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Abstract. The analysis of hybrid systems exhibiting probabilistic be-
haviour is notoriously difficult. To enable mechanised analysis of such sys-
tems, we extend the reasoning power of arithmetic satisfiability-modulo-
theory solving (SMT) by a comprehensive treatment of randomized (a.k.a.
stochastic) quantification over discrete variables within the mixed Boolean-
arithmetic constraint system. This provides the technological basis for
a fully symbolic analysis of probabilistic hybrid automata. Generalizing
SMT-based bounded model-checking of hybrid automata [2, 11], stochas-
tic SMT permits the direct and fully symbolic analysis of probabilistic
bounded reachability problems of probabilistic hybrid automata without
resorting to approximation by intermediate finite-state abstractions.

1 Introduction

Over the last decade, formal verification of digital systems has evolved from
an academic subject to an approach accepted by industry, with dozens of com-
mercial tools now available. Among the most successful verification methods for
finite-state systems is bounded model checking (BMC), as suggested by Groote et
al. in [13] and by Biere et al. in [3]. The idea of BMC is to encode the next-state
relation of a system as a propositional formula, to unroll this to some given finite
depth k, and to augment it with a corresponding finite unravelling of the tableau
of (the negation of) a temporal formula in order to obtain a propositional SAT
problem which is satisfiable if and only if an error trace of length k exists. En-
abled by the impressive gains in performance of propositional SAT checkers in
recent years, BMC can now be applied to very large finite-state designs.

Though originally formulated for discrete transition systems, the concept
of BMC also applies to hybrid discrete-continuous systems. The BMC formulae
arising from such systems comprise complex Boolean combinations of arithmetic
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constraints over real-valued variables, thus entailing the need for satisfiability-
modulo-theory (SMT) solvers over arithmetic theories to solve them. Such SMT
procedures are thus currently in the focus of the SAT-solving community (e.g.,
[10]), as is their application to and tailoring for BMC of hybrid system (e.g., [2]).

The scope of these procedures, however, is confined to purely Boolean queries
of the form “can the system ever exhibit an undesirable behavior?”, whereas re-
quirements for safety-critical systems frequently take the form of bounds on
error probability, requiring the residual probability of engaging into undesir-
able behavior to be below an acceptable threshold. Automatically answering
such queries requires, first, models of hybrid behavior that are able to represent
probabilistic effects like component breakdown and, second, algorithms for state
space traversal of such hybrid models.

In the context of hybrid systems augmented with probabilities, a wealth of
models has been suggested by various authors. These models vary with respect
to the degree of continuous dynamics, the support for random phenomena, and
the degree to which they support non-determinism and compositionality. The
cornerstones are formed by probabilistic hybrid automata, where state changes
forced by continuous dynamics may involve discrete random experiments [20],
piecewise deterministic Markov processes [8], where state changes may happen
spontaneously in a manner similar to continuous-time Markov processes, and
stochastic differential equations [1], where, like in Brownian motion, the ran-
dom perturbation affects the dynamics continuously. In full generality, stochastic
hybrid system (SHS) models can cover all such ingredients [16, 6]. While such
models have a vast potential of application, results related to their analysis and
verification are limited, and often based on Monte-Carlo simulation [4, 15]. For
certain subclasses of piecewise deterministic Markov processes, of probabilistic
hybrid automata, and of stochastic hybrid systems, reachability probabilities can
be approximated (e.g. [20, 7, 17]).

In this paper, we present a technology that saves the virtues of SMT-based
BMC, namely the fully symbolic treatment of hybrid state spaces, while advanc-
ing the reasoning power to probabilistic models and requirements. While the
technique is more general, the current paper focuses on depth-bounded reachabil-
ity of discrete-time probabilistic hybrid automata. With respect to the stochastic
dynamics considered this model is very simple and thus constitutes a good at-
tack point to pioneer effective model checking techniques for probabilistic hybrid
systems, harvesting recent advances in depth-bounded reachability analysis for
ordinary hybrid systems. Albeit being simple, the model of probabilistic hybrid
automata has interesting practical applications [20].

In order to achieve this goal, we first define stochastic satisfiability modulo
theory (SSMT) as the unification of stochastic propositional satisfiability [18]
and satisfiability modulo theory. We proceed in Section 3 by defining discrete-
time probabilistic hybrid automata. Section 4 formalizes the SSMT encoding of
their probabilistic bounded reachability properties. Together with an extension
of SMT solving to SSMT solving explained in Section 5, this symbolic encoding
provides fully symbolic analysis of probabilistic bounded reachability problems
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of probabilistic hybrid automata without resorting to approximation by inter-
mediate finite-state abstractions.

2 Stochastic satisfiability modulo theories

The satisfiability modulo theories (SMT) problem is a decision problem for logical
formulae wrt. combinations of background theories. In this section we extend the
SMT problem for arithmetic theories over the real numbers to support random-
ized quantification over discrete variables as known from stochastic satisfiability
(SSAT) [18] and stochastic constraint programming (SCP) [5].

Let ϕ be an SMT formula in conjunctive normal form (CNF) over some
quantifier-free arithmetic theory T . I.e., ϕ is a logical conjunction of clauses,
and a clause is a logical disjunction of (atomic) arithmetic predicates from T ,
as in ϕ = (x > 0 ∨ 2a+ 4b ≥ 3) ∧ (y > 0 ∨ 2a+ 4b < 1). An SSMT problem

Φ = Q1x1 ∈ dom(x1) . . . Qnxn ∈ dom(xn) : ϕ

is specified by a prefix Q1x1 ∈ dom(x1) . . . Qnxn ∈ dom(xn) binding the vari-
ables xi to the quantifier Qi,

3 and an SMT formula ϕ, also called matrix. We
require that the domains dom(x) of quantified variables x are finite (and thus
discrete). A quantifier Qi, associated with variable xi, is either existential, de-
noted as ∃, or randomized, denoted as

R

di
where di is a discrete probability

distribution over dom(xi). The value of a variable xi bound by a random-
ized quantifier (randomized variable for short) is determined stochastically by
the corresponding distribution di, while the value of an existentially quantified
variable can be set arbitrarily. We usually denote such a probability distribu-
tion di by a list 〈(v1, p1), . . . , (vm, pm)〉 of value pairs, where pj is understood
as the probability of setting variable xi to vj . The list satisfies vj 6= vk for
j 6= k, ∀j : pj > 0,

∑m
j=1 pj = 1, and dom(xi) = {v1, . . . , vm}. For instance,

R

{(0,0.2),(1,0.5),(2,0.3)}x ∈ {0, 1, 2} means that the variable x is assigned the value
0, 1, or 2 with probability 0.2, 0.5, and 0.3, respectively.

The semantics of an SSMT problem is defined by the maximum probability
of satisfaction. Intuitively, for an SSMT formula Φ = ∃x1 ∈ dom(x1)

R

d2
x2 ∈

dom(x2) ∃x3 ∈ dom(x3)

R

d4
x4 ∈ dom(x4) : ϕ determine the maximum proba-

bility s.t. there is a value for x1 s.t. for random values of x2 there is a value for
x3 s.t. for random values of x4 the SMT formula ϕ is satisfiable. (As standard,
an SMT formula ϕ (in CNF) is satisfiable iff there exists a valuation σ of the
variables in ϕ s.t. each clause is satisfied under σ, i.e., iff at least one atom in
each clause is satisfied under σ. Otherwise, ϕ is unsatisfiable.) More formally,
the maximum probability of satisfaction Pr(Φ) of an SSMT formula Φ is defined
recursively by the following rules where ϕ denotes the matrix.

1. P r(ϕ) = 0 if ϕ is unsatisfiable, and 1 otherwise.

2. P r(∃xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)
= maxv∈dom(xi) Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi]).

3 Not all variables occurring in the formula ϕ need to be bound by a quantifier.
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〈(0,0.6),(1,0.4)〉y ∈ {0, 1} : (x > 0 ∨ 2a + 4b ≥ 3) ∧ (y > 0 ∨ 2a + 4b < 1)

Fig. 1. Semantics of an SSMT formula depicted as a tree.
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Fig. 2. A probabilistic hybrid automaton A.

3. P r(

R

di
xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)

=
∑

(v,p)∈di
p · Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi]).

For an example see Fig. 1.

3 Probabilistic hybrid automata

A discrete-time probabilistic hybrid automaton A = (Σ,Trans , R, s, p, g, asgn, init),
as depicted in Fig. 2, consists of

– finite sets Σ of locations, Trans of transitions, and R = {x1, . . . , xn} of con-
tinuous state components, together with mappings s : Trans → Σ, assigning
to each transition its source location, and p : Trans → P (Σ), assigning to
each transition a probability distribution over the target locations,4

– a family g = (gt)t∈Trans assigning to each transition a transition guard en-
abling that transition, where the transition guard is an arithmetic predicate
in our arithmetic theory T with free variables in R,

– a family asgn = (asgnt,σ′)t∈Trans,σ′∈Σ assigning to each transition and each
target location an assignment which is defined by means of a T -predicate
over variables in R and R′, where R′ = {x′1, . . . , x

′
n} denotes primed variants

of the state components in R. Undecorated state components x ∈ R refer to
the state immediately before the transition, while the primed variant x′ ∈ R′

refers to the state immediately thereafter. We demand that assignments are
uniquely defined for each state satisfying the guard, i.e. require
1. Definedness: gt ⇒ ∃x′1, . . . , x

′
n : asgnt,σ′ and

4 W.l.og., distributions range over the full set Σ as unconnected locations and locations
connected with probability 0 are indistinguishable wrt. probabilistic reachability.
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2. Determinacy:
gt ⇒ ∀x′1, . . . , x

′
n, y

′
1, . . . , y

′
n :

(

asgnt,σ′ ∧ asgnt,σ′ [y′
1, . . . , y

′
n/x′

1, . . . , x
′
n]

⇒ ∀i ≤ n : x′
i = y′

i

)

to be valid for each t ∈ Trans and σ′ ∈ Σ.

– a family init = (initσ)σ∈Σ of initial state predicates, where each initσ is a
T -predicate over R which constrains the valuations of the continuous state
components when control resides initially in the discrete location σ.5 For
technical reasons, we demand that for each σ ∈ Σ, there is at most one
x ∈ R → R which satisfies the predicate initσ.

The automaton engages in a sequence of steps coinciding to its transitions,
thereby selecting among the enabled transitions and assigning a sequence of
valuations to the continuous variables which is consistent with the transition
effects. A step can be represented by a tuple (σ,x, t, σ′,x′) consisting of a source
location σ ∈ Σ and a target location σ′, a continuous source state x ∈ (R → R)
and a continuous target state x

′ ∈ (R → R), plus a transition t ∈ Trans . Such a
tuple is a step of automaton A iff there is a transition t ∈ Trans with s(t) = σ
such that x satisfies gt and such that asgnt,σ′ is satisfied if x is substituted for
the variables in R and x

′ is substituted for the variables in R′. Slightly abus-
ing notation, we will denote the latter fact by x,x′ |= asgnt,σ′ in the sequel. A

run of A is an alternating sequence r = (σ0,x0)
t0→, . . . ,

tn−1

→ (σn,xn) of hybrid
states (σi, xi) ∈ Σ × (R → R) and transitions ti ∈ Trans , built from steps of A
grounded in a viable initial state. I.e., x0 satisfies initσ0

and for all i < n, the
tuple (σi,xi, ti, σi+1,xi+1) is a step of A.

In the sequel, we will be interested in the probability of reaching a given
set of undesirable locations within a given number of steps. Owed to the pres-
ence of nondeterminism, this probability measure is well-defined only if consider-
ing a particular policy (scheduler, adversary) that resolves the nondeterminism.
We are interested in the worst-case, i.e., maximum probability of reaching the
undesirable states achieved if ranging over arbitrary policies that may resolve
nondeterminism using randomization, the history, etc. Since we are considering
step-bounded probabilities, we can avoid the explicit introduction of policies,
and instead define the probability of reaching some target state in a set TL of
discrete locations within k steps directly as follows.

Definition 1 (Probabilistic bounded reachability). Given a probabilistic
hybrid automaton A = (Σ,Trans , R, s, p, g, asgn, init), a set of target locations
TL ⊂ Σ, a depth k ∈ N, and a hybrid state (σ,x) ∈ Σ×(R → R), the maximum
probability of reaching the target TL from (σ,x) in at most k steps is denoted
P k

A(σ,x,TL). It is defined recursively over the depth k as follows:

P k
A(σ,x,TL) =











1 if σ ∈ TL,

0 if σ 6∈ TL ∧ k = 0,

maxt∈Enabled

P

σ′∈Σ

“

p(t)(σ′) · P k−1
t,σ′

”

if σ 6∈ TL ∧ k > 0,

5 A discrete location σ not to be taken initially takes the predicate initσ = false.
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where Enabled = {t ∈ Trans, s(t) = σ,x |= g(t)} and P k
t,σ′ = P k

A(σ′,x′,TL) for
the unique x

′ with x,x′ |= asgnt,σ′ .

For an illustration of probabilistic bounded reachability consider the probabilistic
hybrid automaton A from Fig. 2 with TL = {s2}. Then P 0

A(s1, y 7→ 1.0,TL) =
0.0, P 1

A(s1, y 7→ 1.0,TL) = 0.1, P 2
A(s1, y 7→ 1.0,TL) = 0.1 + 0.9 · 0.3 = 0.37,

P 3
A(s1, y 7→ 1.0,TL) = 0.1 + 0.9 · (0.3 + 0.7 · 0.3) = 0.559.

Based on the worst-case probability of reaching TL, we define the probabilistic
bounded model checking problem (PBMC, for short) to be the problem of deciding
whether the maximum probability of reaching the undesirable states from an
initial state within a given number of steps lies below a given threshold:

Definition 2 (Probabilistic bounded model checking). Given a proba-
bilistic hybrid automaton A = (Σ,Trans, R, s, p, g, asgn, init), a set of target
locations TL ⊂ Σ, a depth k ∈ N, and a probability threshold x ∈ [0, 1], the
probabilistic bounded model checking problem wrt. target states TL and depth
k is to determine whether max{P k

A(σ,x,TL) | σ ∈ Σ,x |= initσ} ≤ x.

4 Reducing PBMC to SSMT

In order to perform probabilistic bounded model checking (PBMC) we employ
a reduction to stochastic satisfiability modulo theory (SSMT) which general-
izes the propositional SAT encodings for bounded model checking of finite-state
systems [3] and the SMT encodings for BMC of hybrid automata [2, 11]. Our
construction proceeds in two phases: First, we generate the matrix of the SSMT
formula. This matrix is an SMT formula encoding all runs of A of the given
length k ∈ N, akin to [2, 11]. Thereafter, we add the quantifier prefix encod-
ing the probabilistic and the non-deterministic choices, whereby a probabilistic
choice reduces to a randomized quantifier while a non-deterministic choice yields
an existential quantifier.

Phase 1: Constructing the matrix. Let A = (Σ,Trans, R, s, p, g, asgn, init) be a
discrete-time probabilistic hybrid automaton. In order to encode the runs of A
of some given length k ∈ N by a matrix formula, we proceed as follows:

1. For encoding the discrete state σ ∈ Σ, we take k+1 variables σi, for 0 ≤ i ≤ k,
each with domain Σ. The value of σi coincides with the discrete location which
automaton A resides in during step i.

2. For representing transitions t ∈ Trans , we take k variables ti with domain
Trans , for 1 ≤ i ≤ k. The value of ti encodes the ith move in the run of A.

3. For each continuous state component x ∈ R we take k+1 real-valued variables
xi. The value of xi−1 encodes the value of x before the ith transition in the run
(and thus xi the value thereafter).

4. The interplay between discrete states and transitions requires that ti implies
σi−1 = s(ti). This can be expressed by the k · |Trans | SSMT clauses in

k
∧

i=1

∧

t∈Trans

(

ti = t ⇒ σi−1 = s(t)
)

,
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where ϕ ⇒ ψ abbreviates ¬ϕ ∨ ψ.

5. Similarly, enabledness of the transition, i.e. validity of the transition guard
in the pre-state, is enforced through the constraint system

k
∧

i=1

∧

t∈Trans

(

ti = t ⇒ gt[x
i−1
1 , . . . , xi−1

n /x1, . . . , xn]
)

,

where {x1, . . . , xn} = R. Since gt need not be a simple T -constraint, the above
formula is not necessarily in conjunctive normal form and thus not an SSMT
matrix formula. An equisatisfiable CNF can, however, always be obtained by
introduction of auxiliary variables as in [12].

6. Likewise, assignments are dealt with by
k

∧

i=1

∧

t∈Trans

∧

σ′∈Σ

(

(ti = t ∧ σi = σ′) ⇒
asgnt,σ′ [xi

1, . . . , x
i
n/x′

1, . . . , x
′
n][xi−1

1 , . . . , xi−1
n /x1, . . . , xn]

)

Due to the probabilistic choice between variants of the selected transition, the
assignment depends on both the transition ti and the actual target location σi.

7. Finally, we complete the matrix by adding constraints describing the allowable
initial states through the SSMT constraint system

∧

σ∈Σ

(

σ0 = σ ⇒ initσ

)

.

The conjunction of the above formulae yields the matrix of our SSMT formula
encoding the PBMC problem. Satisfying valuations of the matrix thus obtained
are in one-to-one correspondence to the runs of A of length k [11]. As in BMC [3],
satisfaction of temporal properties on all runs of depth k can thus be checked
by adding to the formula the k-fold unrolling of a tableaux of the (negated)
property, then checking the resulting formula for unsatisfiability. Using standard
techniques from predicative semantics [14], the translation scheme can be ex-
tended to both shared variable and synchronous message-passing parallelism,
thereby yielding formulae of size linear in the number of parallel components.

Phase 2: Encoding choices. Let ϕ be the matrix corresponding to the conjunction
of the above formulae. As each non-deterministic choice corresponds to selecting
a transition while each probabilistic choice amounts to selecting an actual target
location, we generate the following SSMT formula:

8. An SSMT formula ψ = ψ1 encoding the probabilitsic and non-deterministic
choices along the run is obtained by alternating the quantifiers consistently with
the alternation of choices. To permit a homogeneous randomized quantification
over all transitions, we first select a finite set O = {o1, . . . , on} of choice options
for randomized choices, a probability distribution pO : O → (0, 1] over O, and a
function pd : Trans ×Σ → 2O such that these together satisfy

∀t ∈ Trans , σ ∈ Σ :
P

pc∈pd(t,σ) pO(pc) = p(t)(σ) and

∀t ∈ Trans , σ1, σ2 ∈ Σ : pd(t, σ1) ∩ pd(t, σ2) = ∅ .

Such a set O and probability distribution pO do always exist. The worst-case
cardinality of O is the number |{p(t)(σ) | t ∈ Trans , σ ∈ Σ}| of different tran-
sition probabilities, but can be considerably smaller due to different probability
constants being the sums of each other.
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Now, we encode the non-deterministic choices by existential quantification
over the transitions in Trans and the probabilistic choices by randomized quan-
tification over O. The latter quantifiers choose an auxiliary variable pci in each
step which in turn is mapped to the target location σi by means of the mapping
pd. Therefore, ψi is defined recursively as follows: for 1 ≤ i < k,

ψi = ∃ti ∈ Trans :

R

〈(o1,pO(o1)),...,(on,pO(on))〉pci ∈ O : ψi+1 , and

ψk = ϕ ∧
n
∧

k=1

∧

t∈Trans

∧

σ∈Σ

[(ti = t ∧ σi = σ) ⇒
∨

o∈pd(t,σ)

pci = o] .

9. In order to solve the PBMC problem, it remains to choose the initial state
maximizing the probability. This can be accomplished by existential quantifica-
tion, yielding the formula PBMC k

A,TL = ∃σ0 ∈ Σ : ψ. Given the structural sim-
ilarity between probabilistic bounded reachability and quantification in SSMT,
this reduction is correct in the following sense:

Proposition 1 (Correctness of reduction). Pr(PBMC k
A,TL) ≤ x iff A sat-

isfies the PBMC problem wrt. threshold x, depth k, and target states TL.

5 Algorithm for SSMT

In this section we present our algorithm for calculating the maximum probability
of satisfaction of an SSMT formula. More precisely, for a given SSMT formula
Φ and a lower and upper threshold tl, tu ∈ [0, 1] with tl ≤ tu, the algorithm
returns a witness value p ≤ Pr(Φ) s.t. p > tu iff Pr(Φ) > tu, a value p < tl iff
Pr(Φ) < tl, or otherwise (i.e., tl ≤ Pr(Φ) ≤ tu) the value p = Pr(Φ). It computes
the exact value of Pr(Φ) when taking tl = 0 and tu = 1, but whenever we are
interested in a particular target probability x, it saves computational effort by
not being forced to be exact about probabilities different from x = tl = tu. As a
proof procedure, we generalize to SSMT the extended Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [9] for SSAT described in [18].

Our SSMT algorithm consists of three layers. The lowermost layer is a theory
solver TS for reasoning about a conjunctive system over theory T . As the middle
layer, an SMT solver for disjunctive systems over T employs the theory solver
TS. Finally, the SSMT solver is an extension of the SMT layer to deal with
existential and randomized quantification.

Theory layer. As in SAT-modulo-theory solving, the theory solver TS decides
whether a conjunctive system M of atomic predicates from T is satisfiable over
T . Furthermore, we support theory solvers which can deduce new information
from the given facts in the form of forward inference, but do not require this
functionality to be present or even complete. We denote these capabilities of the
theory solver, which following the SMT tradition we assume as given, by three
deduction rules:

M −→TS sat iff M is satisfiable.
M −→TS unsat iff M is unsatisfiable.
M −→TS M · 〈a〉 only if M is satisfiable and M |= a.
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SMT layer. The SMT layer is described by the following rules. For more details
we refer the reader to, e.g., the survey in [19]. In the sequel, let ϕ be an SMT
formula over T in CNF. A choice asserts a theory atom occurring in ϕ or its
negation to enforce progress in the backtracking search (rule (1)).

(1)
a ∈ c ∈ ϕ, b = a or b = ¬a, b /∈ M

(ϕ, M) −→SMT (ϕ, M · 〈|, b〉)

Here, M denotes the list of all asserted atoms and a ∈ c ∈ ϕ means that there
is a theory atom a occurring in some clause c of ϕ. In order to facilitate (non-
chronological) backtracking, in addition, we intersperse a special marker symbol
| into M . When we consider M as a conjunctive system (for the theory solver
TS) we neglect the marker symbols | in M .

The rules (2) (unit propagation) and (3) (theory propagation) are applied if
new facts can be deduced. The deduced atoms are added to M .

(2)
(a1 ∨ . . . ∨ am) ∈ ϕ, ai /∈ M,¬ai /∈ M,∀j ∈ N≤m with j 6= i : ¬aj ∈ M

(ϕ, M) −→SMT (ϕ, M · 〈ai〉)

(3)
M −→TS M · 〈a〉, a /∈ M,∃c ∈ ϕ : a ∈ c or ¬a ∈ c

(ϕ, M) −→SMT (ϕ, M · 〈a〉)

If a conflict occurs, i.e. the list of asserted atoms has become infeasible, an (small
or even minimal) reason for this conflicting situation can be extracted. To prevent
the solver from revisiting the same or a similar conflict, this information can be
encoded as an additional, implied clause, a.k.a. conflict clause, and added to the
formula. This is referred to as conflict-driven clause learning (rule (4)).

(4)
M = M ′ · 〈|〉 · M ′′, a1, . . . , ak−1 ∈ M ′, ak ∈ M ′′, 〈a1, . . . , ak〉 −→TS unsat

(ϕ, M) −→SMT (ϕ ∧ (¬a1 ∨ . . . ∨ ¬ak), M)

Note that there are many different techniques for (efficient) generation of such an
infeasible subsystem a1, . . . , ak of M . In rule (4), we use the unique implication
point technique in order to enforce progress upon non-chronological backtracking
in rule (5) (cf., e.g., [19]).

To resolve the conflict, the solver non-chronologically backtracks to a previous
node in the search tree while often skipping multiple nodes in the tree. The
backtrack node can be computed by means of the conflict clause as given by
rule (5). Due to the use of unique implication points in conflict clauses, we can
enforce a conflict clause to become unit upon backtracking and do directly assert
the propagated atom.

(5)
M = M ′ · 〈|〉 · M ′′, c ∈ ϕ, a ∈ c,¬a ∈ M ′′,∀a′ ∈ c with a′ 6= a : ¬a′ ∈ M ′

(ϕ, M) −→SMT (ϕ, M ′ · 〈a〉)

If each clause in ϕ contains at least one asserted atom and the conjunction of
all asserted atoms is satisfiable then the SMT formula is satisfiable.

(6)
M −→TS sat,∀c ∈ ϕ ∃a ∈ c : a ∈ M

(ϕ, M) −→SMT sat

If a conflict cannot be resolved, i.e. there is no choice point to be revoked, the
formula is unsatisfiable.

(7)
|/∈ M, M −→TS unsat

(ϕ, M) −→SMT unsat
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SSMT layer. Given the rules of the SMT layer, we construct the SSMT algo-
rithm. Let Φ = Pre : ϕ be an SSMT formula. W.l.o.g., we assume that all possi-
ble value assignments for quantified variables of the SSMT formula Φ are encoded
as clauses in the matrix of Φ. More formally, forall (Qx ∈ {v1, . . . , vk}) ∈ Pre
there is a clause (x = v1 ∨ . . . ∨ x = vk) ∈ ϕ. By this information, the domain
emptiness of a quantified variable will be detected by the SMT solver. An SSMT
deduction starts from a state (Pre, ϕ,M, tl, tu), where Φ := Pre : ϕ is an SSMT
formula, M is a list of asserted atoms, and tl, tu are the lower and upper target
thresholds. The deduction yields either a new proof state of the same structure
or a pair (p, ϕ′) of a satisfaction probability and a new matrix, in which case
the deduction terminates. If (Pre, ϕ,M, tl, tu) −→∗

SSMT (p, ϕ′) then p > tu iff
Pr(Φ) > tu under M , i.e. iff Pr(Pre : (ϕ ∧M)) > tu, and analogously p < tl
iff Pr(Φ) < tl under M , and otherwise p = Pr(Φ) under M . The new matrix
ϕ′ ⊇ ϕ potentially contains learned clauses, i.e. ∀c ∈ ϕ′ − ϕ : (ϕ |= c).

The SSMT layer consists of the following rules. To deal with quantified vari-
ables, we branch the search by assigning values and combine the results according
to the semantics of Section 2 (rules (8) and (9)). For the branching SSMT calls
we update the target thresholds correspondingly. I.e., in case of an existentially
quantified variable we transmit tl, tu for the branch x = v and max(tl, p1), tu for
the remaining subtree, since we can neglect probabilities of the remaining sub-
tree less than the already computed value p1 for branch x = v. For randomized
variables, we take the probability pv for the value v and the maximum possible
remaining probability pr =

∑

v′∈D−{v},(v′,p
v′ )∈d pv′ for all other values v′ 6= v

into account. I.e., the lower and upper target thresholds for the call where x is
assigned to v are (tl − pr)/pv and tu/pv, resp., since if tl − pr cannot be reached
by branch x = v then tl cannot be reached at all. If tu is already exceeded by
branch x = v then we already exceeded the upper target threshold, which we
later will exploit within pruning rules wrt. the threshold parameters. The tar-
get thresholds for all remaining branches decrease by the computed probability
pv · p1 for x = v.

(8)

|D| ≥ 2, v ∈ D,
(Pre,ϕ, M · 〈x = v〉, tl, tu) −→∗

SSMT (p1, ϕ1), consistent(ϕ1, M),
(∃x ∈ D \ {v} · Pre,ϕ1, M · 〈x 6= v〉, max(tl, p1), tu) −→∗

SSMT (p2, ϕ2)

(∃x ∈ D · Pre, ϕ, M, tl, tu) −→SSMT (max(p1, p2), ϕ2)

where consistent(ϕ1,M) := (¬∃c ∈ ϕ1 : ∀a ∈ c : M · 〈a〉 −→TS unsat) indicates
whether the new matrix ϕ1 is consistent with the list M of asserted atoms.
(9)

|D| ≥ 2, v ∈ D, (v, pv) ∈ d, pr =
P

v′∈D−{v},(v′,p
v′ )∈d

pv′ ,

(Pre,ϕ, M · 〈x = v〉, (tl − pr)/pv, tu/pv) −→∗
SSMT (p1, ϕ1), consistent(ϕ1, M),

(

R

dx ∈ D \ {v} · Pre,ϕ1, M · 〈x 6= v〉, tl − pv · p1, tu − pv · p1) −→
∗
SSMT (p2, ϕ2)

(

R

dx ∈ D · Pre, ϕ, M, tl, tu) −→SSMT (pv · p1 + p2, ϕ2)

If it turns out that the upper target threshold tu is already reached by the branch
under investigation, then we can save visiting any other branch and instead
return the positive result immediately via rules (10) and (11). If the remaining
branches have insufficient probability mass to reach the lower target threshold
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tl then we return the negative result by rule (12) without further exploration.
These pruning rules generalize the thresholding rules for the propositional case
from [18].

(10)

v ∈ D, (Pre,ϕ, M · 〈x = v〉, tl, tu) −→∗
SSMT (p, ϕ′),

consistent(ϕ′, M), p > tu or |D| = 1

(∃x ∈ D · Pre,ϕ, M, tl, tu) −→SSMT (p, ϕ′)

(11)

v ∈ D, (v, pv) ∈ d, pr = 0 +
P

v′∈D−{v},(v′,p
v′ )∈d

pv′ ,

(Pre,ϕ, M · 〈x = v〉, (tl − pr)/pv, tu/pv) −→∗
SSMT (p,ϕ′),

consistent(ϕ′, M), pv · p > tu or |D| = 1

(

R

dx ∈ D · Pre, ϕ, M, tl, tu) −→SSMT (pv · p, ϕ′)

(12)

|D| ≥ 2, v ∈ D, (v, pv) ∈ d, pr =
P

v′∈D−{v},(v′,p
v′ )∈d

pv′ ,

(Pre,ϕ, M · 〈x = v〉, (tl − pr)/pv, tu/pv) −→∗
SSMT (p,ϕ′),

consistent(ϕ′, M), tl − pv · p > pr

(

R

dx ∈ D · Pre, ϕ, M, tl, tu) −→SSMT (pv · p, ϕ′)

It could also happen that after the first SSMT call (for x = v), all remaining
branches for x lead to probability 0. This is indicated by the returned new matrix
ϕ′, in particular by some learned conflict clause in ϕ′, which is inconsistent under
the list M of asserted atoms (without assignment x = v). In this case, rules (13)
and (14) save unnecessary visits of the remaining branches.

(13)
v ∈ D, (Pre,ϕ, M · 〈x = v〉, tl, tu) −→∗

SSMT (p, ϕ′), inconsistent(ϕ′, M)

(∃x ∈ D · Pre,ϕ, M, tl, tu) −→SSMT (p, ϕ′)

(14)

v ∈ D, (v, pv) ∈ d, pr = 0 +
P

v′∈D−{v},(v′,p
v′ )∈d pv′ ,

(Pre,ϕ, M · 〈x = v〉, (tl − pr)/pv, tu/pv) −→∗
SSMT (p,ϕ′),

inconsistent(ϕ′, M)

(

R

dx ∈ D · Pre, ϕ, M, tl, tu) −→SSMT (pv · p, ϕ′)

where inconsistent(ϕ′,M) := ¬consistent(ϕ′,M) means that at least one clause
in the new matrix ϕ′ is inconsistent with M which forces the solver to backtrack
to a previous level (thereby avoiding computation of all other possible branches of
x) while keeping the already calculated probability. Note that chained executions
of that rule, which occur if the returned matrix ϕ′ is also inconsistent on some
previous levels, correspond to non-chronological backtracking.

All of the aforementioned SSMT rules are designed to deal with existential
and randomized quantification. The following rules embed the SMT layer into
the SSMT algorithm. If all quantified variables have a definite value, i.e. the
current prefix is empty, we can execute the choice rule (15).

(15)
(ϕ, M) −→SMT (ϕ, M · 〈|, a〉)

(∅, ϕ, M, tl, tu) −→SSMT (∅, ϕ, M · 〈|, a〉, tl, tu)

If the SMT solver can propagate new facts from the matrix ϕ and the list M of
asserted atoms, we can do the same in the SSMT layer. I.e., both unit propagation
and theory propagation are lifted to SSMT by rule (16).

(16)
(ϕ, M) −→SMT (ϕ, M · 〈a〉)

(Pre,ϕ, M, tl, tu) −→SSMT (update(Pre,a), ϕ, M · 〈a〉, tl, tu)
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where update(Pre, a) prunes the domains dom(x) in the prefix Pre of the quan-
tified variables x corresponding to the theory atom a. We do not require that
update is a complete (yet a sound) pruning procedure, i.e., potentially not all
but only some non-solutions are removed from dom(x). E.g., if a = x > 3 then
the updated domain of x is {vx ∈ dom(x) : vx > 3} or a superset thereof in case
of incomplete pruning.

A conflict clause learned by the SMT solver is also valid within the SSMT
framework, i.e. conflict-driven clause learning is supported by rule (17). Note
that implied clauses can be added at any point in the search, in particular even
if the current prefix is non-empty.

(17)
(ϕ, M) −→SMT (ϕ ∧ c, M)

(Pre,ϕ, M, tl, tu) −→SSMT (Pre,ϕ ∧ c, M, tl, tu)

Rule (18) enables the SSMT solver to backjump within the theory part of the
search tree.

(18)
(ϕ, M · 〈|〉 · M ′) −→SMT (ϕ, M)

(∅, ϕ, M · 〈|〉 · M ′, tl, tu) −→SSMT (∅, ϕ, M, tl, tu)

Since a marker symbol | is added to the list of asserted atoms only if there is
an empty prefix (cf. rule 15), i.e. if all quantified variables are assigned to a
value, rule (18) guarantees that value assignments of quantified variables will
not be removed from the list of asserted atoms (i.e., M ′ does not contain such
assignments).

If a solution of the matrix ϕ is found by the SMT layer and the prefix Pre
does not contain randomized quantifiers then the probability 1 is returned by
rule (19), since for the remaining existentially quantified variables in Pre there
is at least one satisfying branch. However, if some randomized quantifiers are
included in Pre, we may not return the probability 1 for the entire subtree, since
the initial domain for some randomized variables could be pruned (by rule (16)),
and potentially the probability of satisfaction for that subtree could be less 1.

(19)
(ϕ, M) −→SMT sat, (

R

dx ∈ D) /∈ Pre

(Pre,ϕ, M, tl, tu) −→SSMT (1, ϕ)

If the SMT solver finds out that the matrix ϕ is unsatisfiable under M then
rule (20) may return the satisfaction probability 0 even if the prefix Pre is
non-empty, since no assignment to the quantified variables could counterfeit the
unsatisfiability of ϕ under M .

(20)
(ϕ, M) −→SMT unsat

(Pre,ϕ, M, tl, tu) −→SSMT (0, ϕ)

The above unification of DPLL-based SSAT solving with of SMT is sound and
complete in the following sense.

Proposition 2 (Completeness and soundness). Given an SSMT formula
Φ = Pre : ϕ and the lower and upper probability thresholds tl, tu, we have:

1. The deduction relation −→SSMT is terminating when iteratively applied to
(Pre, ϕ, ∅, tl, tu) as start of the deduction sequence. Each terminal state x
has the form x = (p, ϕ′) with p ∈ [0, 1] and ϕ′ being an SMT formula.
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2. If (Pre, ϕ, ∅, tl, tu) −→∗
SSMT (p, ϕ′) then p > tu if Pr(Φ) > tu, and p < tl if

Pr(Φ) < tl, and p = Pr(Φ) if tl ≤ Pr(Φ) ≤ tu.

Example of the SSMT algorithm. Consider target thresholds tl = 0.45 and
tu = 0.52 and formula Φ = ∃x ∈ {0, 1}

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} : (x >
0 ∨ 2a + 4b ≥ 3) ∧ (y > 0 ∨ 2a + 4b < 1) from Fig. 1. The initial proof
state is (∃x ∈ {0, 1}

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ, ∅, 0.45, 0.52), where ϕ = (x >
0 ∨ 2a + 4b ≥ 3) ∧ (y > 0 ∨ 2a + 4b < 1). Only rules (8), (10), or (13)
are applicable, each involving a choice over the domain of the leading quan-
tifier. To determine the rule to apply, we choose the value 0 for x and obtain
(

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ, 〈x = 0〉, 0.45, 0.52). Then, (16) gives us the theory
atom 2a + 4b ≥ 3, i.e. we go to (

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ, 〈x = 0, 2a + 4b ≥
3〉, 0.45, 0.52). Here, we select value 0 with probability 0.6 for the randomized
variable y whence the maximum possible remaining probability is 0.4. This gives
state (∅, ϕ,M = 〈x = 0, 2a+4b ≥ 3, y = 0〉, t′l, t

′
u) where t′l = (0.45−0.4)/0.6 and

t′u = 0.52/0.6. This triggers the deduction of 2a+ 4b < 1 again by rule (16). We
thus encounter a conflict since the two theory atoms are inconsistent, and learn,
e.g., the conflict clause (x 6= 0 ∨ y 6= 0). Hence, (∅, ϕ,M, t′l, t

′
u)−→∗

SSMT (0, ϕ′)
where ϕ′ = ϕ ∧ (x 6= 0 ∨ y 6= 0). By rule (12), this yields (

R

〈(0,0.6),(1,0.4)〉y ∈
{0, 1}, ϕ, 〈x = 0〉, 0.45, 0.52)−→SSMT (0, ϕ′) since tl can no longer be attained
due to 0.45 − (0.6 · 0) > 0.4. Therefore, neither rule (10) nor rule (13) are ap-
plicable wrt. the initial situation. We thus try to establish the preconditions
of the remaining rule (8), i.e. we investigate the other branch for x, continu-
ing from proof state (∃x ∈ {1}

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ′, 〈x 6= 0〉, 0.45, 0.52).
Selecting value 1 for x by rule (10) and value 0 for y by the choices open-
ing rules (11) and (12) leads to a satisfying branch, i.e. (∅, ϕ′, 〈x 6= 0, x = 1, y =
0, 2a+4b < 1〉, (0.45−0.4)/0.6, 0.52/0.6)−→SSMT (1, ϕ′). Then, rule (11) matches
and we obtain (

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ′, 〈x 6= 0〉, 0.45, 0.52)−→SSMT (0.6, ϕ′)
since the computed satisfaction probability 0.6 exceeds tu = 0.52. Finally, ap-
plication of rule (8) yields (∃x ∈ {0, 1}

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ, ∅, 0.45, 0.52)
−→SSMT (0.6, ϕ′). Since the computed probability bound p = 0.6 is greater than
tu = 0.52, the maximum probability of satisfying Φ must exceed threshold 0.52.
The thus computed value p is just a lower bound of Pr(Φ) (which is 1, cf. Fig. 1),
but sufficient as a witness of probabilitistic satisfaction.

6 Conclusion and future work

This paper has given a detailed account of a fully symbolic encoding of proba-
bilistic bounded reachability problems of discrete-time probabilistic hybrid au-
tomata, together with a generalized SMT procedure permitting the symbolic
analysis of that encoding. Together, the two provide the germs of fully sym-
bolic techniques for analyzing probabilistic hybrid systems without resorting to
approximation by intermediate finite-state abstractions, thus potentially enhanc-
ing accuracy and scalability of the analysis algorithms. Implementation of these
algorithms by means of an extension of the iSAT solver [12] with randomized
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quantifiers and the pertinent deduction rules has recently commenced, with a
first prototype being operational, see http://sisat.gforge.avacs.org/.
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