

Area Efficient Hardware Implementation of Elliptic Curve Cryptography by
Iteratively Applying Karatsuba’s Method

Zoya Dyka and Peter Langendoerfer

IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

langendoerfer@ihp-microelectronics.com

Abstract

Securing communication channels is especially needed in
wireless environments. But applying cipher mechanisms in
software is limited by the calculation and energy resources
of the mobile devices. If hardware is applied to realize
cryptographic operations cost becomes an issue. In this
paper we describe an approach which tackles all these three
points. We implemented a hardware accelerator for
polynomial multiplication in extended Galois fields (GF)
applying Karatsuba’s method iteratively. With this
approach the area consumption is reduced to 2.1 mm2 in
comparison to. 6.2 mm2 for the standard application of
Karatsuba’s method i.e. for recursive application. Our
approach also reduces the energy consumption to 60 per
cent of the original approach. The price we have to pay for
these achievement is the increased execution time. In our
implementation a polynomial multiplication takes 3 clock
cycles whereas the recurisve Karatsuba approach needs
only one clock cycle. But considering area, energy and
calculation speed we are convinced that the benefits of our
approach outweigh its drawback.

Key words: Extended Galois fields, polynomial
multiplication, Elliptic Curve Cryptography, Karatsuba’s
formula.

1. Introduction

Motivation Mobile devices are penetrating our every day
life. More and more sensitive information is exchanged
between mobile nodes and between mobile and fixed
communication endpoints. This data exchange is normally
protected by cipher mechanisms. But due to the scarce
resources of mobile nodes, exhaustive use of cryptographic
means is infeasible. This holds especially true for public key
cryptography, which is normally used to establish a secure
channel between the communicating parties as well as for

providing digital signatures. Hardware accelerators for
public key cryptography operations are ideal means to reduce
the calculation time as well as the energy consumption. But,
a straight forward realization of cryptographic operations
results in a relatively large area consumption, which makes
the application of hardware accelerators economically
infeasible. Thus, our design constraints were:

• Calculation time,

• Energy consumption, and

• Area consumption.

We decided to use Elliptic Curve Cryptography (ECC) since
it guarantees the same security level as RSA does but with
significant shorter keys. In addition to this the ECC
operations are faster than those of RSA [1]. We selected B-
233 over Galois field GF(2233) which is recommended by
NIST [2] and well suited to be implemented in hardware.

Despite ECC is less computational intensive than RSA it still
requires a significant effort in terms of energy and time. In
this paper we concentrate on the area efficient realization of
basic mathematical operations, which are used in ECC.

ECC Background In order to calculate the product of two
233 bit long operands, denoted ‘kP’. Here P is a point on an
elliptic curve (EC) and k is a large number. The ‘kP’
multiplication is based on point doubling and point addition.
All these EC point operations are based on addition,
subtraction, squaring, multiplication and division in a chosen
GF. The basic operations in GF(2233) are addition, squaring,
multiplication and division of polynomials. Addition of
polynomials is equivalent to a bit-wise XOR operation.
Squaring and multiplication require two steps:
squaring/multiplication itself and reduction of the result.
Reduction is done using so-called irreducible polynomials
and it is a fast operation in GF(2n). The irreducible

1530-1591/05 $20.00 © 2005 IEEE

polynomial for B-233 is the trinomial: 1)(74233 ⊕⊕= xxxf 1.

Division of polynomials usually is done in two steps: first
identifying the inverse of the divisor using the irreducible
polynomial, and second multiplying the inverse with the
dividend. Multiplication and division of polynomials require
the major part of the calculation time.
In this paper we are concentrating on polynomial
multiplication, since our long term goal is to implement a
Montgomery multiplier for the ‘kP’ operation. The
Montgomery method requires only one polynomial division
for ‘kP’, so that the major effort comes from the
multiplication.

Contribution and structure of this paper In this paper we
show that an iterative application of the Karatsuba method
provides very good results with respect to the following
three parameters: calculation time, area consumption and
energy consumption. With our iterative hardware solution,
the chip area needed to calculate the product of two 233 bit
long operands, is 2.1 mm2 whereas the standard application
of Karatsuba’s method needs 6.2 mm2. Our approach also
reduces the energy consumption to 60 per cent of the
original approach. The price we have to pay for these
achievements is the increased execution time. In our
implementation a polynomial multiplication takes 3 clock
cycles whereas the original one needs only one clock cycle.

The rest of this paper is structured as follows. Section 2
contains a short description of implemented methods. We
propose to use the Karatsuba’s formula for polynomial
multiplication iteratively. The detailed description of our
approach is given in Section 3. Section 4 discusses the
hardware realization of our approach and provides
measurement results. We conclude the paper with a short
discussion of our results and an outlook on further research
steps.

2. State of the art

In this section we describe methods for polynomial
multiplication in polynomial basis. We implemented these
methods and different combinations of them to realize our
own approach and to benchmark our solution.

1 Note: In GF(2n) addition and subtraction are XOR operations. Due to this
and for simpler understanding of formulas we change the usual

representation of polynomials �
−

=
=

1

0

)(
n

i

i
i xaxA to i

i

n

i

xaxA ⊕
−

=
=

1

0

)(. In

rest of this paper we denote XOR operation as ‘⊕’. The symbol ‘+’ means
always an ordinary addition.

2.1. Polynomial multiplication

The product of two polynomials

i
i

n

i

xaxA ⊕
−

=
=

1

0

)(and i
i

n

i

xbxB ⊕
−

=
=

1

0

)(

is the polynomial: ,)()()(
22

0

i
i

n

i

xcxBxAxC ⊕
−

=
=⋅=

where lk
ilk

i bac ⋅= ⊕
=+

, i.e.:

1122

122132

1012011

10011

000

−−−

−−−−−

−−−−

⋅=
⋅⊕⋅=

⋅⊕⊕⋅⊕⋅=

⋅⊕⋅=
⋅=

nnn

nnnnn

nnnn

bac

babac

bababac

babac

bac

�

�

�

 (1)

The straight forward implementation of formula (1) requires
n2 partial multiplication and (n-1)2 XOR operations of partial
products in order to calculate ci. All operands in formula (1)
are only one-bit long. In case of using EC B-233 both
polynomials A(x) and B(x) are 233-bit long. It means that in
total 2332 one-bit partial multiplications and 2322 XOR
operations are required.

2.2. Karatsuba based methods

Original Karatsuba’s method For polynomial
multiplication with original Karatsuba method [3] both
operands have to be fragmentized into two equal parts. If the
length n of operands is odd, they have to be padded with
leading ‘0’. So, operands can be written as2:

021

01
1

2

2

2

101
1

22

1)(

axa

aaaxaaaaaaaxA

n

n

n

nnnnn

⊕⋅=

=⊕⋅==
−−−−

 (2)

2 We denote as ai the i th bit and as ai the ith segment of operand A(x).

The polynomial B(x) is represented in the same way. The
Karatsuba’s formula for the product C(x)=A(x)�B(x) is

[]
n

n

xba

xbbaabababaxC

⋅⊕

⊕⋅⊕⊕⊕⊕⊕=
11

21010110000))(()(

 (3)

In order to calculate the partial products iiba Karatsuba’s
formula can be applied recursively. In this case it requires

in total 58.13log2 ss = partial multiplications, where s is the
number of segments. This method can be used to speed up
software as well as hardware implementations. Usually in
software implementations the Karatsuba’s approach is
applied until both operands have a size of one word.

In Bailey and Paar [4] a new scheme how to apply
Karatsuba’s idea was proposed. In this scheme the operands
are divided into three parts. Throughout the rest of this
paper we denote this method as Bailey’s method. It requires
6 partial multiplications of n/3-bit long operands. This
method can be combined with the original Karatsuba
formula for operands, whose length is divisible by six.

3. Iterative Application of the Karatsuba
Approach

The major point in our approach is to apply the original
version Karatsuba’s method iteratively. We denote this as
Iterative-Karatsuba method. The major benefits of this
approach are:

- a smaller area consumption of the hardware accelerators
due to the fact that partial multiplications can be
performed serially

- a reduced number of XOR operations compared with
the recursive variant of Karatsuba’s method.

We explain our idea of the iterative application of
Karatsuba’s formula using an example in which the
operands are split up into four segments. First of all, we use
the original Karatsuba formula to obtain the expression for a
product, in which only 1-segment long operands for partial
multiplication are used.

So, at the beginning we have two operands, each of them
4n-bit long. We fragment each operand into two 2n-bit long
parts:

012230123

012230123

)(

)(

bbxbbbbbbxB

aaxaaaaaaxA
n

n

⊕⋅==

⊕⋅==
 (4)

The result of applying Karatsuba’s formula is:

[]
n

n

xbbaa

xbbaabbaabbaa

bbaaxC

42323

20213021323230101

0101)(

⋅⋅⊕

⊕⋅⋅⊕⋅⊕⋅⊕

⊕⋅=

 (5)

where

23012301

203102130213

)()(

)()(

aaaaaxaaxa

aaxaaaxaaa
nn

nn

⊕=⊕⋅⊕⊕⋅=

=⊕⊕⋅⊕=⊕⋅=

 (6)

and

23010213 bbbbbb ⊕= (7)

Every 2-segments element is: jniji axaaa ⊕⋅= . So, for
each partial multiplication from (6) and (7) we use the
Karatsuba’s formula again. The final result is given in
formula (8).

0001011100

20202221100

301230123

2323131302020101

33221100

41313332211

523233322633

)(

)(

)

(

)(

)()(

baxbababa

xbabababa

xba

babababa

babababa

xbabababa

xbababaxbaxC

n

n

n

n

nn

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

⊕⋅⊕⊕⊕

⊕⋅⊕⊕⊕⊕

⊕⋅⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⋅⊕⊕⊕⊕

⊕⋅⊕⊕⊕⋅=

(8)

Each of the operands is 1-segment long, so that the resulting
partial product is (2n-1)-bit long. We denote the bits from n-

1 to 0 of the product ii ba ⋅ as]0[iiba and the bits from 2n-

1 to n as]1[iiba :

]0[]1[iiniiii baxbaba ⊕⋅=⋅

 (9)

Using the notation introduced in (9) we can represent
formula (8) as given in table 1.

Table1. Representation of formula (8)
partial products segments of result

a0
�b0

 [0] ⊕ ⊕ ⊕ ⊕

a0
�b0

 [1] ⊕ ⊕ ⊕ ⊕

a1
�b1

 [0] ⊕ ⊕ ⊕ ⊕

a1
�b1

 [1] ⊕ ⊕ ⊕ ⊕

a2
�b2 [0] ⊕ ⊕ ⊕ ⊕

a2
�b2

 [1] ⊕ ⊕ ⊕ ⊕

a3
�b3

 [0] ⊕ ⊕ ⊕ ⊕

a3
�b3

 [1] ⊕ ⊕ ⊕ ⊕

(a0
 ⊕ a1)�(b0

 ⊕ b1) [0] ⊕ ⊕

(a0
 ⊕ a1)�(b0

 ⊕ b1) [1] ⊕ ⊕

(a0
 ⊕ a2)�(b0

 ⊕ b2) [0] ⊕ ⊕

(a0
 ⊕ a2)�(b0 ⊕ b2) [1] ⊕ ⊕

(a1
 ⊕ a3)�(b1

 ⊕ b3) [0] ⊕ ⊕

(a1
 ⊕ a3)�(b1⊕ b3) [1] ⊕ ⊕

(a2
 ⊕ a3)�(b2

 ⊕ b3) [0] ⊕ ⊕

(a2
 ⊕ a3)�(b2

 ⊕ b3) [1] ⊕ ⊕

(a0
 ⊕ a1

 ⊕ a2
 ⊕ a3)�(b0⊕ b1

 ⊕ b2
 ⊕ b3) [0] ⊕

(a0
 ⊕ a1

 ⊕ a2
 ⊕ a3)�(b0

 ⊕ b1
 ⊕ b2

 ⊕ b3) [1] ⊕

 =)(xC

01234567 cccccccc

All columns in table 1 which are nested under the topic
‘segments of result’ in represent a certain segment ci. For
each partial product two lines are given in Table 1, one line
representing the lower (axbx[0]), and a second one
representing the upper part (axbx[1]) of the product as
specified above. The segment ci can be calculated by XOR-
ing all lines in the table 1, which contain the symbol ''⊕ in
the column of ci

. For example c5 can be calculated as
follows:

c5=a1b1[1] ⊕ a2b2[0] ⊕ a2b2[1] ⊕ a3b3[0] ⊕ a3b3[1] ⊕

((a1 ⊕ a3)(b1 ⊕ b3)[1]) ⊕ ((a2⊕ a3)(b2⊕ b3)[0]) (10)

Each segment ci can be calculated iteratively i.e. step by

step as we calculate the partial products starting with 00ba

down to () ()32103210 bbbbaaaa ⊕⊕⊕⋅⊕⊕⊕ . We then start
to calculate the segments of products using the already
received results. For example:

Step 1 Step 2 …

]1[

]1[]0[

]1[]0[

]1[]0[

]0[

004

00003

00002

00001

000

bac

babac

babac

babac

bac

=

⊕=

⊕=

⊕=

=

]1[

]1[]0[

]1[]0[

]1[]0[

]0[

115

111144

111133

111122

1111

bac

babacc

babacc

babacc

bacc

=

⊕⊕=

⊕⊕=

⊕⊕=

⊕=

And so
on to
Step 9

This iterative calculation of the C(x) reduces the area of our
hardware multiplier. We need only one partial multiplier for
1-segment long operands. After each new clock this
multiplier delivers the next partial product. In that way the
segments of product C(x) are collected. For the above given
example this means after 9 clock cycles all segments contain
the correct product of the polynomial multiplication.

Additionally we exploit another ‘iterative possibility’: we do
not need to calculate all segments of C(x) separately. We can
use c0 to determine c1 after the first clock, c1

 for c2 after
second clock, and so on (see table 2). This iterative
calculation reduces the number of XOR operations to 29
compared to 42 XOR operations if the calculation of every
ci is done separately.

In a similar way we applied our iterative approach to
Bailey’s method, which we call Iterative-Bailey throughout
the rest of this paper.

Table 2. Exact operation sequence of our hardware
implementation of formula (8)

clock obtained partial product sequence of operations
1 pr = a0⋅ b0 c0

 = pr[0]
c1

 = pr [1]
2 pr = a1⋅ b1 c1= c1⊕ c0

 ⊕ pr[0]
c2

 = pr[1]
3 pr = a2⋅ b2 c2 = c2

 ⊕ c1⊕ pr[0]
c3

 = pr[1]
4 pr = a3⋅ b3 c3

 = c3 ⊕ c2
 ⊕ pr[0] ⊕ pr[1]

c7
 =pr[1]

5 pr = (a0
 ⊕ a1) ⋅ (b0

 ⊕ b1) c6 = c3
 ⊕ c2

c5
 = c3

 ⊕ c1

c4
 = c3

 ⊕ c0
 ⊕ pr[1]

c3
 = c3 ⊕ c7

 ⊕ pr[0]

c2
 = c2

 ⊕ pr[1]
c1 = c1 ⊕ pr[0]

6 pr = (a0
 ⊕ a2) ⋅ (b0

 ⊕ b2) c3
 = c3

 ⊕ pr[0] ⊕ pr[1]
c2

 = c2
 ⊕ pr[0]

c4 = c4
 ⊕ pr[1]

7 pr = (a1 ⊕ a3) ⋅ (b1
 ⊕ b3) c4

 = c4⊕ pr[0] ⊕ pr[1]
c3 = c3 ⊕ pr[0]
c5

 = c5
 ⊕ pr[1]

8 pr = (a2 ⊕ a3) ⋅ (b2
 ⊕ b3) c3

 = c3
 ⊕ pr[0]

c5 = c5
 ⊕ pr[0]

c4
 = c4 ⊕ pr[1]

c6
 = c6 ⊕ pr[1]

9 pr = (a0 ⊕ a1
 ⊕ a2

 ⊕ a3) ⋅
� (b0

 ⊕ b1 ⊕ b2
 ⊕ b3)

c3
 = c3

 ⊕ pr[0]
c4

 = c4
 ⊕ pr[1]

4. Hardware implementation

In this section we will present the design and the key
parameters of our hardware realization of the Iterative
Karatsuba approach.

The design of the Iterative Karatsuba accelerator consists of
three major parts (see Fig. 1):

• Selection block feeds certain parts of both operands
into the Partial Multiplier, for each new clock
signal.

• Partial Multiplier block calculates the partial
product of the operands delivered by the selection
block and provides the results to the product
accumulation block.

• Product Accumulation block computes the final
product from the partial products it receives from
the partial multiplier. The theoretical basis and
exact operation sequence is discussed in detail in
Section 3.

Figure 1: Block diagram of our Iterative-Karatsuba
multiplier

The performance, chip area and energy consumption of a
polynomial multiplier are dominated by the partial
multiplier which is used. The larger the input signals of the
partial multiplier may be, the faster the partial multiplier is.
But this also results in a relatively large area consumption.
So, the design decision to make seems to be straight
forward: calculation time versus chip area. This is true as
long as only the partial multiplier is considered. But for the
polynomial multiplier also the area of the selection and the
product accumulation block have to be taken into account.
The chip area needed for the accumulation block depends on
the area of the partial multiplier in an inverse proportional
manner, i.e. the smaller the partial multiplier the larger the
accumulation block. This results from the fact that in case of
small partial multipliers more intermediary results have to
be stored for the final calculation of the polynomial product.
For example the size of the accumulation block is 0,649
mm2 if the partial multiplier accepts 128 bit long operands,
and 1,466 mm2 if the maximum length of the operands is 32
bits.

In order to determine the most appropriate design for a
polynomial multiplier we realized several partial multipliers.
We realized 3 one-clock partial multipliers for our iterative
Karatsuba as well as for our iterative Bailey approach.
These partial multipliers accept operands with a maximal

length of 128, 64 and 32 bits respectively. They were
synthesized with a library of our in-house 0.25 � m CMOS-
Technology [5]. Table 3 shows the area, the time and energy
consumption for each of these six partial multipliers. These
values stem from the Design analyzer tool from Synopsys
[6].

Table 3. Parameters of synthesized partial
multipliers

Name of partial
multiplier (PM)

Length
of input
values,

bits

Area, mm2 time, ns Energy/clock,
pW� s

k128_k64_k32_k16_sh8 128 1.620410 12.53 1394.4000
k64_k32_k16_sh8 64 0.514759 8.99 404.3913

k32_k16_sh8 32 0.159006 5.62 108.2011
p81_p27_sh9 81 0.896391 7.98 692.0033

p39_sh13 39 0.264672 5.97 179.4565
p27_sh9 27 0.133616 4.80 88.4779

In order to benchmark our approach we realized polynomial
multipliers using the following approaches:

• Iterative Karatsuba

• Iterative Bailey

• Original Karatsuba (recursive)

• Original Bailey (recursive)

For the first two approaches, i.e. for our own iterative
approaches, we realized three polynomial multipliers using
different partial multipliers (see table 3) in order to see how
the partial multiplier influences the overall parameters. We
named these multipliers so that the name indicates the
applied method. For example, the name
iterative_Karatsuba_8segments means: Iterative-Karatsuba
fragmentizing incoming operands into 8 segments.

In the two recursive multipliers the original Karatsuba and
the Bailey formula are applied down to one-bit operands.
Both multipliers deliver the polynomial product after one
clock cycle. They differ in the length of the input operands.
The Karatsuba multiplier expects always two 256 bit long
input values whereas the Bailey multiplier expects two 243-
bit long input values.

Since we are going to use these multipliers for EC B-233 the
two input values will be only 233-bit long. Therefore the
operands were padded with leading 0’s if it was necessary.
The result of the multiplication is always 465-bit long.

We synthesized all polynomial multipliers using a library of
our in-house 0.25� m CMOS-Technology [5]. We obtained
the data represented in these tables with different kinds of
reports from the Synopsys “Design Analyzer” [6]. The
parameters of the implemented polynomial multipliers are

given in Table 4. Our results clearly indicate that an iterative
application of the original Karatsuba and Bailey approach
significantly reduces the chip area. If the number of
iterations is kept small, our approach also helps to reduce
the energy consumption. In those designs the decision is less
area and less energy versus slower execution time.
Increasing the number of iterations helps to reduce the chip
area needed, but it also leads to an increased power
consumption and an increased calculation time. So, these
implementations are beneficial only if cost is the dominating
parameter.

Table 4. Parameters of synthesized polynomial
multipliers

Name of multiplier Area,

S, mm2

Number
of

clocks,
N

Period,
T, ns

Power,
P, mW

Energy,
E=T� N � P,

pW� s

iterative_Karatsuba_
2segments

(PM - k128_k64_
k32_k16_sh8)

2.18 3 15 98.89 4450.1

iterative_Karatsuba_
4segments (PM -

_k64_k32_k16_sh8)

1.52 9 10 105.48 9493.2

iterative_Karatsuba_
8segments

(PM -_k32_k16_sh8)

1.67 27 9 107.63 26154.1

iterative_Bailey_
3segments

(PM - p81_p27_sh9)

2.12 6 10 148.16 8889.6

iterative_Bailey_
6segments

(PM - p39_sh13)

1.60 18 9 110.46 17894.5

iterative_Bailey_
9segments

(PM - p27_sh9)

1.71 36 9 103.35 33485.4

recurcive_Karatsuba_
for_1clock

6.28 1 19.35 326.15 6311.0

recurcive_Bailey_
for_1clock

7.02 1 16.94 441.75 7483.3

5. Conclusions and Outlook

In this paper we discussed the iterative application of
Karatsuba’s method for polynomial multiplications as a
means to reduce the chip area and energy needed to run
elliptic curve cryptography on mobile devices. In order to
evaluate our approach we analyzed different methods for
polynomial multiplication in GF(2n), and implemented
different polynomial multiplication algorithms. For our own
approach we realized several partial multipliers. Weused
them to implement a set of iterative polynomial multipliers
with the goal to identify the one which is best suited for
application in mobile devices. Our results clearly indicate
that our iterative approach leads to significantly better

results with respect to area and energy consumption than the
original straight forward application.

Our next step is the finalization of our Montgomery ‚kP’
multiplier. In this multiplier we will use the Fermat theorem,
since it allows to determine the inverse for the division
multiplication and squaring. The Fermat theorem is slower
than the Extended Euklidian Algorithm or the method
proposed by Shantz [7], but it requires less area. Since the
Montgomery method requires only a single division, we
think that the smaller area outweighs the slower
performance.

Acknowledgements

This work was partially funded by the German Ministry of
Education and Research under grant 01AK060B.

References

[1] Brown, M., Cheung, D., Hankerson, D., Hernandez,
J.L., Kirkup, M., Menezes, A. (2000) PGP in
Constrained Wireless Devices. Proceedings of the 9th
USENIX Security Symposium, August 14 –17, 2000,
Denver, Colorado, USA. USENIX Association,
http://www.usenix.org/events/sec00/full_papers/brown
/brown.pdf, last viewed October 6, 2003.

[2] U.S. Department of Commerce/National Institute of
Standards and Technology (NIST) (2000) Digital
Signature Standard. FIPS PUB 186-2. Federal
Information Processing Standards Publication,
http://csrc.nist.gov/publications/fips/fips186-2/fips186-
2-change1.pdf, last viewed October 6, 2003.

[3] Karatsuba A.; Ofman Y. Multiplication of multidigit
numbers by automata, Soviet Physics-Doklady 7, p.
595-596, 1963

[4] Bailey, D. V. and Paar, C. Efficient Arithmetic in
Finite Field Extensions with Application in Elliptic
Curve Cryptography. Journal of Cryptology, vol. 14,
no. 3, 153–176. 2001

[5] “Technology”, IHP (Innovations for High Performance
microelectronics), http://www.ihp-ffo.de.

[6] “Products & Solutions”, Synopsys,
http://www.synopsys.com/products/logic/logic.html

[7] A.Weimerskirch, C.Paar and S.C.Shantz (2001)
Elliptic Curve Cryptography on a Palm OS Device.
Proceeding of 6th Australasian Conference on
Information Security and Privacy (ACISP 2001), 11-13
July 2001, Macquarie University, Sydney, Australia.

	Main Page
	DF'05
	Front Matter
	Table of Contents
	Author Index

	DATE'05

