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Abstract

Many wireless sensor nodes (motes) interface with slow
peripheral devices, requiring the processor to wait. These
delays waste time, energy and power, which are valu-
able but limited resources on many motes. This paper
presents techniques to use software thread integration (STI)
in TinyOS applications to recover the idle time for useful
processing. We modify the TOS scheduler to support the se-
lection and execution of integrated threads. We analyze the
impact of integration on task response time. We demonstrate
these methods by applying them to a microphone array sam-
pling application to save computation time and energy. We
find that the integrated tasks finish 17.7% faster, reducing
application active time (and hence application energy) by
6.3%.

1. Introduction

The nodes of common wireless sensor networks
(WSNs), called motes, often have frequent periods of busy-
waiting: communicating with radios, communicating with
sensors, flash memory, A/D converters, etc. The wait times
in these situations are so short that the cost of a context
switch to another task is prohibitive. Useful work could
be performed during those times using Software Thread In-
tegration (STI). STI is a compiler technique for producing
fine-grained concurrency on processors without additional
hardware for fast context switches [4]. This paper intro-
duces TOSSTI, a software system which uses STI with the
common wireless sensor network (WSN) operating system
TinyOS.

Figure 1 illustrates how STI can be used to reclaim the
idle time that is common when communicating with the
mote radio, in order to more efficiently use the mote’s ac-
tive time. A sample mote application spends time sensing,
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processing data, and transmitting data followed by a rela-
tively long idle time where the mote goes to a low-power
mode. Inside the Transmit task there are many small win-
dows of idle time where the processor is simply waiting for
a response back from the radio. After integrating the Trans-
mit and Processing tasks using STI, the idle time that had
been present in the Transmit task is replaced with useful
work from the Processing task. Because in the STI-version
of the application Processing and Transmit tasks are inter-
leaved with each other, the two tasks are completed earlier
than if they had been executed serially, as in the original
application.

Time

Mote Application

Transmit integrated with Processing

Mote Application with STI

Transmit

Sensing
Processing
Transmit
Idle
Integrated Code

Figure 1. Sample mote application timeline
without and with STI

There are multiple benefits from completing the tasks
earler. First, the processor can switch to a low power
mode sooner, thus improving energy conservation. By
more efficiently using the mote’s active time, its idle time
rises, boosting battery life. Second, completing the work
early benefits real-time systems even if they already meet
their deadlines. Earlier task completion improves over-
all response times, and also allows the system to support
more higher-priority processing (e.g. ISRs) without miss-
ing deadlines.

An additional benefit of applying STI is that it enhances
the concurrency model of the scheduler. TOSSTI enables
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TinyOS’s non-preemptive scheduler to provide the effects
of preemption at the task level without incurring the addi-
tional context switching penalties resulting from preemp-
tions.

2. Related Work

2.1. Mote Systems

Power and energy management for motes is an active
area of research because motes are deployed in remote lo-
cations for long periods of time without changes of batter-
ies. In order to maximize the lifetime of a wireless sen-
sor network (WSN), power management, energy efficiency,
and power source are considerations that anyone deploying
a WSN must consider.

Researchers and developers of WSNs seek to save power
by employing various techniques. [14] analyzes the power
management facilities provided by various small micropro-
cessors, such as those used in motes. Various non-battery
energy sources for WSN energy scavenging are suggested
in [23]. ICEM [15] is an example of recent work which
provides operating system support for power managment
in Tiny OS. ICEM uses special non-blocking locks (called
power locks) to allow applications to expose low-level con-
currency.

Using energy-mindful MAC and routing algorithms are
also common themes in WSN research. [18] compares
power management techniques used by various network
stack implementations available for TinyOS. [2] describes
the SEESAW MAC protocol that attempts to maximize the
lifetime of a WSN by using an asynchronous-asymmetric
MAC protocol where nodes may take on one of three roles
in the network, depending on traffic patterns. [3] describes
X-MAC, a very clever MAC suitable for use with packe-
tized radios like the Chipcon CC2420 which uses pream-
ble packets and acknowledgements to shorten the active lis-
tening time of the motes and makes up for many of the
shortcomings of B-MAC which relies on radios with lower
power listening mode [21].

Several software libraries or so-called operating systems
are available for wireless sensor networks including, MAN-
TIS from University of Colorado at Boulder [20], Contiki
from the Swedish Institute of Computer Science [7], and
TinyOS from University of California at Berkeley [10]. For
an excellent description of current operating systems avail-
able for wireless sensor networks, see [19].

The Contiki operating system is coded in standard C,
but uses protothreads for much of its concurrency [7].
Protothreads are lightweight stackless threads that ease
the writing of blocking event-handlers by eliminating/hid-
ing complex state machines [8][9]. Protothreads of-
fer lightweight context switching between threads (us-

ing C code which compiles to a jump instruction), while
STI copies and moves assembly instructions to eliminate
the need for most jumps, providing weightless context-
switching in most places.

TinyOS is the current platform of choice for sensor net-
work research [18]. TinyOS is programmed using nesC
(Networked Embedded System C) and uses a simple run-
to-completion, first-in-first-out concurrency model for any
computations that may be time-consuming [12]. Tasks may
be preempted by a hardware event, however, as expected.
TinyOS’s designers try to make hardware differences be-
tween mote platforms invisible to the programmer [13][10].

2.2. Software Thread Integration (STI)

Software Thread Integration (STI) is a compiler tech-
nique which provides fine-grained concurrency on proces-
sors without additional hardware for fast context switches.
STI is able to recover regions of processor idle time that
cannot be utilized via context switches [6] due to gran-
ularity issues. The fundamental idea behind STI is the
assembly-language-level compile-time interleaving of mul-
tiple functions (from different threads, typically written in
C). The resulting implicitly-multithreaded functions lack
internal context switching and yield essentially weightless
threads. STI duplicates and moves instructions to main-
tain control-flow and data-flow semantics for correct func-
tionality. STI’s weightless context switching can be used
to reclaim processor idle time which would be too short
to use with traditional context switches (or even interrupt
service routines). STI may also provide some performance
improvement through the elimination of context switching
overhead, but this is a secondary benefit.

STI has been used for hardware-to-software migration
(HSM), where relatively small sections of idle waiting are
common [4]. Chapter 2 of [4] describes in detail the pro-
cess of performing STI using program dependence graphs
(PDGs). [5] describes an HSM application of STI for gen-
erating video signals. In [11], STI is used in the ker-
nel of AvrX to perform cryptographic operations (RC4 and
RC5) during TDMA communication, using the idle time be-
tween scheduled communication events to perform compu-
tations. Venugopalan uses STI to improve energy efficiency
of motes in [24]. However, his system uses MCU to MCU
communication via SPI, rather than using actual radios. He
instead used the radio’s data sheet to calculate power con-
sumption characteristics, though his MCU-to-MCU system
did not completely simulate communication with a radio —
only data transmission. His system also does not use a mote
operating system/library package.

This paper describes a system for incorporating STI into
TinyOS applications relatively easily. Using STI with WSN
applications can reduce energy consumption and increase
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performance.

3. TOSSTI: TinyOS with Software Thread
Integration Support

TOSSTI is a tool set for easily adding facilities for
Software Thread Integration (STI) to TinyOS. It includes
methods for, replacing the default TinyOS 1.1.x sched-
uler, declaring nesC tasks that may be integrated with
other nesC tasks, and processing a TinyOS application’s
code to add STI functionality. When using TOSSTI,
the ability to run the non-integrated version of the ap-
plication and be debugged using the standard TinyOS
tools is maintained. The tools can be found online at
http://www.cesr.ncsu.edu/agdean/tossti .

App.nc

make 
(ncc)

app.c

taskCount.pl

GDB
Integrated 
Tasks File 

(ITF)

TOSSTI

tossti_app.c

thrint

gcc

TOSSTI 
Executable

Non-STI 
Executable

STI 
Code

TinyOS Application

Figure 2. Interaction of tools used when
building a TOSSTI application

Figure 2 gives a graphical overview of the tools used
when building an application using TOSSTI. First, the
TinyOS application is developed using nesC and compiled
using the standard make tools included with the TinyOS
distribution. Second, the application is executed and ana-
lyzed by the programmer using a debugger. Task analysis
tools determine which tasks are good candidates for STI.
Third, the programmer adds TOSSTI mark-ups to the orig-
inal TinyOS application, and rebuilds it. Fourth, tasks are
integrated using thrint, integrated tasks are declared in an
ITF file, and the application is processed by the TOSSTI
script to include the TOSSTI scheduler. Finally, gcc is used

to compile the STI code and TOSSTI version of the appli-
cation into a single executable.

3.1. Description of TinyOS Scheduler

The scheduler used by TinyOS 1.1.x works as a FIFO
queue, running each task to completion. There is no notion
of priority among tasks and no task can preempt another
task. The only way a running task can be preempted is by
an interrupt being serviced. These interrupt service routines
are the only form of concurrency available in TinyOS 1.1.x.

In order for TinyOS to support integrated threads, there
must be a way to recognize which tasks have been inte-
grated, and the TinyOS task scheduler must be modified to
identify when an integrated version of several tasks is avail-
able and run it.

The TinyOS 1.1.x scheduler is imple-
mented as a circular FIFO queue and a call to
TOSH run next task() executes and removes the function
at the head of the task queue. The queue is implemented
as an array (TOS queue) of C structs with a single field tp,
which is a pointer to a task.

*task

*task

*task

7

6

5

4

3

2

1

0TOSH_sched_full

TOSH_sched_free

Figure 3. TinyOS scheduler queue

Figure 3 shows a conceptual diagram of the TinyOS
scheduler. Tasks are C functions that have void as both
the argument and return type. The array is indexed using
two variables: TOS sched full is the array index of of the
first used position of the queue, and TOS sched free is the
array index of the first free entry in the queue. The first
task to be executed is at TOS queue[TOS sched full].
If TOS queue[TOS sched free].tp is non-null,
then the queue is full; otherwise, a new
task is added to the queue with the code
TOS queue[TOS sched free].tp = function;. The size of
the queue is defined with the constant TOSH MAX TASKS,
which must be a power of two for efficient modulo arith-
metic for wrapping the array indexes beyond the size of the
array.

3.2. Description of TOSSTI Schedulers

In order to run integrated threads in TinyOS, the sched-
uler must be modified to determine when an integrated ver-
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sion of multiple tasks is available. Previous schedulers for
STI systems utilized two queues because there was an obvi-
ous distinction between host/primary and guest/secondary
threads: a task would only be posted to the queue to which
it belonged, and only the heads of the two queues would be
examined when determining whether an integrated version
of threads should be executed [5][11][24][25]. This design
has an O(1) scheduler. A multiple-queue scheduling system
would break TinyOS’s single-priority scheduling semantics
because tasks in the consistently shorter queue would get
an artificially elevated/reduced priority, which may lead to
starvation problems. In TOSSTI, like the TinyOS default
scheduler, a single queue is used for all tasks. By us-
ing a single queue, the developer does not need to worry
about classifying each thread in the system into a category,
starvation problems are eliminated and TinyOS’s nesC task
scheduling semantics and syntax do not need to be changed.

Two schedulers have been developed for using STI with
TinyOS: one dynamic and one static.

3.2.1. Dynamic TOSSTI Scheduler

In the dynamic TOSSTI scheduler, the TinyOS func-
tion TOSH run next task() has been replaced with
TOSSTI run next task() and the TOS queue array has been
replaced by TOSSTI queue, which is similar to TOS queue
except it is an array of TOSSTI sched entry t type struc-
tures. The definition of TOSSTI sched entry t is shown
below:

typedef struct TOSSTI sched entry st {
void (∗tp)(void);
uint8 t tid;
bool has run;

} TOSSTI sched entry t;

The tp field is the same as in the TinyOS scheduler and is
simply a pointer to a task/function to be executed.

ti
d
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*task 0

*task 1TOSSTI_sched_full

TOSSTI_sched_free

Figure 4. Dynamic TOSSTI scheduler queue
and table

Figure 4 shows a conceptual diagram of how the dy-
namic TOSSTI scheduler works. In the dynamic TOSSTI
scheduler, a tid field has been added to serve as a unique
identifier for each integrated task. When determining what
task to run, the dynamic TOSSTI scheduler looks at the

head of the queue (TOSSTI queue[TOSSTI sched full]). If
that entry has a tid of 0, then the task is removed from the
queue and executed just like in the TinyOS scheduler. How-
ever, if the tid field is non-zero, it continues searching the
queue for another thread with a non-zero tid, which may
have been integrated with the task. If the scheduler finds
another task with a non-zero tid, the values of the tid fields
are bitwise-ORed together and the result is used as an index
into the TOSSTI integrated threads array. If that position of
the TOSSTI integrated threads array is non-null, then an in-
tegrated version of the tasks exists at the address pointed to
by that entry in the TOSSTI integrated threads array which
should be executed. The scheduler continues searching for
another thread until there are no more integrated tasks in the
queue.

Because the search for integrated tasks extends beyond
the head of the queue, if an integrated version of several
tasks is found and executed, then the tasks will no longer
be executed in a FIFO order. Rather than remove each of
the tasks that have been executed by the integrated thread,
a has run flag is used to indicate to future invocations of
TOSSTI run next task() that a task has already been ex-
ecuted out-of-order. Later, when TOSSTI run next task()
looks at the head of the queue, and finds that the task has al-
ready been run, it simply removes that entry from the queue
and returns true, signaling the caller that it actually did ex-
ecute a task. Using the has run flag to defer removing ex-
ecuted tasks until later saves the clock cycles that would
have otherwise been used to shift other tasks in the queue
forward when the executed task is removed.

So that the scheduler does not waste time searching the
queue for other integrated tasks when there may not be any,
a bit-map called “TOSSTI locator” is used to indicate the
relative position of TOSSTI-tasks in the queue. Bit 0 of
TOSSTI locator indicates if the task at the head of the queue
is an integrated TOSSTI-task. Each time a task is removed
from the queue, the TOSSTI locator is right-shifted by one.
Whenever a task is added to the queue, the bit correspond-
ing to the position of the new task with respect to the head
of the queue is set if the task has a non-zero tid. When
TOSSTI locator is 0, no search of the queue for integrated
tasks is needed. This scheduler has a worst-case runtime
complexity of O(n).

When compared to the standard TinyOS scheduler, the
dynamic TOSSTI scheduler uses 2× more RAM for queue
storage on the AVR architecture, but that is actually rela-
tively minimal when considering that instead of two bytes
per queue entry as in TinyOS, TOSSTI uses only four bytes,
plus one additional byte for the locator bitmap, when using
the default queue size of eight. The lookup table that stores
the addresses of integrated tasks also requires two bytes per
entry, but could be stored in program memory or ROM in
systems where tasks do not get added at runtime.
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3.2.2. Static TOSSTI Scheduler

A second scheduler for using STI with TinyOS has been de-
veloped, called the static TOSSTI scheduler. The dynamic
TOSSTI scheduler discussed in section 3.2.1 determines
whether and which integrated version of tasks should be ex-
ecuted when the scheduler is fetching a new task from the
queue. The static scheduler, however, modifies the queue
to include the integrated versions of tasks when a task is
posted. The static scheduler’s post function uses a static
C array, with one element for each task that has been de-
clared as a TOSSTI task in the system. The array is indexed
using a task’s tid and is used to store the position in the
TOS queue array where the previous instance of the posted
task was stored. If a new task is being posted to the sched-
uler, and a task that it has been integrated with has been
posted and is still in the queue, the previously posted task’s
tp field in the queue is updated to point to the STI version of
the tasks, rather than the discrete version of the task, by the
post function. Aside from changes in the post operation, all
of TinyOS’s other scheduling functions and data structures
remain unchanged when using the static TOSSTI scheduler.
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Figure 5. Scheduler queue before (a) and af-
ter (b) posting an integrated task, task−D, to
the static TOSSTI scheduler

Figure 5 illustrates what occurs when a TOSSTI task is
added to the static TOSSTI scheduler. Task sti−BD is an
integrated version of tasks task−B and task−D. Figure 5a
shows the status of the scheduler queue and the where ar-
ray after three tasks have been posted: task−A, task−B,
and task−C. The entry in the where array corresponding

to B points to the location in the queue where task−B was
last posted. In figure 5b, task−D has just been posted, and
since task−D is integrated with task−B, the queue entry for
task−B has been replaced with the STI version of the two
tasks, sti−BD. The scheduler’s post() function knows that
sti−BD is an STI version of task−B and task−D because
it was specified as such in the integrated tasks file which is
discussed in section 3.3.2.

The static TOSSTI scheduler uses much less RAM than
the dynamic scheduler: only one more byte of RAM per
TOSSTI task than the default TinyOS scheduler. The code
size increase for the static TOSSTI scheduler is also much
smaller than the dynamic TOSSTI scheduler when few tasks
have been integrated: finding an integrated version of two
tasks simply involves a C switch and if statements.

3.2.3. Scheduler Response Times

For the original TinyOS FIFO scheduler, if Ti is the execu-
tion time of task i and T0 is the time remaining in the current
task, the response time for taskn is shown in equation 1.

R(n) = T0 +
n∑

i=1

Ti (1)

For the TOSSTI schedulers, calculating a response time for
a task is not quite as simple because some tasks are removed
and replaced as the queue is updated. If I is the set of tasks
that have been placed in the queue before taskn and have
been replaced with an STI-version, and S is the set of in-
tegrated (STI) tasks that replaced them, then the response
time for taskn using a TOSSTI scheduler is as shown in
equation 2.

R(n) = T0 +
n∑

i=1

Ti −
∑
α∈I

Tα +
∑
α∈S

Tα (2)

3.3. Declaring and Posting Merged Tasks in
nesC

The TOSSTI C preprocessor macro is provided to mark
integrated tasks easily. To use it, the .nc file containing
the module with the integrated task must have the line
“#include ”TOSSTI.h”” added to it before the definition of
the module. (Note that using the nesC “includes TOSSTI”
directive does not work for this use.) The definition of the
task in the nesC code then becomes

task void TOSSTI(myReallySweetTask) {
// a fun mix of C and nesC code

}

and all posts of the task in nesC become

post TOSSTI(myReallySweetTask);
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Any use of myReallySweetTask must now be wrapped
in a call of the TOSSTI macro. If a task is declared using
TOSSTI but is posted without it (or vice versa), the nesC
compiler will issue an error that the task has been “implictly
declared” and that “only tasks can be posted” since the
task’s name does not match. The TOSSTI macro mangles
the name of the task so that other tools (see section 3.3.1)
can parse the C code generated by the nesC compiler and
pick out which tasks have been, or will be, integrated and
assign unique tids to them which will be used by the sched-
uler.

Using the TOSSTI macro will not break any exist-
ing TinyOS applications and can be used on any task:
there does not need to be an integrated version of it
available, yet. The process of building and installing a
non-integrated version of a TinyOS application using the
TOSSTI macro is the same as if there were no uses of
TOSSTI in the code. In fact, it is suggested that an ap-
plication be implemented, completely debugged, and ver-
ified with TOSSTI calls in place before doing any STI on
the tasks. The only difference one may notice during the
process when compared to a traditional TinyOS applica-
tion is that in a debugger, instead of seeing a task named as
“MyModule$mySweetTask,” a TOSSTI-task will be named
“MyModule$ TOSSTI mySweetTask .”

Behind the scenes, nesC’s post operations become calls
to the TOS post C function, which takes the address of the
function being posted as its only argument. When using
TOSSTI, all calls to TOS post become calls to TOSSTI post,
which takes two arguments: the address of the function be-
ing added to the queue and a task identification number or
tid. Each task that has been marked using the TOSSTI macro
is assigned a unique tid when the application is being built.
Non-TOSSTI tasks are assigned a tid of 0.

Using a macro allows anyone to use TOSSTI without
applying a patch to their compiler and is less likely to break
when the nesC compiler is updated.

3.3.1. Processing the Application’s C Code and Generat-
ing TIDs

With a normal TinyOS application, a developer types
“make micaz install” to compile and load their application
onto their mote (replacing “micaz” with the platform they
are using, of course). When building an STI version of a
TinyOS application, however, after writing and debugging
the source code using the standard TinyOS tools, the appli-
cation’s code must be processed to add the TOSSTI sched-
uler (discussed in section 3.1) and generate tids for the po-
tentially merged tasks.

When a TinyOS application is compiled using the stan-
dard TinyOS “make” system, a build/platform/ direc-
tory is created by make. That directory contains an app.c

file, a binary, and various other files. The nesC language
is compiled to C as an intermediary, which is dumped into
the app.c file. To automate the process of transforming the
app.c TinyOS application to a TOSSTI application with the
new scheduler and support for software integrated threads,
a script can be used. The TOSSTI script is written in perl
and makes a single pass over the app.c file to generate the
TOSSTI version of the file.

The TOSSTI script looks for functions declaring
TOSSTI-tasks (those tasks that were declared in nesC
with the TOSSTI macro). The nesC compiler generates
a function declaration for each task with the prototype
“void ModuleName$taskName(void);.” Whenever a single
line of the app.c file matches this pattern, the TOSSTI script
looks for the presence of the string “ TOSSTI ” in the
taskName. If “ TOSSTI ” is found, the script puts the
function name (including the module name) into a hash ta-
ble and assigns the task a tid. The hash table is keyed by the
function name, and contains the tid as the value. For the dy-
namic scheduler, the tids are assigned as sequential powers
of two (e.g., 1, 2, 4, etc).

The TOSSTI script also searches for posts of
tasks. All tasks posted in a TOSSTI application
must use the TOSSTI scheduler, instead of the
default TinyOS scheduler. The nesC statement
“post workerTask();” is translated to the C statement
“TOSH post(ModuleName$workerTask)” by the nesC
compiler. Whenever the script finds a line with a call to
TOSH post(), it replaces it with a call to TOSSTI post(),
with the correct tid as an argument, using a tid of 0 if the
task being posted is a non-TOSSTI task.

The TOSSTI script must insert the declarations and def-
initions of the TOSSTI post(), TOSSTI init sched(), and
TOSSTI run next task() functions into its output file. These
are all declared and defined in TOSSTI.h and TOSSTI.c
which the TOSSTI script #includes just before the def-
inition of “main” in app.c. Calls to TOSH init sched(),
and TOSH run next task() are replaced with calls to
TOSSTI init sched() and TOSSTI run next task(), respec-
tively. The TOSSTI script adds C preprocessor line number
directives to the output source code to aid in debugging the
application.

3.3.2. Declaring Integrated Tasks

After translating the TinyOS function calls in app.c to the
equivalent TOSSTI functions in the output file, the TOSSTI
script must define the TOSSTI integrated tasks array which
is consulted by the dynamic scheduler to find integrated ver-
sions of tasks that have been posted to the task queue, or
generate a custom TOSSTI post() function if using the static
scheduler.

To indicate to the TOSSTI tools which tasks have been
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merged to form integrated threads, an integrated threads file
is used. Below is an example of an integrated threads file:

tasks01 = {ModA$task0, ModB$task1}
tasks03 = {ModA$task0, ModC$task3}

The first line indicates that an integrated version of task0
of module ModA and task1 of module ModB resides in the
function named tasks01. A task may be integrated with
more than one other task, and that tasks do not need to be-
long to the same nesC module to be integrated with each
other.

3.3.3. Building the TOSSTI Application

After the integrated tasks file is created the, TOSSTI script
is used to insert an appropriate scheduler into the source
code. The resulting code is compiled using gcc, along with
the integrated function bodies, using the same compiler op-
timization flags that the nesC compiler passes to gcc, and
then can be loaded onto the mote.

4. Experiments and Analysis

4.1. Sample TOSSTI Application

A TinyOS application named “MicSampler” has been
devised to demonstrate using STI in TinyOS with TOSSTI.
MicSampler is roughly based on the microphone array sam-
pling application described by Luthy in [17]. Luthy’s appli-
cation periodically samples eight microphones attached a
mote’s analog to digital converter (ADC), and sends those
samples to a PC which calculates the direction of a sound
detected within a specific frequency range. This has both
military and civilian applications, and could be used for
acoustically determining the locations of other motes in a
network, or for aiding people with disabilities [1].

Main

MicArrayMStdControl

MicSamplerM

StdControl
MicArray

MicroTimerMMicroTimer

LedsC
Leds

GenericComm

StdControl

SendMsg

ReceiveMsg

Figure 6. Components used in MicSampler as
generated using nesdoc

When the mote boots, the radio is configured, the ADC
is configured, and timer is configured to signal an interrupt
periodically, at the desired sample rate. Whenever that in-
terrupt occurs, the TinyOS signal handler for the timer is

executed, which does two things: read all eight channels
from the AVR’s ADC and transmit the eight ADC samples
from the previous sample period over the mote’s CC2420
radio. The sample and transmit operations are performed in
TinyOS tasks, which have been integrated using STI. The
transmit task is the standard TinyOS startSend task used by
the micaZ platform. Figure 6 shows the nesC component
diagram as generated by the nesdoc tool.

The sample and transmit tasks were integrated using
thrint, a thread integration tool which can construct con-
trol dependence graphs (CDGs) of AVR assembly code and
use those CDGs to integrate two tasks. Figure 7 shows the
CDG of the integrated version of the sample and transmit
tasks.

Figure 7. CDG of Integrated getSam-
plesTask() and startSend()

4.2. Analysis

Figure 8 shows oscilloscope screenshots of the time re-
quired to execute the tasks getSamplesTask and startSend.
To generate the waveforms, the program was modified to
turn on a single output pin on the MCU when the task began
execution, and turned off just before that task’s ret instruc-
tion was executed.

Figure 8a shows that getSamplesTask takes 77.7 µs to ex-
ecute and startSend takes 200.5 µs, for a total of 278.2 µs,
including the time required to toggle the output pins. Fig-
ure 8b shows that the integrated version of getSamplesTask
and startSend takes only 229.0 µs to execute. When com-
pared with the discrete versions of the threads, the inte-
grated tasks show a 17.7% reduction in run time.

4.2.1. Active Time Analysis

After verifying the speed improvement of the integrated
task compared to the discrete tasks, the time the proces-
sor was active was measured. To do this, an output pin
was turned on in each ISR when the processor woke up
from a sleep mode. The TOSH run task() function turned
off that output pin before executing the AVR sleep instruc-
tion. Figure 9 also shows the active time of the proces-
sor (a) without TOSSTI and (b) with TOSSTI while using
the dynamic TOSSTI scheduler. The bottom-most wave-
form, labeled “ACTIVE” shows the active time of the pro-
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(a) (b)

Figure 8. Oscilloscope screenshots showing task execution time (a) without and (b) with STI, using
static scheduler

cessor: it is (c) 514.0 µs when not using TOSSTI, and (d)
566.5 µs when using TOSSTI: an increase in active time
when using STI, not the expected reduction! When look-
ing at how much time is spent actually spent searching for
the next task to execute (waveform “SCHED”), (b) which
uses STI spends over twice as much time as (a) which is the
plain TinyOS implementation of the application. For this
application, the runtime overhead of the dynamic TOSSTI
scheduler negates the benefits of using STI. In an applica-
tion with longer tasks, this overhead may be negligible, but
since there are many applications where the tasks are short,
the runtime overhead needed to be reduced for STI to be
feasible for WSN applications. This realization is actually
what led to the development of the static TOSSTI scheduler
which is described in section 3.2.2.

After the static TOSSTI scheduler was developed, the
active-time analysis was done again. Figure 10 shows the
active time of the same application using STI and the static
TOSSTI scheduler is 481.5 µs. When compared to the non-
STI version of the application as seen in figure 9a, that is a
time savings of 32.5 µs or a decrease of 6.3%. By running
the integrated version of the threads rather than the discrete
versions using the static TOSSTI scheduler, the processor
can go back to a sleep mode 6.3% sooner with this applica-
tion.

With other applications, including those that integrate
security features or routing tasks, it is likely that the sav-
ings will be even greater [5][11][24]. Even though the run-
time overhead using the dynamic TOSSTI scheduler is pro-
hibitive for this application, in systems where new tasks
may be introduced to the system at run time, the dynamic
scheduler could be useful.

4.2.2. Power and Energy

Based upon the experimentally measured active times pre-
sented the previous section, we now estimate power use.

(a)

(b)

Figure 9. Oscilloscope screenshots showing
active time (a) without and (b) with STI using
dynamic TOSSTI scheduler
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Figure 10. Oscilloscope screenshot showing
MicSampler application using static TOSSTI
scheduler

We use the MicaZ power models presented by Polastre et
al. [22]. We assume the processor is in standby mode when
not waking up (180 µs) or in active mode. We assume the
radio is active for the same amount of time in each case to
send the 12 bytes of data (source mote ID, packet number,
and eight data samples) and 17 bytes of B-MAC protocol
overhead. We assume a per-microphone sampling rate of
500 Hz (resulting in 500 messages per second).

We first examine MCU power for the application. Ap-
plying TOSSTI cuts processor active time by 6.3%, cutting
average processor power by the same amount (from 7.54
mW to 7.19 mW).

Next we examine system (radio + MCU) power. TOSSTI
cuts average system power from 38.92 mW to 38.57 mW.
This 0.9% savings is modest because average system power
consumption is dominated by the radio (average 31.4 mW),
rather than the microcontroller (average 7.19 mW). The ra-
dio is used frequently in this application and has a large
wake-up time. Furthermore, B-MAC protocol overhead ex-
tends the radio’s active time. A platform with a more effi-
cient radio or an application with more computation would
see larger benefits from using TOSSTI.

4.2.3. Response Time

In this application, the timerFired task calls the function
which posts the AMStandard.sendTask then calls the func-
tion which posts getSamplesTask. AMStandard.sendTask
calls the function that posts startSend task. Here, even
though an impressive sequence of function calls is made
each time the timer fires, the deepest the task queue
generally gets is two tasks deep. The response time for
getSamplesTask is unchanged here, but the response time
for startSend gets reduced. According to equation 2, the
response time for startSend in the integrated versions of the
application is now

R(startSend) = (TgetSamplesTask + TstartSend)
− (TgetSamplesTask + TstartSend) + TsendAndSample

4.2.4. Program Memory Usage

Non-STI App 11,130 bytes
App with Dynamic TOSSTI Scheduler 13,166 bytes
App Static TOSSTI Scheduler 12,948 bytes
sendAndSample function 1,168 bytes

Table 1. Program memory usage for versions
of MicSampler application.

STI results in code size expansion because in addition
to the original, non integrated versions of the tasks, there
are also clones of the task bodies in the integrated task.
The modified scheduler also increases code size. How-
ever, flash memory is relatively inexpensive, and on-chip
program memory for today’s motes is relatively large when
considering the limited amount of processing currently per-
formed on the motes themselves. Table 1 shows a summary
of program memory requirement for the various versions of
the MicSampler application. The data was collected using
the avr−objdump utility. Code sizes for individual sched-
uler functions is not available because for different versions
of the application, the compiler inlines and optimizes away
the functions differently.

5. Conclusions

This work has shown that using software thread integra-
tion with a mote software system such as TinyOS can be
done with changes to the TinyOS scheduler, and a method
of marking integrated threads, TOSSTI. It also shows an ex-
ample application that uses software thread integration and
TOSSTI to reclaim busy-wait time. During what was pre-
viously busy-wait time, the mote can now perform useful
operations, completing its active cycle sooner, going back a
low-power mode sooner, reducing energy consumption. In
the sample application, active time was reduced 6.3%. Ap-
plications with more idle time will benefit even more. In
the future, TOSSTI can be ported to the new TinyOS 2.0,
which provides a more easily accessible method of utilizing
a custom scheduler [16].
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