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Abstract 

Securing communication channels is especially needed in 
wireless environments. But applying cipher mechanisms in 
software is limited by the calculation and energy resources 
of the mobile devices. If hardware is applied  to realize 
cryptographic operations cost becomes an issue. In this 
paper we describe an approach which tackles all these three 
points. We implemented a hardware accelerator for 
polynomial multiplication in extended Galois fields (GF) 
applying Karatsuba’s method iteratively. With this 
approach the area consumption is reduced to 2.1 mm2 in 
comparison to. 6.2 mm2 for the standard application of 
Karatsuba’s method i.e. for recursive application. Our 
approach also reduces the energy consumption to 60 per 
cent of the original approach. The price we have to pay for 
these achievement is the increased execution time. In our 
implementation a polynomial multiplication takes 3 clock 
cycles whereas the recurisve Karatsuba approach  needs 
only one clock cycle. But considering area, energy and 
calculation speed we are convinced that the benefits of our 
approach outweigh its drawback.  

 

Key words: Extended Galois fields, polynomial 
multiplication, Elliptic Curve Cryptography, Karatsuba’s 
formula. 

 

1. Introduction  

Motivation  Mobile devices are penetrating our every day 
life. More and more sensitive information is exchanged 
between mobile nodes and between mobile and fixed 
communication endpoints. This data exchange is normally 
protected by cipher mechanisms. But due to the scarce 
resources of mobile nodes, exhaustive use of cryptographic 
means is infeasible. This holds especially true for public key 
cryptography, which is normally used to establish a secure 
channel between the communicating parties as well as for 

providing digital signatures. Hardware accelerators for 
public key cryptography operations are ideal means to reduce 
the calculation time as well as the energy consumption. But, 
a straight forward realization of cryptographic operations 
results in a relatively large area consumption, which makes 
the application of hardware accelerators economically 
infeasible. Thus, our design constraints were: 

• Calculation time, 

• Energy consumption, and 

• Area consumption. 

We decided to use Elliptic Curve Cryptography (ECC) since 
it guarantees the same security level as RSA does but with 
significant shorter keys. In addition to this the ECC  
operations are faster than those of RSA [1]. We selected B-
233 over Galois field GF(2233) which is recommended by 
NIST [2] and well suited to be implemented in hardware. 

Despite ECC is less computational intensive than RSA it still 
requires a significant effort in terms of energy and time. In 
this paper we concentrate on the area efficient realization of  
basic mathematical operations, which are used in ECC.  

ECC Background In order to calculate the product of two 
233 bit long operands, denoted ‘kP’. Here P is a point on an 
elliptic curve (EC) and k is a large number. The ‘kP’ 
multiplication is based on point doubling and point addition. 
All these EC point operations are based on addition, 
subtraction, squaring, multiplication and division in a chosen 
GF. The basic operations in GF(2233) are addition, squaring, 
multiplication and division of polynomials. Addition of 
polynomials is equivalent to a bit-wise XOR operation.  
Squaring and multiplication require two steps: 
squaring/multiplication itself and reduction of the result. 
Reduction is done using so-called irreducible polynomials 
and it is a fast operation in GF(2n). The irreducible 
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polynomial for B-233 is the trinomial: 1)( 74233 ⊕⊕= xxxf 1. 

Division of polynomials usually is done in two steps: first 
identifying the inverse of the divisor using the irreducible 
polynomial, and second multiplying the inverse with the 
dividend. Multiplication and division of polynomials require 
the major part of the calculation time.  
In this paper we are concentrating on polynomial 
multiplication, since our long term goal is to implement a 
Montgomery multiplier for the ‘kP’ operation. The  
Montgomery method requires only one polynomial division 
for ‘kP’, so that the major effort comes from the 
multiplication.  
 
Contribution and structure of this paper In this paper we 
show that an iterative application of the Karatsuba method 
provides very good results with respect to the following 
three parameters: calculation time, area consumption and 
energy consumption. With our iterative hardware solution, 
the chip area needed to calculate the product of two 233 bit 
long operands, is  2.1 mm2 whereas the standard application 
of Karatsuba’s method needs 6.2 mm2. Our approach also 
reduces the energy consumption to 60 per cent of the 
original approach. The price we have to pay for these 
achievements is the increased execution time. In our 
implementation a polynomial multiplication takes 3 clock 
cycles whereas the original one needs only one clock cycle. 

The rest of this paper is structured as follows.  Section 2 
contains a short description of implemented methods. We 
propose to use the Karatsuba’s formula for polynomial 
multiplication iteratively. The detailed description of our 
approach is given in Section 3. Section 4 discusses the 
hardware realization of our approach and provides 
measurement results.  We conclude the paper with a short 
discussion of our results and an outlook on further research 
steps. 

 

2. State of the art 

In this section we describe methods for polynomial 
multiplication in polynomial basis. We implemented these 
methods and different combinations of them to realize our 
own approach and to benchmark our solution. 

                                                 
1 Note: In GF(2n) addition and subtraction are XOR operations. Due to this 
and for simpler understanding of formulas we change the usual 
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The straight forward implementation of formula (1) requires 
n2 partial multiplication and (n-1)2 XOR operations of partial 
products in order to calculate ci. All operands in formula (1) 
are only one-bit long.  In case of using EC B-233 both 
polynomials A(x) and B(x) are 233-bit long. It means that in 
total 2332 one-bit partial multiplications and 2322 XOR 
operations are required. 

 

2.2. Karatsuba based methods  

Original Karatsuba’s method For polynomial 
multiplication with original Karatsuba method [3] both 
operands have to be fragmentized into two equal parts.  If the 
length n of operands is odd, they have to be padded with 
leading ‘0’. So, operands can be written as2: 
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2 We denote as ai the i th bit and as ai the ith segment of operand A(x).  



  

The polynomial B(x) is represented in the same way. The 
Karatsuba’s formula for the product C(x)=A(x)�B(x) is 
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In order to calculate the partial products iiba  Karatsuba’s 
formula can be applied recursively.  In this case it requires 

in total 58.13log2 ss =  partial multiplications, where s is the 
number of segments. This method can be used to speed up 
software as well as hardware implementations. Usually in 
software implementations the Karatsuba’s approach is 
applied until both operands have a size of one word. 

In Bailey and Paar [4] a new scheme how to apply 
Karatsuba’s idea was proposed. In this scheme the operands 
are divided into three parts. Throughout the rest of this 
paper we denote this method as Bailey’s method.  It requires 
6 partial multiplications of n/3-bit long operands. This 
method can be combined with the original Karatsuba 
formula for operands, whose length is divisible by six. 

 

3. Iterative Application  of the Karatsuba 
Approach  

The major point in our approach is to apply the original 
version Karatsuba’s method iteratively. We denote this as 
Iterative-Karatsuba method. The major benefits of this 
approach are: 

- a smaller area consumption of the hardware accelerators 
due to the fact that partial multiplications can be 
performed serially  

- a reduced number of XOR operations compared with 
the  recursive variant of Karatsuba’s method.  

We explain our idea of the iterative application of 
Karatsuba’s formula using an example in which the 
operands are split up into four segments. First of all, we use 
the original Karatsuba formula to obtain the expression for a 
product, in which only 1-segment long operands for partial 
multiplication are used.  

So, at the beginning we have two operands, each of them 
4n-bit long. We fragment each operand into two 2n-bit long 
parts: 
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The result of applying Karatsuba’s formula is: 
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and  

23010213 bbbbbb ⊕=    (7) 

Every 2-segments element is: jniji axaaa ⊕⋅= . So, for 
each partial multiplication from (6) and (7) we use the 
Karatsuba’s formula again. The final result is given in 
formula (8). 
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(8) 

Each of the operands is 1-segment long, so that the resulting 
partial product is (2n-1)-bit long. We denote the bits from n-

1 to 0 of the product ii ba ⋅  as ]0[iiba  and the bits from 2n-

1 to n as ]1[iiba : 

]0[]1[ iiniiii baxbaba ⊕⋅=⋅    

   (9) 

Using the notation introduced in (9) we can represent 
formula (8) as given in table 1.  

 



  

Table1. Representation of  formula (8)  
partial products segments of result 

a0
�b0

 [0]     ⊕ ⊕ ⊕ ⊕ 

a0
�b0

 [1]    ⊕ ⊕ ⊕ ⊕  

a1
�b1

 [0]    ⊕ ⊕ ⊕ ⊕  

a1
�b1

 [1]   ⊕ ⊕ ⊕ ⊕   

a2
�b2 [0]   ⊕ ⊕ ⊕ ⊕   

a2
�b2

 [1]  ⊕ ⊕ ⊕ ⊕    

a3
�b3

 [0]  ⊕ ⊕ ⊕ ⊕    

a3
�b3

 [1] ⊕ ⊕ ⊕ ⊕     

(a0
 ⊕ a1)�( b0

 ⊕ b1) [0]     ⊕  ⊕  

(a0
 ⊕ a1)�( b0

 ⊕ b1) [1]    ⊕  ⊕   

(a0
 ⊕ a2)�( b0

 ⊕ b2) [0]     ⊕ ⊕   

(a0
 ⊕ a2)�( b0 ⊕ b2) [1]    ⊕ ⊕    

(a1
 ⊕ a3)�( b1

 ⊕ b3) [0]    ⊕ ⊕    

(a1
 ⊕ a3)�( b1⊕ b3) [1]   ⊕ ⊕     

(a2
 ⊕ a3)�( b2

 ⊕ b3) [0]   ⊕  ⊕    

(a2
 ⊕ a3)�( b2

 ⊕ b3) [1]  ⊕  ⊕     

(a0
 ⊕ a1

 ⊕ a2
 ⊕ a3)�( b0⊕ b1

 ⊕ b2
 ⊕ b3) [0]     ⊕    

(a0
 ⊕ a1

 ⊕ a2
 ⊕ a3)�( b0

 ⊕ b1
 ⊕ b2

 ⊕ b3) [1]    ⊕     

              =)(xC  

01234567 cccccccc
 

 

All columns in table 1 which are nested under the topic 
‘segments of result’ in represent a certain segment ci. For 
each partial product two lines are given in Table 1, one line 
representing the lower (axbx[0]), and a second one 
representing the upper part (axbx[1]) of the product as 
specified above. The segment ci can be calculated by XOR-
ing all lines in the table 1, which contain the symbol ''⊕  in 
the column of ci

.  For example c5 can be calculated as 
follows:  

c5=a1b1[1] ⊕ a2b2[0] ⊕  a2b2[1] ⊕  a3b3[0] ⊕  a3b3[1] ⊕  

((a1 ⊕  a3)(b1 ⊕  b3)[1]) ⊕  ((a2⊕  a3)(b2⊕  b3)[0]) (10) 

 

Each segment ci can be calculated iteratively i.e. step by 

step as we calculate the partial products starting with 00ba  

down to ( ) ( )32103210 bbbbaaaa ⊕⊕⊕⋅⊕⊕⊕ . We then start 
to calculate the segments of products using the already 
received results. For example: 
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And so 
on to 
Step 9 

This iterative calculation of the C(x)  reduces the area of our 
hardware multiplier. We need only one partial multiplier for 
1-segment long operands. After each new clock this 
multiplier delivers the next partial product. In that way the 
segments of product C(x) are collected. For the above given 
example this means after 9 clock cycles all segments contain 
the correct product of the polynomial multiplication.  

Additionally we exploit another ‘iterative possibility’: we do 
not need to calculate all segments of C(x) separately. We can 
use c0 to determine c1 after the first clock, c1

 for c2 after 
second clock, and so on (see table 2). This iterative 
calculation reduces the number of XOR operations to 29 
compared to 42 XOR operations  if the calculation of every 
ci is done separately.   

 

In a similar way we applied our iterative approach to 
Bailey’s method, which we call Iterative-Bailey throughout 
the rest of this paper.  

Table 2. Exact operation sequence of our hardware 
implementation of formula (8) 

clock obtained partial product sequence of operations 
1 pr = a0⋅ b0 c0

 = pr[0] 
c1

 = pr [1] 
2 pr = a1⋅ b1 c1= c1⊕  c0

 ⊕  pr[0] 
c2

 = pr[1] 
3 pr = a2⋅ b2 c2 = c2

 ⊕  c1⊕  pr[0] 
c3

 = pr[1] 
4 pr = a3⋅ b3 c3

 = c3 ⊕  c2
 ⊕  pr[0] ⊕  pr[1] 

c7
 =pr[1] 

5 pr = (a0
 ⊕ a1) ⋅ (b0

 ⊕ b1) c6 = c3
 ⊕  c2

 

c5
 = c3

 ⊕  c1
 

c4
 = c3

 ⊕  c0
 ⊕  pr[1]  

c3
 = c3 ⊕  c7

 ⊕  pr[0]  

c2
 = c2

 ⊕  pr[1] 
c1 = c1 ⊕  pr[0] 

6 pr = (a0
 ⊕ a2) ⋅ (b0

 ⊕ b2) c3
 = c3

 ⊕  pr[0] ⊕  pr[1] 
c2

 = c2
 ⊕  pr[0] 

c4 = c4
 ⊕  pr[1] 

7 pr = (a1 ⊕ a3) ⋅ (b1
 ⊕ b3) c4

 = c4⊕  pr[0] ⊕  pr[1] 
c3 = c3 ⊕  pr[0] 
c5

 = c5
 ⊕  pr[1] 

8 pr = (a2 ⊕ a3) ⋅ (b2
 ⊕ b3) c3

 = c3
 ⊕  pr[0] 

c5 = c5
 ⊕  pr[0] 

c4
 = c4 ⊕  pr[1] 

c6
 = c6 ⊕  pr[1] 

9 pr = (a0 ⊕ a1
 ⊕ a2

 ⊕ a3) ⋅ 
� (b0

 ⊕ b1 ⊕ b2
 ⊕ b3) 

c3
 = c3

 ⊕  pr[0] 
c4

 = c4
 ⊕  pr[1] 

 

4. Hardware implementation 

In this section we will present the design and the key 
parameters of our hardware realization of the Iterative 
Karatsuba approach. 



  

The design of the Iterative Karatsuba  accelerator consists of 
three major parts (see Fig. 1): 

• Selection block feeds certain parts of both operands  
into the  Partial Multiplier, for each new clock 
signal. 

• Partial Multiplier block calculates the partial 
product of the operands delivered by the selection 
block and provides the results to the product 
accumulation block. 

• Product Accumulation block computes the final 
product from the partial products it receives from 
the partial multiplier. The theoretical basis and 
exact operation sequence is discussed in detail in 
Section 3. 

 

 

Figure 1: Block diagram  of our Iterative-Karatsuba 
multiplier 

The performance, chip area and energy consumption of a 
polynomial multiplier are dominated by the partial 
multiplier which is used. The larger the input signals of the 
partial multiplier may be, the faster the partial multiplier is. 
But this also results in a relatively large area consumption. 
So, the design decision to make seems to be straight 
forward: calculation time versus chip area. This is true as 
long as only the partial multiplier is considered. But for the 
polynomial multiplier also the area of the selection and the 
product accumulation block have to be taken into account. 
The chip area needed for the accumulation block depends on 
the area of the partial multiplier in an inverse proportional 
manner, i.e. the smaller the partial multiplier the larger the 
accumulation block. This results from the fact that in case of 
small partial multipliers more intermediary results have to 
be stored for the final calculation of the polynomial product. 
For example the size of the accumulation block is 0,649 
mm2 if the partial multiplier accepts 128 bit long operands, 
and 1,466 mm2 if the maximum length of the operands is 32 
bits. 

In order to determine the most appropriate design for a 
polynomial multiplier we realized several partial multipliers.  
We realized 3 one-clock partial multipliers for our iterative 
Karatsuba as well as for our iterative Bailey approach. 
These partial multipliers accept operands with a maximal 

length of 128, 64 and 32 bits respectively. They were 
synthesized with a library of our in-house 0.25 � m CMOS-
Technology [5].  Table 3 shows the area, the time and energy 
consumption for each of these six partial multipliers. These 
values stem from the Design analyzer tool from Synopsys 
[6]. 

Table 3. Parameters of synthesized partial 
multipliers 

Name of partial 
multiplier (PM) 

Length 
of input 
values, 

bits 

Area, mm2 time, ns Energy/clock, 
pW� s 

k128_k64_k32_k16_sh8 128 1.620410 12.53 1394.4000 
k64_k32_k16_sh8 64 0.514759 8.99 404.3913 

k32_k16_sh8 32 0.159006 5.62 108.2011 
p81_p27_sh9 81 0.896391 7.98 692.0033 

p39_sh13 39 0.264672 5.97 179.4565 
p27_sh9 27 0.133616 4.80 88.4779 

In order to benchmark our approach we realized polynomial 
multipliers using the following approaches: 

• Iterative Karatsuba  

• Iterative Bailey 

• Original Karatsuba (recursive) 

• Original Bailey (recursive) 

For the first two approaches, i.e. for our own iterative 
approaches, we realized three polynomial multipliers using 
different partial multipliers (see table 3) in order to see how 
the partial multiplier influences the overall parameters. We 
named these multipliers so that the name indicates the 
applied method. For example, the name 
iterative_Karatsuba_8segments means: Iterative-Karatsuba 
fragmentizing incoming operands into 8 segments. 

 
In the two recursive multipliers the original Karatsuba and 
the Bailey formula are applied down to one-bit operands. 
Both multipliers deliver the polynomial product after one 
clock cycle. They  differ in the length of the input operands. 
The Karatsuba multiplier expects always two 256 bit long 
input values whereas the Bailey multiplier expects two 243-
bit long input values. 

Since we are going to use these multipliers for EC B-233 the 
two input values will be only 233-bit long. Therefore the 
operands were padded with leading 0’s if it was necessary. 
The result of the multiplication is always 465-bit long. 

We synthesized all polynomial multipliers using a library of 
our in-house 0.25� m CMOS-Technology [5]. We obtained 
the data represented in these tables with different kinds of 
reports from the Synopsys “Design Analyzer” [6]. The 
parameters of the implemented  polynomial multipliers are 



  

given in Table 4. Our results clearly indicate that an iterative 
application of the original Karatsuba and Bailey approach 
significantly reduces the chip area. If the number of 
iterations is kept small, our approach also helps to reduce 
the energy consumption. In those designs the decision is less 
area and less energy versus slower execution time. 
Increasing the number of iterations helps to reduce the chip 
area needed, but it also leads to an increased power 
consumption and an increased calculation time. So, these 
implementations are beneficial only if cost is the dominating 
parameter.  

Table 4. Parameters of synthesized polynomial 
multipliers 

Name of multiplier Area,  
 

S, mm2 

Number 
of 

clocks, 
N 

Period, 
T, ns 

Power, 
P, mW 

Energy, 
E=T� N � P, 

pW� s 

iterative_Karatsuba_ 
2segments 

(PM - k128_k64_ 
k32_k16_sh8) 

2.18  3 15 98.89 4450.1 

iterative_Karatsuba_ 
4segments (PM -

_k64_k32_k16_sh8) 

1.52 9 10 105.48 9493.2 

iterative_Karatsuba_ 
8segments 

(PM -_k32_k16_sh8) 

1.67 27 9 107.63 26154.1 

iterative_Bailey_ 
3segments 

(PM - p81_p27_sh9) 

2.12 6 10 148.16 8889.6 

iterative_Bailey_ 
6segments 

(PM - p39_sh13) 

1.60 18 9 110.46 17894.5 

iterative_Bailey_ 
9segments 

(PM - p27_sh9) 

1.71  36 9 103.35 33485.4 

recurcive_Karatsuba_ 
for_1clock 

6.28 1 19.35 326.15 6311.0 

recurcive_Bailey_ 
for_1clock 

7.02 1 16.94 441.75 7483.3 

 

5. Conclusions and Outlook 

In this paper we discussed the iterative application of 
Karatsuba’s method for polynomial multiplications as a 
means to reduce the chip area and energy needed to run 
elliptic curve cryptography on mobile devices. In order to 
evaluate our approach we analyzed different methods for 
polynomial multiplication in GF(2n), and implemented 
different polynomial multiplication algorithms. For our own 
approach we realized several partial multipliers. Weused 
them to implement a set of iterative polynomial multipliers  
with the goal to identify the one which is best suited for 
application in mobile devices. Our results clearly indicate 
that our iterative approach leads to significantly better 

results with respect to area and energy consumption than the 
original straight forward application.   

Our next step is the finalization of our Montgomery ‚kP’ 
multiplier. In this multiplier we will use the Fermat theorem, 
since it allows to determine the inverse for the division 
multiplication and squaring. The Fermat theorem is slower 
than the Extended Euklidian Algorithm or the method 
proposed by Shantz [7], but it requires less area. Since  the 
Montgomery method requires only a single division, we 
think that the smaller area outweighs the slower 
performance.  
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