
Workcraft: a static data flow structure editing, visualisation and analysis tool 
 

Ivan Poliakov, Danil Sokolov, Andrey Mokhov, Alex Yakovlev 

{ivan.poliakov, danil.sokolov, andrey.mokhov, alex.yakovlev}@ncl.ac.uk 

Microelectronics System Design Group - University of Newcastle 

http://www.ncl.ac.uk/ 

http://async.org.uk/ 

 
Abstract 

 
Workcraft is a framework for the simulation, conversion 
and analysis of the SDFS models. The plug-in based 
architecture with embedded scripting language makes the 
framework an easily extensible and very flexible 
environment. 
 
1. Introduction 
 

Reliable high-level modelling constructs are crucial to 
the design of efficient asynchronous circuits. Concepts such 
as static data flow structures (SDFS) considerably facilitate 
the design process by separating the circuit structure and 
functionality from the lower-level implementation details. 

Aside from providing a more abstract, higher level 
view, SDFS [3] allows efficient circuit analysis to be done 
by converting it to a Petri Net preserving behavioural 
equivalence. Once the equivalent Petri Net is obtained, 
existing theoretical and tool base can be applied to perform 
the model verification. 

However, recent advances in SDFS design were largely 
theoretical. There are no practical software tools available 
which would allow working with different SDFS models in 
a consistent way and provide means for their analysis and 
comparison. 

This work presents a tool which aims to provide a 
common, cross-platform environment to assist with these 
tasks. The tool offers a GUI-based framework for visual 
editing, real-time simulation, animation and extendable 
analysis features for different SDFS types. The models 
themselves, as well as the supporting tools, are 
implemented as plug-ins. 
 
2. Software architecture 
 

The tool is composed of a base framework and three 
principal plug-in types as shown in Figure 1. 

The framework consists of three functionally separate 
modules: core plug-in management and scripting system, 
which is referred to as the server, the GUI-based editor, and 
the vector graphics visualisation system. 
 
 
 

 
Figure 1 : Component interaction scheme 

 
 

The server module is the fundamental part of the 
framework. It performs automatic plug-in management 
(loading external plug-in classes, and grouping them using 
the reported model identifiers). It also provides a scripting 
engine, based on Jython [1], which is used to provide 
further run-time customization flexibility. 

The editor provides visual environment for efficient 
model design. Its functions include rendering a document 
view using the visualisation system; viewport scaling and 
panning; moving and connecting components; group move, 
delete and copy/paste operations. The editor also supports 
auxiliary features, such as "snap-to-grid" function (which 
restricts component coordinates to intersection points of 
grid lines), thus enabling the user to get desired alignment 
of the components with ease. 

The vector graphics visualisation system is designed to 
provide two types of output: interactive visualisation, which 
is implemented using OpenGL hardware acceleration, and 
graphics export, which renders the document as an SVG [2] 
file. Both visualisation methods support a common set of 
drawing functions, which includes drawing of lines, poly-
lines, Bezier curves, text and arbitrary shapes with 
customizable fill and outline styles. The two methods 
produce nearly identical result, so the developer only has to 
implement his or her component's drawing routine once for 
both interactive and external visualisation. The exported 
graphics provide measurements in real-world units, so that 
the effort of using them in printed material is minimal. The 
editor grid cells also have explicitly defined real-world size, 
thus document's final look on paper is always well-defined. 

The concept of model is central to the software's plug-in 
architecture; the other plug-in types identify themselves as 
belonging to one or several models. The model plug-in 
manages simulation behaviour, handles component 
creation, deletion and connection operations, as well as 
performing document validation. Each model type defines a 
model identifier in the form of UUID (universally unique 



identifier), which is used by other plug-in types to report 
supported models. 

Component plug-in type defines individual nodes, such 
as registers and combinational logic. Components define 
the model-related data elements, visualisation features, 
user-editable properties, and serialization mechanism. 

Tool plug-ins define operations on the model. Their 
functionality is not limited in any way, so this plug-in class 
includes everything from external file format exporters to 
interfaces with stand-alone model-checking tools. 
 
 
3. User Interface 
 

 
Figure 2 : Main GUI window 

 
 

The framework's main window is shown on figure 
Figure 2. The main menu (1), besides standard file and 
editing operations, includes an automatically selected set of 
tools which support the current model. This selection occurs 
when a new document is created, or a document is open 
from a file. The editor commands (2) are duplicated both in 
the main menu and by hotkeys. The component list (3) 
presents set of all components supported by the current 
model, which are chosen in similar fashion to the tool set. A 
component can be added to the document either by 
dragging it from the component list, or by using a hotkey, 
which is optionally specified by the component. All 
components are further assigned numeric hotkeys from '1' 
to '9', corresponding to their order in component list. The 
editor options bar (4) contains toggle buttons to enable or 
disable certain auxiliary functions, such as display of labels, 
component IDs, editor grid and snap-to-grid editing mode. 
The document view pane (5) presents the document 
visualisation. It supports scaling (using the mouse wheel) 
and panning (holding right mouse button and dragging) to 
change the current viewport. It also supports moving of 
components, which is done by dragging them, and group 
selection done by holding the left mouse button and 
dragging the selection box over desired components. The 
selected components can then be moved together by 
dragging any of them, or deleted. The property editor (6) 
displays properties of currently selected component and 

allows editing them, such as, for example, changing the 
number of tokens in a Petri Net place. The utility area (7) 
holds three tabs: the console, which is used to display 
various information during normal execution of the 
program and also allows to execute script commands; the 
problems list which displays a list of errors which occurred 
during execution; and the simulation control panel which 
allows to start, stop and reset model simulation, as well as 
presenting additional, model-defined simulation controls. 
 
4. Conclusion 
 

The Workcraft tool presents a consistent framework for 
design, simulation and analysis of SDFS-based models. Its 
plug-in based architecture makes it easily extensible and 
very flexible environment, while inherent support for run-
time scripting makes it even more powerful. Compact 
visualisation interface is very easy to use, and produces 
nearly identical results for both real-time visualisation and 
export to external graphics format without additional effort 
from the developer. Workcraft uses OpenGL hardware 
acceleration for real-time visualisation through JOGL 
API[4], which allows fluent, interactive animated 
simulations to be presented. Underlying Java technology 
provides robust cross-platform operation. 

Currently developed Workcraft plug-ins support editing 
and simulation of Petri Nets, spread token, anti-token and 
counterflow SDFS models; conversion of SDFS models to 
behaviourally equivalent Petri Nets; Petri Net export in 
several formats for analysis using external tools. 
 
5. References 
 
[1] The Jython Project - http://www.jython.org/
[2] Scalable Vector Graphics - 
http://www.w3.org/Graphics/SVG/ 
[3] I. Poliakov, D.Sokolov and A.Yakovlev. “Spread token, 
antitoken and counterflow semantics for asynchronous 
datapath model”, EECE Postgraduate Conference, 
Newcastle University, January 2007. 
[4] JOGL API project - https://jogl.dev.java.net/ 
 
Acknowledgement 
 
This work was supported by EPSRC grant number 
EP/D053056/1. 

http://www.jython.org/

