
An Interprocedural Code Optimization Technique for Network Processors
Using Hardware Multi-Threading Support

Hanno Scharwaechter, Manuel Hohenauer,
Rainer Leupers, Gerd Ascheid, Heinrich Meyr

Integrated Signal Processing Systems
RWTH Aachen University

Aachen, Germany

Abstract

Sophisticated C compiler support for network proces-
sors (NPUs) is required to improve their usability and con-
sequently, their acceptance in system design. Nonetheless,
high-level code compilation always introduces overhead,
regarding code size and performance compared to hand-
written assembly code. This overhead results partially from
high-level function calls that usually introduce memory ac-
cesses in order to save and reload register contents. A
key feature of many NPU architectures is hardware multi-
threading support, in the form of separate register files, for
fast context switching between different application tasks.
In this paper, a new NPU code optimization technique to
use such HW contexts is presented that minimizes the over-
head for saving and reloading register contents for function
calls via the runtime stack. The feasibility and the perfor-
mance gain of this technique are demonstrated for the Infi-
neon Technologies PP32 NPU architecture and typical net-
work application kernels.

1. Introduction

Network Processing Units (NPUs) are increasingly be-
coming popular for the utilization in modern System on Chip
(SoC) design. They fill the gap of cost efficient yet flexible
system solutions for evolving applications that allow packet
processing at high data rates. Since the spectrum of network
applications spans from traditional network access, realized
by embedded software running on general-purpose architec-
tures, up to core network applications, where high perfor-
mance is required to meet line speed, NPUs exhibit a wide
range of architectures: from simple general-purpose RISC
cores with dedicated peripherals, in pipelined and/or paral-
lel organization, to heterogeneous multiprocessors, based on
complex multi-threaded cores with customized instructions
[11, 10].

Multi-threading is a key feature to hide memory access
latencies and therefore, to efficiently use the hardware of
a NPU. It enables the architecture to process other streams
while another thread is waiting for a memory access (or
a different interrupt). Without hardware support, the cost
of switching between different contexts (threads, processes
etc.) would dominate computation time. Thus, NPUs support

multiple hardware threads and register files to avoid storing
and reloading the entire state of the machine during a con-
text switch.

Due to the lack of good C compiler support for NPUs,
assembly-level programming is currently state of the art,
but using high-level languages gains more and more accep-
tance. However, high-level languages usually imply certain
overhead in code size and performance compared to hand-
written assembly code. While this overhead is acceptable for
general-purpose computing, the demands on compilers are
different for network processors. In particular, register allo-
cation issues are very important since the latency of access-
ing off-chip DRAM is in tens of cycles and normally results
in a context switch to another thread. One of the primary
sources for the overhead introduced by high-level languages,
are functions. Functions provide an appropriate technique
to reduce code size and structure program code of complex
modern applications by encapsulating repeatedly occurring
portions of code. Saving and loading the functions’ states, re-
alized by several memory accesses, mainly causes the over-
head introduced by function calls.

Function Inlining is a well-known technique used in many
compilers for general-purpose processors which replaces
function calls by copies of the related function’s body. In
this way, the function is turned into a high-level macro. Since
the overhead associated with function calls (parameter pass-
ing, call and return instructions, saving and restoring regis-
ter contents) is eliminated, function inlining tends to increase
performance. However, function inlining also increases code
size drastically and is therefore not always applicable for em-
bedded system processors like NPUs due to their very lim-
ited program memory.

In this paper, a new technique to reduce the overhead of
function calls is proposed that uses the HW multi-threading
support of the NPU. The basic idea is that during code execu-
tion not all HW threads may be utilized at the same time by
the tasks of a given application. Thus, the available free re-
sources can be used by the compiler to optimize the code for
the present tasks. Naturally, this technique requires compile-
time knowledge of the processor’s task load. For NPUs this
information is usually at hand, since the use of operating sys-
tems and dynamic task creation are uncommon in network
processing. By integrating the proposed technique into a gen-
erated C compiler [5] for the Infineon PP32 network proces-
sor [9], the feasibility and the performance gains are demon-
strated.

3-9810801-0-6/DATE06 © 2006 EDAA

The technique exploits separate register files for function
calls and thus, eliminates the necessity of storing and reload-
ing register contents according to save the caller’s state.
However, due to the limited number of available register
files, it is not possible to execute every function call with
a new register file. Therefore, appropriate candidates have
to be selected in order to maximize the benefit of this tech-
nique.

The remainder of this paper is organized as follows: In the
next section, we describe related work. The following sec-
tions 3, 4 and 5 represent the core of our work. Here, first
the driver architecture, Infineon’s PP32, is described in sec-
tion 3 with a subsequent introduction to calling conventions
in general and a proposal of a ”low overhead” calling con-
vention for network processors in section 4. Finally, in sec-
tion 5, we give an insight into the realization of the proposed
calling convention in our compiler. This includes, on the one
hand, an overview of our system and, on the other hand, an
explanation of a heuristic algorithm for the selection of ap-
propriate functions. In the last sections, the obtained results
(sec. 6) and a conclusion (sec. 7) are given.

2. Related Work

There are several compiler research studies that have been
conducted on the development of compilers for network pro-
cessors. Wagner [6] has developed a compiler for Infineon’s
PP32 [9]. Its instruction set permits performing ALU compu-
tations on bit packets which are not aligned to the processors
word-length. A packet may be stored in any bit index sub-
range of a register and a packet may even span up to two dif-
ferent registers. This feature is called packet-level address-
ing.

In addition, due to the feature of register files, they de-
vised a multi-level graph coloring algorithm [6] which is an
extension of the classical graph coloring approach. However,
they did not discuss how heterogeneous data path and regis-
ter files of NPUs are handled or interprocedural techniques
to reduce memory accesses.

Based on Intel’s IXP1200 architecture, two approaches on
efficient code generation for network processors have been
published in [12] and [13]. The IXP architecture contains
two separate register banks, each of which is used to hold one
of two operands of an ALU-instruction. Zhuang and Pande
explain in [12] approaches to perform the operand assign-
ment to a certain register bank either before, during or after
the register allocation. In [13], he describes a way to allocate
registers for multiple threads. The presented compiler analy-
ses the register requirements of a thread, both at the time of
a context switch and during the thread-execution. The regis-
ters are allocated accordingly either publicly accessible for
all threads or privately for only one certain thread.

Finally, Paek presents in [8] several compiler optimiza-
tions while retargeting the Zephyr compiler system for the
PaionII network processor. In the conclusion, he emphasizes
the need for the reduction of memory access instructions.
Similar to our work are approaches to exploit register win-
dows of the SUN SPARC workstation with a compiler to re-
duce subroutine call overhead [3]. Wall describes in [3] sev-
eral approaches to use registers on the SPARC architecture
and compares the results. Whereas every compiler has to per-
form register allocation for its target architecture in order to

produce efficiently running executables, our approach repre-
sents an optional way to exploit so far unused resources of a
typical network processor after register allocation is already
done.

3. Driver Architecture: Infineon PP32

The PP32 architecture is a 32-bit RISC-based Applica-
tion Specific Instruction Set Processor (ASIP) [7] developed
by Infineon Technologies (fig. 1), whose instruction set has
been tailored towards the processing of network protocols
like IPv4, IPv6 etc. The PP32 features several special instruc-
tions (e.g. bit-level instructions) as well as four HW contexts
for fast task switches in multi-threaded applications, each
comprising a separate register file. Every register file con-
tains 16 General Purpose Registers (GPRs) as well as sev-
eral Special Purpose Registers (SPRs) for Program Counter
(PC) etc., such that each task keeps its own PC, identifica-
tion (task1, task2 etc.) and also PC and task identification
(oldPC, oldTask) for the program execution after its termina-
tion.

PP32 Core

<R0,…,R15>, PC, oldPC, task0, oldTask

<R0,…,R15>, PC, oldPC, task1, oldTask

<R0,…,R15>, PC, oldPC, task2, oldTask

<R0,…,R15>, PC, oldPC, task3, oldTask

Branch
Unit

ExecutionIDEC

Register
Banks

Interrupt
Unit

Data
Memory
Interface

Code
Memory
Interface

Debug
Unit

PortPortPort

PortPort
Co-

Processor

Data Memory Code Memory

OCDS

Figure 1. Architecture of the PP32

Our simulation model of the PP32 data path consists of a
four-stage pipeline, I/O ports and supports instructions for

• data transfer (LDW, STW etc.),

• branch and thread control (BRREG, RET etc.), and

• logic + arithmetic (ADD, SUB etc.).

It also supports predicated execution determined by certain
flags.

To implement a low overhead calling convention, we ex-
tensively used three dedicated hardware instructions which
provide the base functionality:

RUNREG: The run-operation ”RUNREG” starts a new task
with a given task number and a given 32 bit branch
address. It assigns the branch address to the PC and
changes into the register file, indexed by the task num-
ber. At the same time, the old PC and task number are
stored in additional SPRs which can be later used by
”STOP” to return to the old task.

MVR2R: The move-operation ”MVR2R” receives four pa-
rameters in registers: source register (RS) and task num-
ber (src taskno), as well as destination register (RD) and
task number (des taskno). The operation transfers the
value in RS of register file src taskno into the register
RD of register file des taskno.

STOP: The stop-operation does not receive any parame-
ters. It reads the return PC and task number from cer-
tain special purpose registers and performs a jump back
to the old task.

4. A Low Overhead Calling Convention for
Network Processors

The calling convention [2] is a contract between two func-
tions – the caller and the callee – about the procedure of
switching from the caller to the callee and back. Whereas the
caller is responsible to pass the callee’s function arguments
in according registers, the callee has to conserve the caller’s
state, in order to guarantee the validity for the scopes of
the local variables. This is established through the extension
of each function by a prologue and an epilogue. These two
code paragraphs enframe the function body of every func-
tion and together they perform the callee’s part of a calling
convention. The job of prologue and epilogue inside a call-
ing convention is to save (prologue) and reload (epilogue) the
caller’s state which is represented by the actual register val-
ues before the caller’s function call of the callee. Figure 2
gives an example of a typical traditional calling convention.

Prologue:
STW caller's FP;
MOVE caller's SP into callee's FP
for (all registers to be saved) do

STW register on stack;
end for

SUBI SP SP frame-size;

Epilogue:
for (all registers to be loaded) do

LDW register from stack;
end for
MOVE callee's FP into caller's SP;
LDW caller's FP;
RET to caller program code;

Caller:

Callee:

Function Call:
for (all parameters in register) do
either load or move value
into according register;

end do
LDI _Callee >>16;
ADDI _Callee&0xffff0000;
BRREG _Callee;

Function Call

Figure 2. Traditional Calling Convention

After the caller has placed necessary function arguments
in according registers and executed a call instruction, in the
callee’s prologue (fig. 2), first the caller’s Frame Pointer (FP)
is saved and afterwards, the caller’s Stack Pointer (SP) is
moved into the callee’s FP. Subsequently, all register values
that represent the caller’s state have to be saved onto the stack
and the new SP for the callee is computed. Stack Pointer and
Frame Pointer of a function are special register values that
denote the base addresses, used for accessing local variables
and parameters.

In the epilogue of figure 2, first all register values that rep-
resent the caller’s state have to be reloaded from the memory.
After this, the callee’s FP is moved into the caller’s SP and
the caller’s FP is also reloaded from the memory.

Figure 3 shows the exact procedure of the calling conven-
tion using a separate HW context for the callee. Here, the

Prologue:
MVR2R caller's SP into callee's FP;
SUBI SP FP frame-size;
if(function has return value) then

STW index of caller's register file;
end if
for(all parameters in register) do

MVR2R parameter into new equivalent register;
end for

Epilogue:
if(function has return value) then

LDW index of caller's register file;
MVR2R return value into caller's return register;
end if
STOP;

Function Call:
for (all parameters in register) do
either load or move value
into according register;

end do
LDI _Callee >>16;
ADDI _Callee&0xffff0000;
RUNREG _Callee TaskNo;

Caller:

Callee:

Function Call

Figure 3. Low Overhead Calling Convention

caller uses ”RUNREG” to evoke the callee. In the callee’s
prologue of figure 3, first the caller’s SP is moved into the
callee’s FP and the new SP is computed by subtracting the
current frame size from the FP. Now, in case of a return value,
the index of the register file has to be saved for later utiliza-
tion in the epilogue. In a final step, all parameters residing in
registers are moved to the HW context.

In the epilogue of figure 3 just the return value – if nec-
essary – is moved to the caller’s register file and the callee’s
task (function) is stopped. Consequently, no LOAD/STORE-
instructions have to be executed in order to save/reload the
caller’s state.

The trade-off in choosing between these two calling con-
ventions relies on the quantitative relation of parameters and
memory accesses, necessary to save and reload the caller’s
state. That is, if the number of parameters is less than the
amount of necessary memory accesses, the low overhead
calling convention will introduce less overhead than the tra-
ditional one, but vice versa, if there are more parameters to
be transfered between the register files than memory accesses
are necessary to save and reload the caller’s state, then the
traditional calling convention will be more advantageous.

5. Optimized Selection of Calling Conventions

Due to the limited number of available HW contexts (four
in case of the Infineon PP32 NPU), obviously not every func-
tion can be executed in a separate HW context. As a conse-
quence, appropriate candidate functions have to be found by
the compiler, such that the benefit of using separate HW con-
texts for function calls is maximized. In order to evaluate ev-
ery function’s quality according to the previously described
calling conventions (section 4), a metric has been established
which can be used to sort functions and to decide for each
function which convention is best to be applied. Based on
this metric, the compiler is able to select for each path in the
call-graph of the source application, the best candidates that
are worth to be executed in a separate HW context.

5.1. System Overview

Figure 4 presents a complete system overview of our com-
piler framework that has been used to implement a low over-
head calling convention.

The simulation model of the Infineon PP32 (section 3)
has been developed with the LISATek Processor Designer

[4]. Therefore, we have been able to automatically gener-
ate the simulator, assembler, linker, and semi-automatically a
C-compiler [5] from the LISA-model to execute typical net-
work applications on this platform.

Our compiler for the PP32 is based on the CoSy Compiler
Development System from ACE [1]. CoSy is a highly mod-
ular C/C++ compiler framework, consisting of loosely cou-
pled engines, working on a central Intermediate Representa-
tion (IR). The retargetable backend engine is based on a Code
Generator Description (CGD). The CGD enables developers
– amongst others – to specify available target processor re-
sources like registers or functional units and to describe a
set of mapping rules, determining how C/C++ pattern match
(potentially blocks of) assembly instructions. Those mapping
rules, specifying the prologue, epilogue and function calls
have been used to modify the calling convention.

C application source code

C front-end
engine

IR
Optimizations

Instruction
Selector
Register
Allocator

Scheduler

Optimizations
optimizations

architecture
specific
backend
engines

Emitter

PP32
Compiler

GCC Compiler

Profiling with gprof

Compiling with gcc

Dynamic Calls
Candidate
Selection

Figure 4. System Overview

The algorithm for candidate selection is implemented as a
single engine that has been inserted into the backend of our
PP32 compiler. Since the algorithm needs special register in-
formation, the engine is executed after the register allocator.
Furthermore, runtime information is required to determine
the number of dynamic calls for each function. To provide
this information, the source application is profiled in advance
by the freely available GNU profiler gprof. Gprof stores the
obtained runtime information in files, such that the number
of dynamic function calls can later be easily accessed by the
PP32 compiler.

5.2. Candidate Selection

For a given application C source code, our technique re-
quires the following input data

• A static call-graph G = (V,E). G is a Directed
Graph, where each node v ∈ V represents a function
and each edge (vi, vj) ∈ E depicts a call dependency
from vi to vj . In order to avoid infinite loops, recursive
functions and functions with a call cycle have to be ex-
cluded from the algorithm. Also top-level function, i.e
the ”main” function, or functions not called anywhere
in the source code are not considered as candidates by
the algorithm. Furthermore, functions without a body,
i.e. standard library functions like ”printf”, are not taken
into account.

• The number P (f) of parameters residing in registers
for each function f .

• The number R(f) of registers to be saved and
reloaded by traditional calling convention for each
function f .

• The number N of HW contexts available in the target
architecture.

• The number D(f) of dynamic calls for each function
f . This information is obtained by profiling.

For candidate selection, one has to consider all paths
P = (p1, . . . , pn) of G starting at the root p1 that corre-
sponds to the ”main” function in a C program. As one HW
context is always occupied by ”main”, due to its liveness
throughout program execution, N − 1 nodes (instead of N)
have to be identified within every path pi whose implemen-
tation by the low overhead calling convention explained in
section 4 leads to the highest gains in code quality.

Let Q denote the set of all sub-sets q = (f1, . . . , fN−1)
with length N − 1 of a given path pi. That is, each fi in q
corresponds to a particular function along a call graph path.
For a sub-set q we define the benefit B(q) as

B(q) =
∑

∀f∈q

(R(f) − P (f))D(f).

B(q) measures the cost savings as the difference of regis-
ters to be stored and loaded (traditional calling convention)
and the number of register parameters (low overhead call-
ing convention), scaled by the number of dynamic calls of
function f . The best selection of candidates obviously corre-
sponds to determining the optimal sub-set q∗ ∈ Q such that
B(q∗) is maximal among all q ∈ Q.

Our heuristic algorithm recursively traverses the call-
graph G in depth-first order, starting at the root, and iden-
tifies possible function candidates for being executed within
separate HW contexts. The recursion is terminated at the leaf
nodes/functions which do not contain any function calls.

The strategy applied by depth-first traversal is, as its name
implies, to traverse ”deeper” in the call-graph, whenever pos-
sible. In depth-first traversal, edges are explored out of the
most recently discovered vertex v that still has unexplored
edges emanating it. When all of v’s edges have been ex-
plored, the traversal ”backtracks” to explore edges leaving
the vertex from which v was discovered. This process con-
tinues until we have discovered all the vertices that are reach-
able from the original source vertex. If any undiscovered ver-
tices remain, then one of them is selected as a new source and
the traversal is repeated from that source. The entire process
is repeated until all vertices have been traversed.

Figure 5 presents the heuristic candidate selection in
pseudo code. An essential part of the algorithm is the
sorted cands input. Sorted cands is an array that keeps up
to N − 1 function nodes in ascending order of their bene-
fits B. In case of an overflow, the node with lowest bene-
fit B is excluded from the array and the remaining nodes are
ordered by their benefits. Using the sorted cands array, the
candidate selection takes place in two phases for each node.
Firstly, the node’s benefit is computed and, if positive, in-
serted into sorted cands. While traversing deeper, the node’s
adjacency list is examined and consequently, sorted cands

algorithm depth first traversal
input: Graph G = (V,E),

Node v ∈ V ,
sorted cands[1 . . . N-1];

output: Annotated graph G+ = (V +, E)
begin
01 f = v;
02 if (f is not recursive) then
03 if (B(f) > 0) then
04 Sort f into sorted cands ;
05 Assign f to a register file;
06 end if
07 end if
08 for (all callees of f) do
09 depth first traversal(G, callee, &sorted cands);
10 end for
11 if (f in sorted cands) then
12 delete f from sorted cands ;
13 delete assignment of register file;
14 annotate selection of f in G;
15 end if

Figure 5. Pseudo code of the selection algo-
rithm

keeps for each node the N − 1 best previously selected can-
didates. Secondly, if the node’s adjacency list has been en-
tirely examined, and the node is an element of sorted cands,
it is removed from the array and finally annotated in the call-
graph G as being executed in a separate HW context.

The algorithm results in an annotated call-graph G+ =
(V +, E), where V + designates the set of nodes V includ-
ing a subset of marked nodes that represent the selected can-
didates for separate HW contexts. Since the IR of CoSy is a
graph, the call-graph is a subset of the IR. Therefore, the in-
formation about selected candidates is available for succeed-
ing compiler-phases like the code-emitter which produces
the assembly code for calling conventions as described in
section 4.

5.3. Example

Consider the static call-graph of figure 6, with 4 func-
tion nodes and corresponding benefits B(f), annotated for
each node f in the graph. The corresponding traversal of the
graph is presented on the right hand-side of figure 6, where
the nodes present the appropriate states of the sorted cands
array (fig. 5). Furthermore, the according number of avail-
able HW contexts N is 3, such that the number of candidates
is 2, because one register file is always occupied by ”main”.

The algorithm will start at the root ”main”, take the first
available callee F1, insert it into sorted cands, proceed to F2
and insert this node as well into sorted cands. Arriving at
node F3, both slots of sorted cands are occupied with pre-
decessors of F3, such that the ”weakest” node F2 will be ex-

cluded while sorting F3 into sorted cands. Since F3 has an
empty adjacency list, no further callees have to be visited on
this path. The algorithm tracks back to a predecessor with
a non-empty adjacency list and eliminates the passed nodes
from sorted cands. These functions are at the same time se-
lected for the execution in a separate HW context. The cor-
responding nodes in the graph traversal are marked dark to
emphasize the final selection of a function by the algorithm.

F3

F4

F1

F2

main

B(F1) = 3

B(F3) = 5

B(F4) = 3

B(F2) = 2

F4 F1

F1

F2 F1

F1 F3

F1

F1 F1

Static Call-Graph Depth-First Traversal

Figure 6. Example call-graph and traversal
with corresponding states of sorted cands

5.4. Algorithm Complexity

We have chosen this depth-first approach, due to its ability
to compute an optimized solution in a short runtime: Lines
1 - 7 and lines 11 - 15 of figure 5 take time O(V), exclud-
ing the time to execute the recursive calls for the adjacency
list of the actual vertex v in lines 8 - 10 of figure 5. The
loop in lines 8 - 10 is executed |Adj[v]| times, because it is
called for every callee of the actual node v. Consequently,∑

v∈V |Adj[v]| = O(E) and therefore, the total cost of the
algorithm is O(V +E). Since the ”MVR2R” instruction (sec-
tion 3) receives all of its operands in registers, we can dynam-
ically determine for each function call, in which HW context
it will be executed. Therefore, no global dependencies be-
tween function calls inside different paths of the call-graph
exist.

6. Experimental Results

In order to evaluate the proposed technique, application
studies for several typical network applications provided by
Infineon, have been performed. The benchmark suite com-
prises an IPv6 Router, an Ethernet Router and a test program
for the signal ports. As presented in table 1, the benchmarks
contain between 1180 and 2223 lines of code. The number
of functions and the quantitative portion of selected func-
tions are given in the following rows.

Table 1 presents our simulation results for the network ap-
plications in the following section. All results have been ob-
tained from the same compiler, once with enabled and once

with disabled candidate selection. The results represent the
relative speedup of the optimization given in percentage. As
with Function Inlining, our optimization relies strongly on
the application’s paritioning of functions. Consequently, both
optimzations are orthogonal and cannot be executed indepen-
dently, such that Function Inlining has been switched off all
the time, in order to get more reliable results by examining a
bigger set of functions. The obtained results are therefore rel-
ative values based on the available set of functions.

Results of Benchmarks

IPv6 Ethernet Port Average
Router Router Access

lines of code 2075 1180 2223 –
functions 31 28 29 –
sel. functions 26 25 21 –
speedup (1) 13.1% 9.7% 16.6% 13.1%
speedup (2) 17.5% 13.0% 21.5% 17.3%
speedup (3) 20.7% 15.5% 25.0% 20.4%
speedup (5) 24.9% 18.8% 29.3% 24.3%
speedup(10) 30.2% 23.1% 34.6% 29.3%
code size -2.7% -2.2% -2.0% -2.3%
LOAD -36.6% -33.8% -41.3% -33.9%
STORE -43.1% -36.0% -42.8% -40.6%

Table 1. Overview of experimental results

The values have been obtained for different configurations
of the memory’s wait cycles. Assuming that apart from ideal
memories, every memory produces at least 1 wait cycle per
access, the memory model has been configured for wait cy-
cles between 1 and 10 which are given in parentheses for
each row. Even for an extremely fast memory (1 wait cycle),
a significant speedup (13.1% on average) has been measured.
Naturally, the speedup grows with more realistic wait cycle
count (e.g. up to 29.3% for 10 wait cycles).

A secondary optimization effect is an average code size
reduction of 2.2%. This is due to the lower number of in-
structions needed for context switching. Hence, as compared
to a related interprocedural optimization (function inlining),
the speedup has not to be paid by an increase in code size.

In the last section of table 1, the relative reduction of dy-
namic memory accesses for all benchmarks is highlighted.
LOAD instructions have been reduced by 33.9% and STORE
instructions by 40.6% on average. We believe that especially
these results will also affect the power consumption of a net-
work processor, because memory accesses usually belong to
the most power consuming hardware instructions.

7. Conclusion

Many NPUs are equipped with HW multi-threading sup-
port by means of different HW contexts. This paper presents
a novel compiler optimization that exploits HW contexts not
fully utilized by the tasks of an application. It attempts to re-
duce the overhead of high-level function calls which largely
results from memory accesses in the prologue and epilogue

of each function. The technique has been implemented into
a C compiler for the Infineon PP32 NPU and has been suc-
cessfully tested for different typical NPU applications.

The proposed code optimization is very effective as it
leads to a significant speedup of the executables, as well
as to a small code size reduction as a secondary effect. Al-
though we have no experimental confirmation as yet, it is an-
ticipated that a significant saving in power consumption re-
sults as well, due to the large reduction of memory accesses
via LOAD and STORE instructions.

The implementation proposed in this paper is mainly tar-
geted for the PP32 architecture. However, we believe that
retargeting for further NPU architectures with HW multi-
threading support is straightforward. In the future, we will
investigate such retargeting mechanisms, as well as further
NPU-specific code optimizations in the PP32 C compiler.

References

[1] ACE – Associated Computer Experts bv. The COSY Com-
piler Development System
http://www.ace.nl.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[3] D. W. Wall. Register Windows vs. Register Allocation. In
Conf. on Programming Language Design and Implementation
(PLDI), pages 67–78, June 1988.

[4] A. Hoffmann and H. M. et al. A Novel Methodology for
the Design of Application Specific Instruction Set Processors
(ASIP) Using a Machine Description Language. IEEE Trans-
actions on Computer-Aided Design, 20(11):1338–1354, Nov.
2001.

[5] M. Hohenauer, H. Scharwaechter, K. Karuri, O. Wahlen,
T. Kogel, R. Leupers, G. Ascheid, and H. Meyr. A Method-
ology and Tool Suite for C Compiler Generation from ADL
Models. In Proc. of the Conference on Design, Automation &
Test in Europe (DATE), Mar. 2004.

[6] J.Wagner and R. Leupers. C Compiler Design for a Network
Processor. IEEE Trans. on Computer-Aided Design (TCAD),
20(11):1302–1308, Nov. 2001.

[7] K. Keutzer and H. M. et. al. Building ASIPs: The Mescal
Methodology. Springer, June 2005. ISBN: 0-387-26057-9.

[8] J. Kim, S. Jung, Y. Paek, and G.-R. Uh. Experience with a Re-
targetable Compiler for a Commercial Network Processor. In
Proc. of the Conference on Compilers, Architectures and Syn-
thesis for Embedded Systems (CASES), Oct. 2002.

[9] X. Nie, L. Gazsi, F. Engel, and G. Fettweis. A new net-
work processor architecture for high-speed communications.
In Proc. of the IEEE Workshop on Signal Processing Systems
(SIPS), pages 548–557, Oct. 1999.

[10] N. Shah. Understanding Network Processors. Technical Re-
port 1.0, University of California, Berkeley, Sep. 2001.

[11] N. Shah and K. Keutzer. Network Processors: Origin of
Species. In The 17th International Symposium of Computer
and Information Science, 2002.

[12] X. Zhuang and S. Pande. Resolving Register Bank Con-
flicts for a Network Processor. In IEEE International Con-
ference on Parallel Architectures and Compilation Techniques
(PACT), 2003.

[13] X. Zhuang and S. Pande. Balancing Register Allocation
Across Threads for a Multithreaded Network Processor. In
Conference on Programming Language Design and Imple-
mentation (PLDI), June 2004.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

