Area Efficient Hardware Implementation of Elliptic Curve Cryptography by
Iteratively Applying Karatsuba’s Method

Zoya Dyka and Peter Langendoerfer
IHP, Im Technologiepark 25, 15236 Frankfurt (Od&grmany
langendoerfer@ihp-microelectronics.com

Abstract providing digital signatures. Hardware acceleratdos

) o))) public key cryptography operations are ideal meansduce

Securing communication channels is especially r@de the calculation time as well as the energy consiampBut,

wireless environments. But applying cipher mectrasis a straight forward realization of cryptographic t®ns

software is limited by the calculation and energgaurces regqits in a relatively large area consumption,cvhinakes
of the mobile devices. If hardware is applied &alize the application of hardware accelerators econotgical

cryptographic operations cost becomes an issuethis infeasible. Thus, our design constraints were:
paper we describe an approach which tackles abé¢ttbree o
points. We implemented a hardware accelerator for * Calculation time,

polynomial multiplication in extended Galois fiel@&F)
applying Karatsuba’s method iteratively. With this
approach the area consumption is reduced to 2. mm e Area consumption.
comparison to. 6.2 mfmfor the standard application of
Karatsuba's method i.e. for recursive applicatio®ur
approach also reduces the energy consumption t@es0
cent of the original approach. The price we haveay for
these achievement is the increased execution fimeur
implementation a polynomial multiplication takesc®ck
cycles whereas the recurisve Karatsuba approachedse

e Energy consumption, and

We decided to use Elliptic Curve Cryptography (EG@)e
it guarantees the same security level as RSA daesvith
significant shorter keys. In addition to this theCE&
operations are faster than those of RSA [1]. Wectetl B-
233 over Galois field GF2®) which is recommended by
NIST [2] and well suited to be implemented in haadev

only one clock cycle. But considering area, eneagyl Despite ECC is less computational intensive thaA RStill
calculation speed we are convinced that the benefitour requires a significant effort in terms of energylame. In
approach outweigh its drawback. this paper we concentrate on the area efficiedizadeon of

basic mathematical operations, which are used iG.EC

ECC Background In order to calculate the product of two
233 bit long operands, denoted ‘kP’. H&és a point on an
elliptic curve (EC) andk is a large number. The ‘kP’
multiplication is based on point doubling and paadition.

All these EC point operations are based on addition
. subtraction, squaring, multiplication and divisiona chosen

1. Introduction GF. The basic operations in GE{} are addition, squaring,

Motivation Mobile devices are penetrating our every day Multiplication and division of polynomials. Additio of
life. More and more sensitive information is exoppest ~ POlynomials is equivalent to a bit-wise XOR opevati
between mobile nodes and between mobile and fixedSquaring —and multiplication require two steps:
communication endpoints. This data exchange is altym squaring/multiplication itself and reduction of thresult.
protected by cipher mechanisms. But due to thececar Reduction is done using so-called irreducible potyrals
resources of mobile nodes, exhaustive use of cgyaphic ~ and it is a fast operation in GFJ2 The irreducible
means is infeasible. This holds especially truepfdslic key

cryptography, which is normally used to establisbeaure

channel between the communicating parties as vgefba

Key words: Extended Galois fields, polynomial
multiplication, Elliptic Curve Cryptography, Karaiba’'s
formula.

1530-1591/05 $20.00 © 2005 IEEE

polynomial for B-233 is the trinomiat:(x) = x*330 x40 1%

Division of polynomials usually is done in two ssepirst
identifying the inverse of the divisor using theettucible
polynomial, and second multiplying the inverse witte
dividend. Multiplication and division of polynomgtequire
the major part of the calculation time.

In this paper we are concentrating on polynomial
multiplication, since our long term goal is to irapient a
Montgomery multiplier for the ‘kP’ operation. The
Montgomery method requires only one polynomial sl
for 'kP’, so that the major effort comes from the
multiplication.

Contribution and structure of this paper In this paper we
show that an iterative application of the Karatsuatethod
provides very good results with respect to theofsihg
three parameters: calculation time, area consumpdiod
energy consumption. With our iterative hardwareusoh,
the chip area needed to calculate the product of2838 bit
long operands, is 2.1 nftwhereas the standard application
of Karatsuba's method needs 6.2 m@ur approach also
reduces the energy consumption to 60 per cent ef th
original approach. The price we have to pay fors¢he
achievements is the increased execution time. In ou
implementation a polynomial multiplication takesc®ck
cycles whereas the original one needs only on&kdycle.

The rest of this paper is structured as followsecti®n 2
contains a short description of implemented methdds
propose to use the Karatsuba’'s formula for polymdmi
multiplication iteratively. The detailed descripticof our
approach is given in Section 3. Section 4 discuskes
hardware realization of our
measurement results. We conclude the paper withoa
discussion of our results and an outlook on furtiesearch
steps.

2. Stateof the art

In this section we describe methods for polynomial
multiplication in polynomial basis. We implementtdtkese
methods and different combinations of them to reabur
own approach and to benchmark our solution.

1 Note: In GF(2) addition and subtraction are XOR operations. Duhis
and for simpler understanding of formulas we chahgeusual
n-1) n-1 .
representation of polynomial&(X) = > ;X' to A(X) =[] &X' .In
i=0 i=0
rest of this paper we denote XOR operation dsThe symbol ‘+’ means
always an ordinary addition.

approach and provides

2.1. Polynomial multiplication

The product of two polynomials

n-1) -1 .
A(X) =[] ajx" and B(x) = nD b, x'
i=0 i=0
2n-2 .
is the polynomialC(x) = A(X) (B(x) = [] ¢X,
i=0

whereg = [] a M, i.e.

K+l =i
Co =3 [y

¢ =&y [y Dag by
Cha =,y Oa,_, M 0...0a8, b,

Con-g =an4 B, , Da, o M,
Con—p = an1 B4
1)

The straight forward implementation of formula (1) regsliire
n? partial multiplication angn-1)* XOR operations of partial
products in order to calculatg All operands in formula (1)
are onlyone-bit long. In case of using EC B-233 both
polynomialsA(x) and B(x) are 233-bitlong. It means that in
total 233 one-bit partial multiplications and232 XOR
operations are required.

2.2. Karatsuba based methods

Original Karatsuba’'s method For polynomial
multiplication with original Karatsuba method [3] both
operands have to be fragmentized into two equal parts. If the
length n of operands is odd, they have to be padded with
leading ‘0'. So, operands can be writtef: as

n
A(X) =a,4..a,a, --ay=a,4..8, X20a, .aa,=
— o = =1

2 2 2 2
n

zalx2 0a°

)

2 We denote aa thei® bit and ag! thei" segment of operan&(x).

The polynomial B(x) is represented in the same way. The
Karatsuba’s formula for the produ€{x)=A(x)B(x) is

n
C(x)=a’h’ Ofa’w’ 0albt 0@° oal)w’obl)|x2 O
0 atb! k"
3

In order to calculate the partial product®’ Karatsuba’s
formula can be applied recursively. In this cdsequires

in total s°%2* = s® partial multiplications, whers is the
number of segments. This method can be used ta agee
software as well as hardware implementations. Ugtal
software implementations the Karatsuba’'s approash i
applied until both operands have a size of one word

C(x) =ata’ b’ O
0 [a1a° Blb° 0 a%a? b3b2 O at®a® b3%2 | %2 O
0 a%a2 b2 "
(5)
where
aa” =a”x"Da¥%=(a'0a®)x"0(@°0a?) =
=@'x"0Da’%) 0@ X" 0a?%) =a'a’ 0a’a?
(6)

and

bp%% = b'b® 0 b%? @)

In Bailey and Paar [4] a new scheme how to apply Every 2-segments element is'a’ =a' (x" O a'. So, for

Karatsuba'’s idea was proposed. In this schemepkeaads
are divided into three parts. Throughout the resthis
paper we denote this methodBasley’s method It requires

6 partial multiplications ofn/3-bit long operands. This
method can be combined with the original Karatsuba
formula for operands, whose length is divisiblesby

3. lterative Application of the Karatsuba

Approach

The major point in our approach is to apply thegioil
version Karatsuba’s method iteratively. We dendiie &s
Iterative-Karatsuba method The major benefits of this
approach are:

- a smaller area consumption of the hardware aGtels

each partial multiplication from (6) and (7) we udee
Karatsuba’s formula again. The final result is given
formula (8).

c=atp*x" 0@ bd?oabi0a?b®) x> o

O@'b0a?b?0a®d® 0a®b®)x*" O
D@’ 0aldr0a?b?0a’ b0
0 aOl EbOl 0 a02 Eb02 0 a13 Eb13 0 a23 Eb23 0
0 a0123 Eb0123) D(Sn 0
0@°d° Oatb! Da?b? 0a%2 b)) x® o
@b Oat b 0a® b x" 0al bh°
(8)

due to the fact that partial multiplications can be Each of the operands is 1-segment long, so thatethéting

performed serially

partial product isZn-1)bit long. We denote the bits from

- a reduced number of XOR operations compared with 1 {0 of the producta’ b’ asa'b’ [0] and the bits fron2n-

the recursive variant of Karatsuba’s method.

We explain our idea of the iterative application of
Karatsuba’s formula using an example in which the
operands are split up into four segments. Firgllofve use
the original Karatsuba formula to obtain the expi@s for a
product, in which only 1-segment long operandspartial
multiplication are used.

So, at the beginning we have two operands, eadhevh
4n-bit long. We fragment each operand into trebit long

parts:
A(X) =a*a?a’a’ =a*a? x*" Da'a’ @
B(x) =b%b?b'b?® =b>b? x*" O b'b°

The result of applying Karatsuba’s formula is:

1tonasa'b'[1]:

a' ' =ab'[]] X" O0a'b'[0]
©)

Using the notation introduced in (9) we can repmese
formula (8) as given in table 1.

Tablel. Representation of formula (8)

partial products segments of result
a’b°[0] o| o| of o
alb°[1] ol o] o] o
a'=h'[0] oloflo|lo
a'sb'[1] 5 E EE
a’b?[0] ol o]l of o
a?*b?[1] o| o] of o
a’b’[0] o| o] of o
a*b®[1] ol o] of o
(@ Jah)=(b’ 7bY) [0] O O
(@ Lah)=(b’ 70 [1] 0 0
(@ L&)’ 71 [0] ol o
(@ L&)’ 71 [1] ol o
@ Ja)(b O’ [0] o] o
(@ La)s(b' k% [1] o o
(a2 0 &%)+ B2 %) [0] 0 0
(a2 J&%)=(? 70%) [1] O 0
@ LOa g&ga)s(b’obt O 06 [0] 0
@ Oa & gad)s(b’ oot O 6% [1] 0

C(x) = c’cbc’c’c3ciclce?

All columns in table 1 which are nested under tbpid
‘segments of resulin represent a certain segment For
each partial product two lines are given in Tahlerie line
representing the lower @[0]), and a second one
representing the upper part*f41]) of the product as
specified above. The segmeahtan be calculated by XOR-

ing all lines in the table 1, which contain the $gh'Tl" in
the column ofc For example T can be calculated as
follows:

c’>=a'b'[1] 7ah0] 7 &b*[1] T &b[0] 7 ab’[1] I
(@0 &) b0 B)1]) O (&0 &)(0*0 b%)[0]) (10)

Each segment' can be calculated iteratively i.e. step by

step as we calculate the partial products stastiitly a’h®

down to (ao Datoa?Do ag)E(bO ObtOb%0 b?’). We then start

to calculate the segments of products using theadir
received results. For example:

Step 1 Step 2 ..And sc
on tc
c® =a%°[0] ¢t =ct Oalbl[0] Step 9

c? =c20alb[0] D albly
c® =c®Dalbl[o]0atbi[y
c* =c* Da'b'[0] D abl
c® =a'bl[y

¢! =a%°[0] 0 a’b°[1]
c? =a’°[0]0a%°[]
c® =a’b°[0] 0 a1
c* =a%°py

This iterative calculation of th€(x) reduces the area of our
hardware multiplier. We need only one partial nplidr for
1l-segment long operands. After each new clock this
multiplier delivers the next partial product. Inathway the
segments of produe@(x) are collected. For the above given
example this means after 9 clock cycles all segmeontain

the correct product of the polynomial multiplicatio

Additionally we exploit another ‘iterative possibyf: we do
not need to calculate all segmentsCgk) separately. We can
usec’ to determinec’ after the first clockc® for ¢ after
second clock, and so on (see table 2). This iterati
calculation reduces the number of XOR operation2%0
compared to 42 XOR operations if the calculatibewery
c'is done separately.

In a similar way we applied our iterative approaith
Bailey’s method, which we call Iterative-Bailey dlughout
the rest of this paper.

Table 2. Exact operation sequence of our hardware
implementation of formula (8)

clock | obtained partial produgt seguence of operations

¢’=pr[0]
c'=pr[1]

1 pr=a’m’

2 pr=at/m c'=ct & 17 pr[0]

¢=pr1]

3 pr = a’/® ¢=c?/7 ¢ pr[0]

= pr[1]

4 pr = a®/p’ G=c2 G pr[0] L pr[i]

c’=pr[]

c=c*0c
c=c*rc
c=ct0 PO pri]
c=c® ¢ I pr]0]
=c*/7 pr[l]
ct=c'[J pr[0]

5 |pr=(°0a") 4’ obY

6 |pr=(a’ad) 4’ b c=c*/J pr[0] 7 pr[i]
?=c?/[J pr[0]

c¢*=c* [pr[1]

7 |pr=(at &%) qb' k% c*=c*7 pr[0] 7 pr[1]

c=c*[J pr[0]

8 |pr=(a?a) qb’ b c3—c3ﬂpr

c=c® [pr

9 |pr=@oagaga’) c=c*7 pr

[
[
[
c“- c* 7 pr[dl
[
[
[

- (0 bt OB B ct=c* [pr

4.Hardware implementation

In this section we will present the design and Hey
parameters of our hardware realization of the figa
Karatsuba approach.

The design of the Iterative Karatsuba acceleraiosists of length of 128, 64 and 32 bits respectively. Theyrewve
three major parts (see Fig. 1): synthesized with a library of our in-house 08 CMOS-
. . Technology [5]. Table 3 shows the area, the time and energy
‘ _Setle(;trllonbllocif fleijlilslt(_:elr_taln fparts thbOth optleralilds consumption for each of these six partial multigieThese
Is?g%al € Fartial Multplier, for each new cloc values stem from the Design analyzer tool from Pgys
' [6].

e Partial Multiplier block callculates the partia! Table 3. Parameters of synthesized partial
product of the operands delivered by the selection multipliers

block and, provides the results to tipeoduct Name of partial Length | Area, mm| time, nsEnergy/clock
accumulation block multiplier (PM) | of input pW:s
. . values,
e Product Accumulationblock computes the final bits

product from the partial products it receives from | k128 k64 k32 k16 shB 128 1.620410] 1253 1394.400D

the partial multiplier. The theoretical basis and k64_k32_k16_sh8 64 | 0.514759| 8.99 404.391B

exact operation sequence is discussed in detail in k32_k16_sh8 32 | 0.159006] 5.62 108.201¢

Section 3. p81l_p27_sh9 81 | 0.896391| 7.98 692.003p
p39_sh13 39 [0.264672] 5.97 179.456p
p27_sh9 27 | 0.133616] 4.80 88.477

Partial Product In order to benchmark our approach we realized mwtyial
Selection Multiplier Accumulation PP

multipliers using the following approaches:

d A : .
gkl L Iterative « lterative Karatsuba

calculfation product C(x)
of

product
segments

Selection
operand B(x) | | of operands |+
for partial

clk_cntr i | multiplication

e lterative Bailey

e Original Karatsuba (recursive)

Figure 1: Block diagram of our Iterative-Karatsuba * Original Bailey (recursive)

multiplier For the first two approaches, i.e. for our own dtise
approaches, we realized three polynomial multipliesing
different partial multipliers (see table 3) in orde see how
the partial multiplier influences the overall paeters. We
named these multipliers so that the name indicées
applied method. For example, the name
iterative_Karatsuba_8segmentsieans: lterative-Karatsuba
fragmentizing incoming operands into 8 segments.

The performance, chip area and energy consumptica o
polynomial multiplier are dominated by the partial
multiplier which is used. The larger the input sifmof the
partial multiplier may be, the faster the partialltiplier is.

But this also results in a relatively large areastonption.

So, the design decision to make seems to be straigh
forward: calculation time versus chip area. Thidrie as
long as only the partial multiplier is consider&dit for the

polynomial multiplier also the area of the selectand the
product accumulation block have to be taken intcoant.
The chip area needed for the accumulation blocled@p on
the area of the partial multiplier in an inversegmortional
manner, i.e. the smaller the partial multiplier taeger the
accumulation block. This results from the fact tinatase of
small partial multipliers more intermediary resuftave to
be stored for the final calculation of the polynahproduct.
For example the size of the accumulation block ,B49
mm?’ if the partial multiplier accepts 128 bit long ogeds,

and 1,466 mmif the maximum length of the operands is 32

bits.

In order to determine the most appropriate design af
polynomial multiplier we realized several partialitipliers.
We realized 3 one-clock partial multipliers for aterative
Karatsuba as well as for our iterative Bailey apio
These partial multipliers accept operands with aimal

In the two recursive multipliers the original Kagaba and
the Bailey formula are applied down tme-bit operands.
Both multipliers deliver the polynomial product eftone
clock cycle. They differ in the length of the inpaperands.
The Karatsuba multiplier expects always two 256 ltitg
input values whereas the Bailey multiplier expduots 243-
bit long input values.

Since we are going to use these multipliers forB=233 the
two input values will be onl\233-bit long. Therefore the
operands were padded with leading O’s if it waseseary.
The result of the multiplication is alway€5-bit long.

We synthesized all polynomial multipliers usingikadry of
our in-house 0.28m CMOS-Technology [5]. We obtained
the data represented in these tables with diffekerds of
reports from the Synopsys “Design Analyzer” [6]. €Th
parameters of the implemented polynomial multigliare

given in Table 4. Our results clearly indicate thatiterative
application of the original Karatsuba and Baileygach
significantly reduces the chip area. If the numlmdr
iterations is kept small, our approach also hetpsetiuce
the energy consumption. In those designs the aecisiless
area and
Increasing the number of iterations helps to redheechip

area needed, but it also leads to an increased rpowe

consumption and an increased calculation time. tBese
implementations are beneficial only if cost is ttwaminating
parameter.

Table 4. Parameters of synthesized polynomial
multipliers

Name of multiplier Area, [INumbel Period,| Power,| Energy,
of T,ns | P,mW|E=T-N-P,
S, mn? | clocks, pW-s
N
iterative_Karatsuba__ 2.18/ 3 15 98.89 4450 L
2segments
(PM - k128_k64_
k32_k16_sh8)
iterative_Karatsuba__ 152 9 10 105.48 9493.2
4segments (PM -
_k64_k32_k16_sh8)
iterative_Karatsuba__ 1.67| 27 9 107.63 26154.]
8segments
(PM -_k32_k16_sh8)
iterative_Bailey_ 2.12| 6 10 148.16 8889.9
3segments
(PM - p81_p27_sh9)
iterative_Bailey_ 1.60| 18 9 110.46 17894.9
6segments
(PM - p39_sh13)
iterative_Bailey_ 1.71| 36 9 103.35 334854
9segments
(PM - p27_sh9)
recurcive_Karatsuba | 6.28 1 19.35| 326.15 6311.0
for_1clock
recurcive_Bailey 7.02 1 16.94| 441.7% 7483.3
for_lclock

5. Conclusions and Outlook

In this paper we discussed the iterative applicatad
Karatsuba’s method for polynomial multiplications a

means to reduce the chip area and energy needeashto

elliptic curve cryptography on mobile devices. Irder to
evaluate our approach we analyzed different mettiods
polynomial multiplication in GF(®, and implemented
different polynomial multiplication algorithms. Four own
approach we realized several partial multiplierseiged
them to implement a set of iterative polynomial tipliers
with the goal to identify the one which is besttedifor
application in mobile devices. Our results cledrgicate
that our iterative approach leads to significaniigtter

less energy versus slower execution time.

results with respect to area and energy consumittizm the
original straight forward application.

Our next step is the finalization of our Montgomeky’
multiplier. In this multiplier we will use the Feahtheorem,
since it allows to determine the inverse for theision
multiplication and squaring. The Fermat theorensl@ver

than the Extended Euklidian Algorithm or the method

proposed by Shantz [7], but it requires less a®&ace the
Montgomery method requires only a single divisiavg

think

that the smaller area outweighs the slower

performance.

Acknowledgements

This work was partially funded by the German Minjisbf
Education and Research under grant 01AKO60B.

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

Brown, M., Cheung, D., Hankerson, D., Hernandez
J.L., Kirkup, M., Menezes, A. (2000PGP in
Constrained Wireless DeviceBroceedings of the 9th
USENIX Security Symposium, August 14 —-17, 2000,
Denver, Colorado, USA. USENIX Association,
http://www.usenix.org/events/sec00/full_papers/briow
/brown.pdf last viewed October 6, 2003.

U.S. Department of Commerce/National Institute
Standards and Technology (NIST) (2000) Digital
Signature Standard. FIPS PUB 186-2. Federal
Information Processing Standards Publication,
http://csrc.nist.gov/publications/fips/fips186-p4il 86-
2-changel.pdflast viewed October 6, 2003.

Karatsuba A.; Ofman YMultiplication of multidigit
numbers by automataSoviet Physics-Doklady 7, p.
595-596, 1963

Bailey, D. V. and Paar, CEfficient Arithmetic in
Finite Field Extensions with Application in Ellipti
Curve CryptographyJournal of Cryptology, vol. 14,
no. 3, 153-176. 2001

“Technology”, IHP (Innovations for High Perfoance
microelectronics)http://www.ihp-ffo.de

“Products & Solutions”, Synopsys,
http://www.synopsys.com/products/logic/logic.html
A.Weimerskirch, C.Paar and S.C.Shantz (2001)
Elliptic Curve Cryptography on a Palm OS Device.
Proceeding of ® Australasian Conference on
Information Security and Privacy (ACISP 2001), 13-1
July 2001, Macquarie University, Sydney, Australia.

	Main Page
	DF'05
	Front Matter
	Table of Contents
	Author Index

	DATE'05

