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Abstract. In this contribution, we consider a class of hybrid systems
with continuous dynamics and jumps in the continuous state (impulsive
hybrid systems). By using a newly elaborated version of the Pontryagin-
type Maximum Principle (MP) for optimal control processes governed
by hybrid dynamics with autonomous location transitions, we extend the
necessary optimality conditions to a class of Impulsive Hybrid Optimal
Control Problems (IHOCPs). For these problems, we obtain a concise
characterization of the Impulsive Hybrid MP (IHMP), namely, the cor-
responding boundary-value problem and some additional relations. As
in the classical case, the proposed IHMP provides a basis for diverse
computational algorithms for the treatment of IHOCPs.
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1 Introduction

During the last two decades, there has been considerable effort to develop theo-
retical and computational frameworks for hybrid systems. Of particular impor-
tance is the ability to operate such systems in an optimal manner. With the
exception of certain special cases, the solution to the optimal problem remains
a challenging task. This is due to the fact that the two aspects of system be-
haviour, i.e., discrete and continuous, are tightly linked, to such an extent that
they cannot be decoupled in an effective and simple way. One of the most con-
venient ways to deal with the problem is to formulate it as a sequential problem,
i.e., for a particular execution the time axis is partitioned into intervals, and
in each interval, the dynamics are characterized by a set of ODEs, with transi-
tions being triggered internally (autonomous switches) or externally (controlled



switches). This is the approach that has been considered since the initial for-
mulation of the corresponding optimal control problem [15, 16], [32] and can be
seen as a natural way to tackle the problem. For a deeper discussion on the main
theoretical questions see e.g., [2, 3, 6, 7, 12–14, 17, 18, 21, 27, 28, 32, 35].

The class of hybrid systems considered in this contribution involves systems
driven by continuous control inputs where switching is accompanied by a jump
in the state. A similar class has been considered in [33], where the authors focus
attention on state delayed systems with controlled switches and where useful
gradient formulas have been derived, for an application see [34]. See also [35]
and [36] for related problems. In contrast, we consider the case where switches
are being triggered by the continuous dynamics but the magnitudes of the cor-
responding state jumps are part of the optimization variables; see also [3] for
a gradient-based approach. This family of systems captures phenomena arising
in, e.g., cyclically operated batch processes and certain epidemic propagation
models.

A simple transfomation relates the optimal control problem for the aforemen-
tioned class of systems to another optimal control problems, for which necessary
conditions of optimality have been previously derived by the authors [6]. These
results make it possible to use conceptual algorithms and their corresponding
convergence results, see e.g., [5]. Note that using transformations is a standard
approach in optimal control theory and has been used extensively in the past to
formulate different results (see e.g., [11], see also [17], where a transformation is
used to derive a version of the Maximum principle for a class of hybrid systems).

The outline of the paper is as follows. In Section 2, we formally describe
the IHOCP investigated in this contribution. Section 3 contains an equivalent
representation of the impulsive hybrid system under consideration and includes
an auxiliary optimal control problem for the given IHOCP. In Section 4, we
propose a new variant of the hybrid MP for impulsive hybrid systems, namely
the Impulsive Hybrid MP. This principle is derived from the MP for hybrid
systems with autonomous location transitions and is closely related to the version
of the MP proposed in, e.g., [12, 13] and to the gradient-based approach to
hybrid optimal control problems proposed in [3–5]. In Section 5, we discuss
some computational issues of the proposed necessary optimality conditions for
IHOCPs. Section 6 summarizes the paper.

2 Modeling framework and problem formulation

Let us formally introduce the class of hybrid systems investigated in this paper:

Definition 1. An impulsive hybrid system is a 7-tuple

IHS = {Q,X , U,U , F,Θ,S},

where

– Q is a finite set of locations;



– X = {Xq}q∈Q is a collection of state sets with Xq ⊆ R
n;

– U ⊆ R
m is a control set;

– U is a set of admissible control functions;

– F = {fq}q∈Q is a family of vector fields fq : [0, tf ]×Xq × U → R
n;

– Θ = {Θq}q∈Q is a collection of maximal constant amplitudes (state jumps);
– S is a subset of Ξ, where

Ξ := {(q, x, q′, x′) , q, q′ ∈ Q, x ∈ Xq, x
′ ∈ Xq′}.

In the following, we consider only impulsive hybrid systems IHS that satisfy
the following assumptions:

A1 The functions fq(t, ·, ·), where q ∈ Q, are continuously differentiable
A2 There exists a constant K < ∞ such that ||∂fq(t, x, u)/∂x|| < K for all

(t, x, u) ∈ [0, tf ]×Xq × U for all q ∈ Q
A3 The control set U is compact and convex

Moreover, we assume that smooth functions mq,q′ : R
n → R, q, q′ ∈ Q with

nonzero gradients are given such that the hypersurfaces

Mq,q′ := {x ∈ R
n : mq,q′(x) = 0}

are pairwise disjoint. Note that in this case a hypersurfaceMq,q′ characterizes the
set S at which a switch from location q to location q′ can take place. Evidently,
Mq,q′ is the projection of S on the product space Xq×Xq′ . The set of admissible
control functions from Definition 1 is taken as

U := {u(·) ∈ L
m
∞(0, tf ) : u(t) ∈ Uq, a.e. on[0, tf ]}.

By L
m
∞(0, tf ) we denote the standard Lebesque space of measurable and essen-

tially bounded functions. Note that the pair (q, x(t)) represents the hybrid state
at time t, where q is a location q ∈ Q and x(t) ∈ R

n. Let us introduce some
standard spaces, namely, the space C

∞
0 (0, tf ) of all C

∞ functions that vanish
outside a compact subset of (0, tf ) and the space D′(0, tf ) of generalized func-
tions (Schwartz distributions). Recall that D′(0, tf ) can be considered as a space
of linear, sequentially continuous functionals with respect to the convergence on
the space C

∞
0 (0, tf ). In the following, we define the notion of a hybrid trajectory

of an impulsive hybrid system (see e.g., [4],[5]).

Definition 2. A hybrid trajectory of IHS is a triple X = (x(·), {qi}, τ),
where x(·) ∈ D′(0, tf ) is a discontinuous trajectory, {qi}i=1,...,r is a finite se-
quence of locations and τ is the corresponding sequence of switching times

0 = t0 < · · · < ti < · · · < tr = tf

such that for each i = 1, . . . , r there exists u(·) ∈ U such that:

– x(0) = x0 /∈
⋃

q,q′∈QMq,q′ and xi(·) = x(·)|(ti−1,ti)
is an absolutely continu-

ous function on (ti−1, ti);



Fig. 1. An example of execution with 4 switches (r = 5).

– x(ti) ∈Mqi,qi+1
for i = 1, ..., r − 1;

– ẋi(t) = fqi(t, xi(t), u(t)) + θqiδ(t− ti) for almost all t ∈ [ti−1, ti], where δ is
the Dirac function and ||θqi || ≤ Θqi .

The derivative ẋi(·) in Definition 2 is considered as a weak derivative of the
generalized function xi(·) defined on the full interval [ti−1, ti]. It is also evident
that a function x(·) from Definition 2 consists of absolutely continuous parts
defined on the open intervals (ti−1, ti) and involves jumps of magnitude θqi at
the switching times ti, see Figure 1 for an example of the execution. Note that
the evolution equation for the trajectory x(·) of a given impulsive hybrid system
IHS can also be represented as follows

ẋ(t) =

r
∑

i=1

β[ti−1,ti)(t)fqi(t, x(t), u(t)) +

r
∑

i=1

θqiδ(t− ti) a.e. on [0, tf ]

x(0) = x0

(1)

where β[ti−1,ti)(·) is the characteristic function of the interval [ti−1, ti)

β[ti−1,ti)(t) =

{

1 if t ∈ [ti−1, ti)

0 otherwise

for i = 1, ..., r. Note that the initial value problem in Equation (1) is also consid-
ered in the sense of weak derivatives on the space D′(0, tf ). Under the assump-
tions presented above, for each u(·) ∈ U and all ||θqi || ≤ Θqi , i = 1, ..., r, the
initial value problem (1) has a unique solution in D′(0, tf ).

Let f0 : R×R
n×R

m → R be a continuously differentiable function. Given an
impulsive hybrid system IHS we now formulate a corresponding optimization



problem, the following Impulsive Hybrid Optimal Control Problem (IHOCP):

minimize
r
∑

i=1

∫ ti

ti−1

f0(t, x(t), u(t))dt

over all trajectories X of IHS.

(2)

Throughout the paper we assume that the IHOCP (2) has an optimal solution

(uopt(·), θopt,Xopt(·)) ∈ C := U × R
n×r ×D′(0, tf )×Q

r × [0, tf ]
r

where θopt := (θoptq1
...θoptqr

) is a matrix representing the optimal jumps.

3 Optimization of Impulsive Hybrid Systems

The optimal control problem (2) is an optimization problem formulated on the
space C which involves the space of generalized functions D′(0, tf ). Our aim is
to introduce an auxiliary hybrid optimal control problem governed by a hybrid
system with autonomous location transitions without jumps in the continuous
state see e.g., [12, 13, 5–7] for further details. For this, consider the following
auxiliary initial value problem

ẏ(t) =

r
∑

i=1

β[ti−1,ti)(t)fqi
(

t, y(t) +

r
∑

i=1

θqiη(t− ti), u(t)
)

a.e. on [0, tf ],

y(0) = x0

(3)

where i = 1, ..., r and η(·) is the Heaviside step-function. Note that η(·) can also
be considered as an element of the space D′(0, tf ). Under the assumptions stated
in the previous section, the initial value problem (3) has a unique absolutely
continuous solution for each u(·) ∈ U (see, e.g., [9, 22]). Next we consider y(·) as
an element of the Sobolev space x(·) ∈ W

1,∞
n (0, tf ), i.e., the space of absolutely

continuous functions with essentially bounded derivatives. We are now able to
formulate our first equivalence result.

Theorem 1. Under the above-mentioned assumptions A1 − A3, the (unique)
solution x(·) ∈ D′(0, tf ) of the initial value problem (1) can be represented in the
following form:

x(t) = y(t) +
r
∑

i=1

θqiη(t− ti), (4)

where y(·) ∈ W
1,∞
n (0, tf ) is a (unique) solution to the initial value problem (3).

Proof. Since the weak derivative of the Heaviside step-function η(t− ti) is equal
to the Dirac function δ(t− ti), the weak derivative of the right-hand side of (4)
is

ẏ(t) +

r
∑

i=1

θqiδ(t− ti).



For an absolutely continuous function y(·) the weak derivative of y(·) coincides
with the classical derivative. Using equation (4), the initial value problem (1)
can be written in the following form

ẋ(t) = ẏ(t) +

r
∑

i=1

θqiδ(t− ti) =

r
∑

i=1

β[ti−1,ti)(t)fqi
(

t, y(t)

+
r
∑

i=1

θqiη(t− ti), u(t)
)

+
r
∑

i=1

θqiδ(t− ti)

=

r
∑

i=1

β[ti−1,ti)(t)fqi(t, x(t), u(t)) +

r
∑

i=1

θqiδ(t− ti)

Moreover, for t = 0 we obtain x(0) = y(0). The uniqueness arguments for solu-
tions of the initial value problems (1) and (3) complete the proof. ut

It is necessary to stress that the proposed representation (4) can also be consid-
ered as a transformation of values. This transformation eliminates state jumps at
the switching times ti ∈ τ from the original system (1). From the affine structure
of (4) we can deduce the following simple characterization of (4) with respect to
solutions of the above initial value problems.

Theorem 2. The transformation (4) from Theorem 1 is a bijective mapping
D′(0, tf )→ W

1,∞
n (0, tf ) and the solutions x(·) ∈ D

′(0, tf ) and y(·) ∈ W
1,∞
n (0, tf )

of the initial value problems (1) and (3) are related by equation (4).

Our results, namely, Theorem 1 and Theorem 2, give rise to the study of an
auxiliary hybrid system with autonomous location transitions. Recall the corre-
sponding definition.

Definition 3. A hybrid system with autonomous location transitions is a 6-
tuple

H = {Q,X , U,U , F,Sa},

where

– Q is a finite set of locations;

– X = {Xq}q∈Q is a collection of state sets with Xq ⊆ R
n;

– U ⊆ R
m is a control set;

– U is a set of admissible control functions;

– F = {fq}q∈Q is a family of vector fields fq : [0, tf ]×Xq × U → R
n;

– Sa is a subset of Ξa, where

Ξa := {(q, y, q′, y′) , q, q′ ∈ Q, y ∈ Xq, y
′ ∈ Xq′}.

Moreover, a hybrid trajectory of H is a triple Y = (y(·), {qi}
a, τa), where

y(·) : [0, T ]→ R
n and for each i = 1, . . . , r, there exists u(·) ∈ U such that:



– y(0) = x0 and yi(·) = y(·)|(ti−1,ti)
is an absolutely continuous function on

(ti−1, ti) continuously prolongable to [ti−1, ti], i = 1, ..., r;

– ẏi(t) = fqi(t, yi(t), u(t)) for almost all t ∈ [ti−1, ti], i = 1, ..., r;

– the following switching condition (yi(ti), yi+1(ti)) ∈ Sa
qi,qi+1

holds for each
value i = 1, ..., r − 1, where

Sa
q,q′ := {(y, y

′) ∈ Xq ×Xq′ : (q, y, q′y′) ∈ Sa}

is a switching set from location q ∈ Q to location q′ ∈ Q with y = y′ meaning
the absence of jumps in the continuous state.

Under assumptions of Section 2, the switching sets Sa
qi,qi+1

can be characterized
by the following constructive conditions

mqi,qi+1
(y(t) +

r
∑

i=1

θqiη(t− ti)) = 0, i = 1, ..., r − 1,

where functions mqi,qi+1
defines the manifolds Mqi,qi+1

from Definition 2.
For the system described by the initial value problem (3), we now formulate

the following optimal control problem (see also [5–7])

minimize

r
∑

i=1

∫ ti

ti−1

f0
(

t, y(t) +

r
∑

i=1

θqiη(t− ti), u(t)
)

dt

over all trajectories Y of H.

(5)

We assume that the optimal control problem (5) has a solution

(uopt(·), θopt,Yopt(·)) ∈ U × R
n×r ×W

1,∞
n (0, tf )×Q

r × [0, tf ]
r.

The following result establishes the relations between the two optimization prob-
lems (2) and (5).

Theorem 3. Suppose that problems (2) and (5) have both optimal solutions.
Under the assumptions A1 − A3, every optimal solution (uopt(·), θopt,Yopt) of
problem (5) defines the corresponding optimal solution (uopt(·), θopt,Xopt(·)) for
problem (2), where

{qi}
a = {qi}, τ

a = τ,

xopt(t) = yopt(t) +
r
∑

i=1

θoptqi
η(t− topti )

Here topti is an element of the optimal sequence τ opt and θoptqi
are optimal jumps

in the original IHOCP (2).

Note that Theorem 3 is an immediate consequence of Theorem 2.
As evident from the main Definitions 1 and 3, the class of hybrid control

systems with autonomous location transitions is a subclass of impulsive hybrid



systems. Definition 1 describes hybrid dynamical systems with discontinuous
state trajectories. Moreover, the control variable of an impulsive hybrid system
IHS includes external inputs and magnitudes of the jumps in the state. On the
other hand, the proposed transformation (4) and the obtained results, namely,
Theorems 1-3 make it possible to reduce the general sophisticated IHOCP (2)
to the auxiliary optimal control problem of the type (5).

4 The Impulsive Hybrid Maximum Principle

For both hybrid systems (1) and (3) we introduce the extended control vector
v(·) := (u(·), θ), where θ := (θq1 , ..., θqr ). An admissible extended control vector
v(·) satisfies the conditions

u(·) ∈ U , ||θqi || ≤ Θqi , i = 1, ..., r.

An optimal extended control vector is denoted by vopt(·) and the corresponding
elements of this vector are denoted by uopt(·) and θopt. Now we apply the known
MP [6, 7].

Theorem 4. Let the functions f 0, fqi be continuously differentiable and the
optimal control problem (5) be regular. Then there exist a function ψi(·) from
W

1,∞
n (0, tf ) and a non-zero vector a = (a1 . . . ar−1)

T ∈ R
r−1 such that

ψ̇i(t) = −
∂Hqi(y

opt
i (t), vopt(t), ψ(t))

∂(y +
∑r

j=i θqj )
a. e. on (topti−1, t

opt
i ),

ψr(tf ) = 0,

(6)

and

ψi(t
opt
i ) = ψi+1(t

opt
i ) +

(

ai
∂mqi,qi+1

(yopt(topti ) +
∑r

j=i θ
opt
qj

)

∂(y +
∑r

j=i θqj )

)

,

i = 1, ..., r − 1,

(7)

Moreover, for every admissible control v(·) the following inequality is satisfied

(

∂Hqi(y
opt(t), vopt(t), ψ(t))

∂v
, (v(t)− vopt(t))

)

≤ 0

a.e. on [topti−1, t
opt
i ], i = 1, ..., r

(8)

where

Hqi(y, v, ψ) :=
(

ψi, fqi
(

t, y +

r
∑

i=1

θqiη(t− ti), u
))

− f0
qi

(

t, y +

r
∑

i=1

θqiη(t− ti), u
)

is a ”partial” Hamiltonian for the location qi ∈ Q, ψ is an adjoint vector and
(·, ·) denotes the corresponding scalar product.



Using the one-to-one correspondence between the solutions xopt(·) and yopt(·)
of the initial value problems (1) and (3) established by Theorem 2 and the
transformation from Theorem 1, we are now able to formulate the necessary
optimality conditions for the original problem (2), namely the IHMP.

Theorem 5. Let functions f 0, fqi be continuously differentiable and the optimal
control problem (2) be regular. Then there exist a function pi(·) from W

1,∞
n (0, tf )

and a non-zero vector b = (b1 . . . br−1)
T ∈ R

r−1 such that

ṗi(t) = −
∂Hqi(x

opt
i (t), vopt(t), p(t))

∂x
a. e. on (topti−1, t

opt
i ),

pr(tf ) = 0,

(9)

and

pi(t
opt
i ) = pi+1(t

opt
i ) +

(

bi
∂mqi,qi+1

(xopt(topti ))

∂x

)

, i = 1, ..., r − 1. (10)

Moreover, for every admissible control v(·) the following inequalities are satisfied

(

∂Hqi(x
opt(t), vopt(t), p(t))

∂u
, (u(t)− uopt(t))

)

≤ 0

(

∂Hqi(x
opt(t), vopt(t), p(t))

∂θ
, (θ − θopt)

)

≤ 0

a.e. on [topti−1, t
opt
i ], i = 1, ..., r

(11)

where Hqi(y, v, p) :=
(

pi, fqi
(

t, x, u
)

+ θqiδ(t − ti)
)

− f0
qi

(

t, x, u
)

is a ”partial”
Hamiltonian for the location qi ∈ Q, p is an adjoint vector and (·, ·) denotes the
corresponding scalar product.

Note that Theorem 5 is an immediate consequence of Theorem 4 and the above-
mentioned ono-to-one correspondence between the solutions of the two initial
value problems under consideration. Using the equivalence results from Section
3, we obtain the necessary optimality conditions for the general IHOCP (2) as
a consequence of the MP for the auxiliary problem (5). The presented approach
allows to avoid the consideration of generalized functions, weak derivatives and
some related sophisticated mathematical techniques, which would be necessary
for a direct proof of the above IHMP.

When solving constrained optimal control problems based on some neces-
sary conditions for optimality one can obtain singular solutions. There are two
possible scenarios for a singularity: the irregularity of the Lagrange multiplier
associated with the cost functional [9, 22] and the irregularity of the Hamilto-
nian. In the latter case the Hamiltonian is not an explicit function of the control
function during a time interval. Various supplementary conditions (constraint
qualifications) have been proposed under which it is possible to assert that the
Lagrange Multiplier Rule (and the corresponding Maximum Principle) holds in
”normal” form, i.e., that the first Lagrange multiplier is nonequal to zero. In



this case the corresponding minimization problem is called regular. We refer to
[1, 19, 23] for theoretical details. Note that some regularity conditions for gen-
eral constrained optimal control problems can be formulated as controllability
conditions for the linearized system [23].

Let us now simplify the Hamiltonian minimization condition (11). Using the
given formula for Hqi , we compute

∂Hqi(x
opt(t), vopt(t), p(t))

∂θ
= pi(t)δ(t− t

opt
i ),

where t ∈ [topti−1, t
opt
i ]. Then, the second inequality from Theorem 5 can be writen

in the following form

(

pi(t), θqi − θ
opt
qi

)

δ(t− topti ) ≤ 0, t ∈ [topti−1, t
opt
i ]. (12)

Integrating (12) over [topti−1, t
opt
i ], we obtain

(

pi(t
opt
i ), θqi − θ

opt
qi

)

≤ 0. (13)

Evidently, in the case pi(t
opt
i ) = 0 for any index i = 1, ..., r, the optimal vector of

state jumps θopt cannot be found directly by globally minimizing Hqi . Note that
the partial Hamiltonian Hqi is an affine function of θqi . From this it is inferred
that in the case of an IHOCP we can have a new kind of singularity, namely, the
irregularity of the Hamiltonian with respect to the state jumps. On the other
hand, the presented inequality (13) is a condition for a ”bang-bang” control with
respect to the second part of the extended control vector v.

5 Numerical Aspects

In the previous section we derived a necessary optimality condition (Theorem 4
and Theorem 5) and formulated the Hamiltonian minimization condition in the
form of variational inequalities (8) and (11). It is well known that variational
inequalities play an important role in optimization theory. We refer to [8] for
details. For the numerical treatment of variational inequality see also [24]. It is
also well known that the variational inequality (11) is equivalent to the following
equation

vopt(t) = ΠW

(

vopt(t)− α
∂Hqi(x

opt(t), vopt(t), p(t))

∂v
vopt(t)

)

, (14)

where α > 0 and ΠW is a projection operator on the set U ×Uθ. Here Uθ is the
set of admissible jumps defined by the inequalities ||θqi || ≤ Θqi , i = 1, ..., r. To
solve (14) one can use a variety of gradient-type algorithms with a projection
procedure. Let N be a sufficiently large positive integer number and

GN := {t0 = 0, t1, . . . , tN = T}



be a (possibly nonequidistant) partition of [0, T ] with

max
0≤k≤N−1

|tk+1 − tk| ≤ ε

for a given accuracy constant ε. For every control function u(·) ∈ U we introduce
the piecewise constant control signals uN (·) such that

un(t) :=

N−1
∑

k=0

ηk(t)u
k, uk = u(tk), k = 0, . . . , N − 1, t ∈ [0, tf ]

ηk(t) =

{

1, if t ∈ [tk, tk+1]

0, otherwise

Then for an approximate solution of the equation (14) we can consider the
following finite-dimensional gradient method

uN,0 ∈ U, θN,0 ∈ Uθ,

uN,(s+1) = Π1
U

(

uN,s − α1
∂Hqi(x

N,s(t), (uN,s(t), θN,s), pN,s(t))

∂u
uN,s

)

,

θN,s+1 = Π2
Uθ

(

θN,s − α2
∂Hqi(x

N,s(t), (uN,s(t), θN,s), pN,s(t))

∂θ
θN,s

)

,

(15)

where α1, α2 are some positive constants, s = 0, . . . , xN,s(·) and pN,s(·) are solu-
tions of the corresponding initial and boundary value problems (1) and (9)-(11)
in the actual location qi ∈ Q. Here Π1 and Π2 are partial projection operators
on the set U and Uθ respectively. Moreover, the iteration of the extended control
vector is denoted as (uN,s(·), θN,s). Evidently, U and Uθ are convex sets. Note
that in every step of the gradient algorithm (15) we need to solve the corre-
sponding boundary-value problem from Theorem 5. Using inequalities (12) and
(13), we can rewrite the second inequality in (15) in the following (integrated)
form

θN,s+1tf = Π2
Uθ

(

θN,stf − α2p
N,s
i (topti )θN,s

)

. (16)

Clearly, the presented inequality (16) must be combined with an effective pro-
cedure for estimating the optimal switching time topti for all i = 1, ..., r. One can
use the iterative algorithm described in [5] for this purpose.

We refer to [29] for convergence properties of the general gradient-type al-
gorithms. Clearly, instead of piecewise constant control signals one can also use
possible approximations of higher order (piecewise linear and so on). Finally,
note that the gradient technique (15) is analogous to the gradient-based com-
putational approach proposed in [3–7] for optimization of hybrid systems with
autonomous transitions.

6 Concluding Remarks

The Hamilton minimization conditions from Theorem 4 and Theorem 5 are pre-
sented in the form of variational inequalities. This form is closely related to the



Weierstraß conditions for a strong minimum (see, e.g.,[22]) and to the gradient-
based computational approach studied in [3–7]. Finally note that the inequalities
conditions (11) from Theorem 5 make it possible to take into consideration some
effective methods for numerical treatment of variational inequalities.

Acknowledgements: The authors thank anonymous referees for valu-
able remarks and suggestions from which the final version of the paper greatly
benefited.
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