Reques t −> d r i v e a d d r e s s () ,
case (t y p e ())
0 : Read ;
1 : Wri t e ;

endcase ;

Read −> i f (t a g m i s s ())
i f (r e q u i r e s w r i t e b a c k ())
b u f f e r d i r t y () , WriteToMemory

endi f ,
ReadFromMemory

e l s e
r e t u r n c a c h e d a t a () , ReadDone

end i f ;

and (MemoryArbi ter , ReadFromMemory) −>
s e t u p r e a d f r om bu s () , ReadFromBus ;

ReadFromBus −> MemoryArbi ter , u p d a t e c a c h e f r om bu s () ,
r e t u r n b u s d a t a () , ReadDone ;

Wri t e −> i f (r e q u i r e s w r i t e b a c k ())
b u f f e r d i r t y () , WriteToMemory

endi f ,
u p d a t e c a c h e f r om i n p u t () , Wri teDone ;

and (MemoryArbi ter , WriteToMemory) −>
w r i t e t o b u s () , MemoryArbi ter ;

endmodule

5.1 Specification
Algorithm 2 presents a specification for a simple cache

controller illustrating a number of control decision con-
structs and language features, with a sample of the sup-
porting Verilog datapath functions shown in Algorithm 3.
The entry of this spec highlights one of the advantages of
our token-based model: reset is handled through the token
mechanism, enabling staged behaviors necessary in practi-
cal design. This is in contrast to conventional HDL specifi-
cations where design patterns often promote a global reset
functionality that is difficult and error prone to realize. To-
kens are persistent and therefore require a mechanism for
their destruction. The builtin kill function handles this, and
is shown here initializing the system to a known state. The
token MemoryArbiter is also created during reset as an ar-
bitration mechanism for access to the memory bus.
Execution of this component begins when an enclosing

component creates the Request token or the behavior is sim-
ilarly invoked by a wire input. Associated arguments in-

cluding the type, address, and data accompany the request
and are propagated as necessary. Feedback functions such
as type(), tag miss(), and requires writeback() form local
control decision points by referencing coupled data regis-
ters. For example, the function tag miss() checks the tag
of the request address against that in the global tag mem-
ory to determine if a cache hit or miss has occurred. Ac-
tion functions like buffer dirty(), return cache data(), and
setup read from bus() perform datapath functionality in-
cluding memory bus read and write operations and updates
to shared memories. One can see that the division of func-
tionality and data naming convention simplifies the design
effort. For example, the data variable tmp write buffer is
written to in buffer dirty() and read from using the same
name in write to bus(). While these references would likely
by realized using a single register in conventional specifi-
cation, here, the data is automatically moved through the
control network by the compiler to maintain data locality.

Algorithm 3. Sample of supporting datapath
functions for the simple cache controller de-
sign Algorithm 2 (some omitted for brevity).

f unc t i on t y p e ;
/ / r ead : o p t t y p e
t y p e = op t ype ;

endfunc t ion

func t i on t a g m i s s ;
/ / r ead : t ag ca ch e [CACHE DEPTH] [TAG WIDTH−1:0]
/ / r ead : op addr [ADDR WIDTH−1:0]
t a g m i s s = t a g c a c h e [op add r [ADDR WIDTH−1:TAG WIDTH]]

== op add r [TAG WIDTH−1 :0] ;
endfunc t ion

func t i on b u f f e r d i r t y ;
/ / r ead : da t a ca ch e [CACHE DEPTH] [DATA WIDTH−1:0]
/ / r ead : op addr [ADDR WIDTH−1:0]
/ / w r i t e : t m p w r i t e b u f f e r [DATA WIDTH−1:0]
t m p w r i t e b u f f e r =

d a t a c a c h e [op add r [ADDR WIDTH−1:TAG WIDTH]] ;
b u f f e r d i r t y = 1 ;

endfunc t ion

func t i on w r i t e t o b u s ;
/ / r ead : t m p w r i t e b u f f e r [DATA WIDTH−1:0]
/ / r ead : op addr [ADDR WIDTH−1:0]
/ / w r i t e : add r e s s bu s [ADDR WIDTH−1]
/ / w r i t e : da t a bu s [DATA WIDTH−1] , wr , rd
a d d r e s s b u s = op add r ;
d a t a b u s = tm p w r i t e b u f f e r ;
wr = 1 ;
rd = 0 ;
w r i t e t o b u s = 1 ;

endfunc t ion

func t i on u p d a t e c a c h e f r om i n p u t ;
/ / r ead : i n p u t d a t a [DATA WIDTH−1:0]
/ / r ead : op addr [ADDR WIDTH−1:0]
/ / w r i t e : c a ch e t ag [CACHE DEPTH] [TAG WIDTH−1:0]
/ / w r i t e : c a ch e da t a [CACHE DEPTH] [DATA WIDTH−1:0]
/ / w r i t e : c a c h e s t a t u s [CACHE DEPTH] [STATUS WIDTH−1:0]
c a c h e t a g [op add r [ADDR WIDTH−1:TAG WIDTH]] =

op add r [TAG WIDTH−1 :0] ;
c a c h e s t a t u s [op add r [ADDR WIDTH−1:TAG WIDTH]] = ‘DIRTY ;
c a c h e d a t a [op add r [ADDR WIDTH−1:TAG WIDTH]] = i n p u t d a t a ;
u p d a t e c a c h e f r om i n p u t = 1 ;

endfunc t ion

Figure 3. Pre-optimization behavior graph
compiled from the simple cache control
specification in Algorithm 2.

5.2 Compilation
The multi-step compilation process takes an input speci-

fication and constructs a dependency graph from token rela-
tionships. During construction, antecedent logic functions
(e.g. and, or) are built, FUNCTION nodes are inserted for
datapath feedback decision points, and SELF forks are in-
serted for distribution of signals within action clauses. Fig-
ure 3 illustrates the corresponding behavior graph from the
specification in Algorithm 2, where control flow, output
function, and kill arcs are shown solid, dashed, and dotted,
respectively. The causal token relationships define machine
behavior; subsequent stages merely refine the graph to pre-
serve required token invariants and optimize the structure.
A requirement of SELF networks is that all control dis-

tribution and synchronization activities occur through de-
fined circuit primitives that comply with the elastic channel
protocol. The first refinement stage ensures that all such
points are correctly handled, inserting FORK (distribution)
and JOIN (synchronization) circuits as necessary. A com-
parison of Figures 3 and 4 highlights these changes. Inputs
to theMemoryAribter token are shown routed through a SE-
LECT connector, with outputs distributed through a FORK
connector.
Latch-based synthesis adds additional constraints, re-

quiring that adjacent control nodes be of opposing clock
phase and shared data be accessed on a common edge.
Compilation ensures this by enforcing even depth in all con-
trol loops and through data access analysis. Clock polarity

conflicts are resolved by inserting a timing buffer as shown
in Figure 4, where tdl timing buffer token is necessary to
enforce even weight of the loop into tokenMemoryArbiter.
In a conventional specification, this action could lead to
incorrect system behavior. In our case, elasticity in the
design behavior ensures behavioral correctness under any
such transformation. Such retimings open possibilities for
optimizations that improve performance and reduce power.
Finally, this stage assigns clock polarities and prepares for
synthesis by locating functions, analyzing data access, and
setting networks for data propagation.

5.3 Synthesis
In the final synthesis stage, the optimized behavior graph

is output as synthesizable Verilog HDL that connects EHBs
(or EBs) and connector circuits, along with functional dat-
apath RTL. Synthesis of the control network is performed
through a straightforward traversal of the control graph,
whereby nodes are built by swapping in respective circuit
implementations. Functional RTL is connected to the re-
spective enabling outputs of EHBs (or EBs) and wrapped in
sequential blocks based on latch polarity, if necessary. Us-
ing previously generated data propagation networks, regis-
ters are constructed and wired to facilitate data movement in
the network, conforming to the localized SELF model. The
RTL output is then synthesized to the target technology. The
control logic for the above design was synthesized using
Synopsys Design Compiler in TSMC 90nm (Low Power)
technology. It requires 427µm and clocks at over 2.3GHz
without any optimizations. These numbers omit both area
and delay for the large memory elements in the design, as
these would clearly dwarf any control logic costs. It is im-
portant to note that the resulting design functions correctly
even under dynamic memory latency, for example if it was
dependent on data locality.
Verilog output enables integration with existing design

flows and synthesis tools for performing gate-level opti-
mizations, while latency-insensitivity aids in the synthesis
and layout flows since latency characteristics do not affect
functional correctness. The coupled control and data model
allows efficient resource location compared to the critical
paths created by long wires necessary for globally accessi-
ble resources. Moreover, the inherently distributed nature of
elastic control networks minimizes the possibility for cre-
ating artificial control critical paths which are common in
conventional Verilog synthesis. While synthesized designs
are guaranteed to be behaviorally equivalent to their speci-
fication, they provide no immediate insight into the latency
or throughput of the implementation. Such bounds can be
determined, in general, via model checking, providing both
latency and throughput bounds given constraints on the un-
derlying components. This information can be used to per-
form additional ‘tuning’ of the design to achieve target con-
straints.

Figure 4. Compiled behavior graph from the
simple cache controller specification in Algo-
rithm 2.

Synthesizing to SELF networks required several addi-
tions to the fundamental SELF circuit primitives. For
instance, SELF lacks a mechanism for creating decision
points with or-causality, as this would negate the ability
to guarantee ordering of tokens. While this invariant can
be useful in guaranteeing system correctness, it is often
the case that control specifications cannot be succinctly ex-
pressed without it. Moreover, fixed token ordering prevents
possibilities for speculative execution. As previously men-
tioned, implementation efficiency may dictate that migrat-
ing large memories throughout the control network is im-
practical. In such cases, arbitration is required. Priori-
tized selection logic is used to implement these data-derived
arbitration points. Because system behavior is latency-
insensitive, any prioritization of access is behaviorally cor-
rect. Furthermore, optimization offers the ability to lower
power and improve performance through re-prioritization
of these points.

6 Conclusions
Latency-insensitive specification is a viable method

for curbing the growing complexity of modern de-
signs. Through synthesis of truly distributed control using
Synchronous-ELastic Flow (SELF) networks, we believe
it is possible to realize scalable systems that achieve low
power and high performance while reducing design effort.
Much of this is predicated on the ability to construct latch-
based systems that only clock active components and allow

relative synchrony between component clocks to be more
loosely defined. Furthermore, the structure of synthesized
elastic networks is amenable to a wide range of optimiza-
tions without sacrificing correct system behavior. Such op-
timizations include locality-directed design restructuring to
improve performance and lower resource overhead, as well
as, resource use optimization through analysis of data ac-
cess patterns. Our language offers a practical solution to
constructing SELF control networks, enabling manageable
and scalable system design.

References
[1] M. Ayala-Rincon, C. H. Llanos, R. P. Jacobi, and R. W.

Hartenstein. Prototyping time- and space-efficient compu-
tations of algebraic operations over dynamically reconfig-
urable systems modeled by rewriting-logic. ACM Trans.
Des. Autom. Electron. Syst., 11(2):251–281, 2006.

[2] L. Carloni, K. L. McMillan, and A. L. Sangiovanni-
Vincentelli. Theory of latency-insensitive design. pages
1059 – 1076, 2001.

[3] J. Cortadella and M. Kishinevsky. Synchronous elastic cir-
cuits with early evaluation and token counterflow. In DAC
’07: Proceedings of the 44th annual conference on Design
automation, 2007.

[4] J. Cortadella, M. Kishinevsky, and B. Grundmann. Self:
Specification and design of synchronous elastic circuits.
In TAU ’06: Proceedings of the ACM/IEEE International
Workshop on Timing Issues 2006, 2006.

[5] J. Cortadella, M. Kishinevsky, and B. Grundmann. Syn-
thesis of synchronous elastic architectures. In DAC ’06:
Proceedings of the 43rd annual conference on Design au-
tomation, pages 657–662, New York, NY, USA, 2006. ACM
Press.

[6] J. C. Hoe and Arvind. Hardware synthesis from term rewrit-
ing systems. In VLSI ’99: Proceedings of X IFIP Interna-
tional Conference on VLSI, 1999.

[7] J. C. Hoe and Arvind. Synthesis of operation-centric hard-
ware descriptions. In ICCAD ’00: Proceedings of the 2000
IEEE/ACM international conference on Computer-aided de-
sign, pages 511–519, Piscataway, NJ, USA, 2000. IEEE
Press.

[8] J. Julvez, J. Cortadella, and M. Kishinevsky. Performance
analysis of concurrent systems with early evaluation. In IC-
CAD ’06: Proceedings of the 2006 IEEE/ACM international
conference on Computer-aided design, 2006.

[9] M.-C. Marinescu and M. Rinard. High-level specification
and efficient implementation of pipelined circuits. In ASP-
DAC ’01: Proceedings of the 2001 conference on Asia South
Pacific design automation, pages 655–661, New York, NY,
USA, 2001. ACM Press.

[10] M.-C. V. Marinescu and M. Rinard. High-level automatic
pipelining for sequential circuits. In ISSS ’01: Proceedings
of the 14th international symposium on Systems synthesis,
pages 215–220, New York, NY, USA, 2001. ACM Press.

[11] D. Rosenband and Arvind. Modular scheduling of guarded
atomic actions. In DAC ’04: Proceedings of the 41st Design
Automation Conference (DAC), 2004.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

