
INSIDE: INstruction Selection/Identification & Design
Exploration for Extensible Processors

Newton Cheung
School of Computer Science &

Engineering
University of New South Wales

Australia
ncheung@cse.unsw.edu.au

Sri Parameswaran
School of Computer Science &

Engineering
University of New South Wales

Australia
sridevan@cse.unsw.edu.au

Jörg Henkel
NEC Laboratories America

4 Independence Way
Princeton, NJ 08540

USA
henkel@nec-labs.com

ABSTRACT
This paper presents the INSIDE system that rapidly searches
the design space for extensible processors, given area and per-
formance constraints of an embedded application, while min-
imizing the design turn-around-time. Our system consists of
a) a methodology to determine which code segments are most
suited for implementation as a set of extensible instructions,
b) a heuristic algorithm to select pre-configured extensible
processors as well as extensible instructions (library), and c)
an estimation tool which rapidly estimates the performance of
an application on a generated extensible processor. By select-
ing the right combination of a processor core plus extensible
instructions, we achieve a performance increase on average of
2.03x (up to 7x) compared to the base processor core at a
minimum hardware overhead of 25% on average.

1. INTRODUCTION
Extensible processors are becoming increasingly popular

with embedded system designers who use such processors
to meet competing design challenges such as high perfor-
mance, chip area constraints, high flexibility and short design
turn-around-time. An extensible processor combines the pro-
grammability of a general-purpose processor (GPP) and the
customizability of an application specific integrated circuit
(ASIC). Extensible processors allow the designer to imple-
ment custom-designed specific instructions on top of a base
instruction set. In addition, pre-fabricated coprocessors and
functional units (such as DSP) can be attached to extensi-
ble processors in order to further enhance performance. In
brief, extensible processors allow the simultaneous tuning of
hardware configurations and enriching of the instruction set
architecture.

Tuning the hardware configurations consists of selecting
suitable components such as DSP coprocessors, floating-point
units, multipliers, the memory/cache architecture, register file
size, etc. Enriching the instruction set architecture refers to
designing specific customized (extensible) instructions for an
application program. After configurable hardware and ex-
tensible customized instructions are specified, the extensible
processor can be generated.

Although there are a wide range of commercial design suites
[1, 2, 4, 5, 6, 7] for extensible processors, a number of prob-
lems remain unsolved. These are: i) the identification of a
set of suitable extensible instructions given design constraints
and an embedded application; ii) the automatic generation
of extensible instructions; iii) the automated selection of pre-
configured processor cores that can afterwards be extended
by extensible instructions; and iv) rapidly (beyond the speed

of ISS) estimating the performance of the application on the
newly created processor (an instruction set simulator takes
a long time). To date, the identification of code segments
and the creation of extensible instructions are solely based on
the designers experience and are a time consuming process.
Similarly, selecting coprocessors and specific instructions and
integrating them into an extensible processor are known to be
NP-hard problems [12]. In order to further shorten the de-
sign turn-around-time of an extensible processors, heuristics
are needed.

We present the INSIDE system which is a design system
consisting of a methodology for identifying a set of extensible
instructions, a heuristic algorithm (this algorithm contains
two parts, Part I & II, one to select the processor and the
other to select the instructions) for generating extensible pro-
cessors, and a performance estimator to estimate the applica-
tion performance on a newly configured extensible processor.

Without limitation of generality, the work presented within
this paper used the Xtensa extensible processor from Tensil-
ica [7] as the target platform for development and evaluation
of the INSIDE system. The work carried out and the design
flow developed could have been conducted with any other ex-
tensible processor platform with the same capabilities (con-
figurability and instruction set extension).

The rest of this paper is organized as follows: Section 2 de-
scribes motivations behind our work while Section 3 presents
the basic idea and contribution. Section 4 describes the re-
lated work. Our INSIDE system for generating extensible
processor is introduced in Section 5. Experiments and results
are discussed in Section 6 while Section 7 concludes the paper.

2. MOTIVATION
The arrival of extensible processors has allowed the embed-

ded system designers to customize their systems to a greater
extent. There is sufficient evidence to show that for a given
application, it is possible to achieve better performance with a
smaller footprint using an extensible processor (as opposed to
an off-the-shelf embedded processor) [8, 13, 14, 16, 20]. The
design space of an extensible processor may comprise many
thousand configurations. Therefore, design turn-around-time
of an extensible processor can be in the order of months and
even then all possible configurations are often not searched
through. Thus, it is important to reduce the design turn-
around-time of an extensible processor in an environment
where time to market of embedded products is crucial. The
motivation of this work is to shorten the design turn-around-
time of extensible processors.

To reduce the time design turn-around-time we have iden-
tified a number of open problems. The first problem is to

291

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

1 static int fmult(int an, int srn) {
2 short anmag, anexp, anmant, wanexp, wanmant, retval;
3 anmag = (an > 0) ? an : ((-an) & 0x1FFFF);
4 anexp = quan(anmag, power2, 15) - 6;
5 anmant = (anmag == 0) ? 32 :

(anexp >= 0) ? anmag >> anexp :
anmag << -anexp;

6 wanexp = anexp + ((srn >> 6) & 0xF) - 13;
7 wanmant = (anmant × (srn & 077) + 0x30) >> 4;
8 retval = (wanexp >= 0) ? ((wanman << wanexp) & 0x7FFF) :

(wanmant >> -wanexp);
9 return (((an ∧ srn) < 0) ? -retval : retval);
10 }

Figure 1: Motivational example

identify the right code segment to be implemented as an ex-
tensible instruction. For example, in Fig. 1, each line within
the function (from lines 3-9), can be implemented as one or
more instructions. Alternatively, line 3 can be an instruc-
tion, line 4 can be a separate instruction and lines 5-9 can
be a third instruction. Even for this simple example, there
are hundreds of combinations. The second problem is that
the creation of the extensible instruction is a time consuming
process (in the order of days for a single instruction), and thus
created the instruction must be in a reusable form for other
applications which might use them later. The third problem
is selecting the correct combination of coprocessor and exten-
sible instructions (which has been identified as an NP-hard
problem [12]). For example, let us assume that there are five
sections of code which can be implemented as instructions.
Instruction 1-5, take up 2000, 2500, 3000, 5000, and 10,000
gates respectively. If an area constraint of 8000 were to be
imposed (excluding the base processor), then only a subset
of the instructions can be chosen. This choice is made such
that the performance is maximized. The problem is further
complicated with the availability of coprocessors. The final
and the fourth problem is that simulating the performance of
a configurable extensible processor with an application using
Instruction Set Simulator (ISS) to evaluate several configura-
tions is a time consuming process.

Contributions
The contributions of our work include:

1. A fitting function is introduced which identifies sections
of code segments (within an application), which are suit-
able for translation to instructions within the processor.

2. We have implemented a two-stage approach to first se-
lect a pre-defined processor, and then to select the right
instruction set for this extensible processor. We have
furthermore developed cost functions and heuristic al-
gorithms to guide the selection process.

3. We introduce a set of pre-configured processors (from
which one is chosen for final implementation) and a pre-
designed library of extensible instruction to prune the
design space of the extensible processor. The instruction
library also allows re-usability of instructions across ap-
plication domains.

4. A performance estimator has been implemented to es-
timate an application’s performance instead of running
each configuration repeatedly through an instruction set
simulator and thus minimizing the evaluation time.

This is the first system of its kind that achieves high speed-
ups at reasonable costs without extensive (time consuming)
design space explorations.

3. RELATED WORK
Extensible processors have become commercially available

within the last 3-5 years. Many shortcomings of the com-
mercial approaches are addressed by researchers in order to
enhance the usability and acceptance of these tool suites.

In [9, 20, 24] tool suites have been proposed that take a
specification written in an architectural description language
and generates retargetable compilers, instruction set simula-
tors (ISS) of the target architecture, and synthesizable HDL
models of the target processor. The generated tools allow
valid assembly code generation and performance estimation
for each specified architecture.

Since designing an application-specific processor for an em-
bedded system this way can still be very time intensive, sev-
eral methodologies were proposed to shorten the design time
by predicting the parameters of the processor close to the
specification phase. In 2000, [15] proposed a processor evalua-
tion methodology to quickly estimate the performance changes
when architectural modifications are made. Their method-
ology considers small functions in an application and their
estimations are accurate within 30% compared to a whole
simulation. Jain [17] proposed a methodology for evaluat-
ing the register file sizes in extensible processor designs, thus
optimizing the area and energy consumption significantly.

Instruction generation for extensible processors is often re-
ferred to as template generation in a compiler environment.
A template is an instance of a computational pattern (e.g.
a = b + 10). In [10], the authors searched for regularity in se-
quential, parallel and combined sequential/parallel templates
in a dataflow graph. New sets of instructions were gener-
ated by combining basic instructions. Kastner et al. in [18]
searched for an optimal cover of a set of regular templates,
and then constructed an optimal set of sequential instructions.
Zhao et al. in [25] used static resource models to explore pos-
sible new instructions that can be added to the data path to
enhance performance.

The overall design flow for extensible processors involves a
combination of instruction generation and design space ex-
ploration tools. In [19], Kathail et al. proposed a design flow
for a VLIW processor, which consists of a selection of non-
programmable hardware accelerators (NPA), design space ex-
ploration of implementing different combinations of NPAs,
and evaluation of the designs. An NPA is a coprocessor for
functions expressed as compute-intensive nested loops in C.
Similarly, Lee et al. in [22] proposed a design flow with instruc-
tion encoding, complex instruction generation, and a heuristic
design space exploration approach. Instruction encoding en-
ables trade-offs between the size of opcodes and operand(s).
A complex instruction is an instruction with more than one
basic, frequently occurring, operation. Their design flow first
takes an application program and basic Instruction-Set (IS)
as inputs. Then they convert the code into assembly code.
Based on the resource and the timing information of the basic
IS and application program, complex instruction patterns are
generated and are placed in a library. Then they select a set of
complete instructions for an extensible processor. Finally, in
[23] the design flow consists of generating instructions auto-
matically, inserting instructions, and performing a heuristic
design space exploration. Automatic instruction generation
locates the regular templates derived from program depen-
dence graphs, and implements the most suitable ones as ex-
tensible instructions, enhancing performance of the applica-
tion program. Their design flow takes an application, which is
profiled, and from the output a program dependence graph is

292

created. Blocks within the graph are ranked, and the highest
ranking blocks are implemented as instructions.

4. THE INSIDE SYSTEM
The INSIDE design flow for generating extensible proces-

sors involves an all over of 11 individual steps (see Fig. 2). The
input to the INSIDE system consists of: an application writ-
ten in C/C++, a set of pre-configured processors, a library
of extensible instructions, and area/performance constraints.
First, the application is compiled and is profiled on each of
the pre-configured processors1. During the profiling phase,
we obtain for each of the pre-configured processors, charac-
teristics and information for all functions/subroutines2 within
the application. The design flow consists of four major phases
(our contributions are highlighted in grey): I) a heuristic al-
gorithm (Part I) for selecting a pre-configured processor from
the set of pre-configured processors (steps 2-3 in Fig. 2), which
is described in section 4.1; II) a methodology for identifying
code segments which are implementable as instructions, and
designing them as extensible instructions (steps 4-8), which
is described in section 4.2; III) a heuristic algorithm (Part II)
for selecting a set of extensible instructions to be implemented
on the selected pre-configured processor (steps 9-10), which
is described in section 4.3; and IV) performance estimation of
an application on the designed extensible processor (step 11),
which is described in section 4.4. This section describes these
four phases of the INSIDE system in detail and concludes
with a summary of the overall design flow.

One of the main ideas behind INSIDE is the hierarchical
approach of designing an extensible processor by a) first lim-
iting the design space through selection of a pre-configured
processor core and b) by selecting an appropriate set of ex-
tensible instructions on that specific processor. This approach
allows to efficiently search the design space while allowing for
designer’s input. The pseudo code is shown in Fig. 3. Details
will be explained in the following sections.

4.1 Selecting a pre-configured processor
Our library currently consists of three P1, P2, and P3 pre-

configured processors that are proven to cover a wide range of
application characteristics. The characteristics are shown in
Table 1. P1 is the base processor with a DSP engine. P2 has a
floating point unit and the base processor, and P3 is the base
processor alone. (more processors might be pre-configured,
but these three have been chosen to exemplify our method-
ology). Through simulation and profile information (step 1
of Fig. 2), we obtain the total cycle-count as well as infor-
mation of critical functions within the application. Then, the
“effectiveness” EPi of the processor i for a certain application
is reviewed by considering the total cycle-count (CC), clock
period (Clk PD), and the area of each extensible processor as
follows:

EPi =
1

CCi × Clk PDi ×Area Proci
(1)

This function is inversely proportional to the area delay prod-
uct and we rank the processor with the highest performance-
per-area ratio in order to apply the heuristic algorithm (Part
I).

1Note, that this step implies that the set of pre-configured
processors will have at least one that addresses the con-
straints/characteristics of a specific application reasonably
well. This first step is a major designer’s input that allows
the designer to provide the system with domain-specific ar-
chitectural features without fixing the processor core.
2Granularity may vary.

Cross-compilation

Instruction Set
Simulation (ISS)

Execution traces
(Profiling)

Pre-configured Processor
Library (Coprocessor: DSP

engine, Floating-Point
Unit, MAC etc)

Rank the list of code
segments using cost

function, CodeSegment

Implement extensible
instruction

RTL simulation

Latency & area
estimation for extensible

instruction

Area
Constraint of
an extensible

processor
(Hard

Constraint)

Calculate EP & AE value

Select processor with
coprocessor in the pre-
configured processor

library

Find PSAR of extensible
instruction that associates
with code segments in the

application

Select extensible
instruction

Area Constraint >AE?

Processor with coprocessor & extensible instructions

Find ETE of an application
Execution Time

Estimation

4

9

8

2

7a

Heuristic Algorithm
(Part 1: for Selecting

pre-configured
processor)

Obtain speedup using
ISS

1

7b

5

10

11

Pre-designed Extensible
Library (Each instruction has
area, latency, speedup w.r.t.

each pre-configured
processor that stores

in the library)

Does a
critical code

segment have at least
one implementation

 in the instruction
library?

6

No

Heuristic Algorithm
(Part 2: for

Selecting pre-
designed
extensible
instruction)

Yes

Yes

No

Application
written in C/

C++

Search a list of code
segments from critical

functions

Is there a next code
segment in the list?

Insert the extensible
instruction into the library

No

Yes

Pre-designed Extensible
Library (Each instruction has
area, latency, speedup w.r.t.

each pre-configured
processor that stores

in the library)

7c

7d

3

Area Constraint of an
extensible processor (Hard

Constraint)

 Execution Time

II

I

III

IV

Critical
functions, cf

A list of code
segments, cs

Methodology for
Identifying Code

Segment, Implementing
Extensible Instruction,

and Extending the
Instruction Library

Selected
code

segment,
scs

Figure 2: INSIDE’s design flow for automatically
generating extensible processor (Double square box:
commercial tools; Gray box: our contributions)

Heuristic Algorithm {
For (1 to n extensible processor) { (Part I)

EPi = 1
CCi×Clk P Di×Area P roci

;

}
Select the processor with the highest value of EP ;
For all extensible instructions in the instruction library { (Part II)

PSARjk =
%jk×Sp Instjk

Area Instj×Max(Latencyj,Clk P Dk) ;

}
For (the highest PSAR to the lowest PSAR) {

If (Area Remain > Area Instj) {
Select Instj ;
Area Remain = Area Constraint− Area Instj ;

}
}

}

Figure 3: Pseudo code of the heuristic algorithm
(Parts I & II) for selecting pre-configured processor
and extensible instructions

293

4.2 Identifying SW code segments to convert
to instructions

Identifying code segments and implementing extensible in-
structions from an application program are traditionally based
on designers’ experience. The purpose of our methodology is
to identify code segments within a program function that are
amenable to implement into an extensible instruction. The in-
put of our methodology is a list of the critical functions that
are obtained from profiling . A critical function is a function
that contributes more than θ% of the total execution time (in
our case, θ is 5). The identification consists of five points:
i) Exhaustively searching a list of critical code segments as
part of critical functions (step 4 in Fig. 2);
ii) Identifying and ranking the list of critical code segments
using a fitting function (step 5);
iii) Checking whether an equivalent implementation is part of
our extensible instruction library (step 6);
iv) If there is not an equivalent instruction to the code seg-
ment in the library, then implement the code segment as an
extensible instruction and characterize the instruction using
the Xtensa development tools from Tensilica Inc. [7] and De-
sign Compiler from Synopsys Inc. [3] with associated scripts
(steps 7a - 7d);
v) If there is an equivalent instruction that matches the code
segment, then move down to the next item in the list of code
segments (step 8). Note that the code segment matching
against the instructions in the library is presently performed
manually. The methodology outputs a set of extensible in-
struction with its area, latency and speedup. The created
extensible instructions are added to the extensible instruc-
tion library for reuse and can be selected in the later phase
of the design flow.

Fitting Function
The fitting function evaluates suitable code segments that can
be implemented as extensible instructions. The fitting func-
tion broadly indicates speedup / area ratio of an instruction.
The input is a list of critical functions (by profiling). Within
the critical functions, all possible code segments (only consec-
utive statements are allowed) are exhaustively searched and
ranked using this fitting function. This fitting function could
lead to more than one suitable extensible instruction for a
single code segment. Multiple instructions for the same code
segment gives additional freedom for selection in latter stage
of the design flow.

This fitting function is derived from studying manually per-
formed extensible processor designs. The fitting function of
CodeSegmentx is defined as:

CodeSegmentx = FUx × 1

dNOx
α
e × TOx ×BOx

where
FUx = the frequency of use of a code segment x;
NOx = the number of operands in a code segment x;
TOx = the percentage of integer (short) type operands in all
the operands (char would be considered an integer);
BOx = the percentage of bit operations in all the operations;
α is the ideal number of operands in the code segment (in our
case, the number of operands is less than or equal to 2 inputs
and 1 output).

The frequency of use, FUx, indicates how often a code seg-
ment is executed in the application. FUx is obtained from the
execution traces of the application program. Moving these
segments to extensible instructions are likely to have great
impact upon the speed of the program.

static int fmult(int an, int srn) {
short anmag, anexp, anmant, wanexp, wanmant, retval;
anmag = (an > 0) ? an : ((-an) & 0x1FFFF);
anexp = quan(anmag, power2, 15) - 6;
anmant = (anmag == 0) ? 32 :

(anexp >= 0) ? anmag >> anexp :
anmag << -anexp;

wanexp = anexp + ((srn >> 6) & 0xF) - 13;
wanmant = (anmant × (srn & 077) + 0x30) >> 4;
retval = (wanexp >= 0) ? ((wanman << wanexp) & 0x7FFF) :

(wanmant >> -wanexp);
return (((an ∧ srn) < 0) ? -retval : retval);

}

static int quan(int val) {
static short table[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,

0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000}
for (int i = 0; i < 15; i++)

if (val < table[i])
break;

return (i);
}

Figure 4: Example Code for Fitting Function

If the number of operands to be implemented as an instruc-
tion has just three or less operands (less than or equal to two
source and one destination operand), then it is an instruction
which can be implemented fairly easily, as processors typi-
cally have 2 source busses and one destination bus going to
the ALU. When the number of operands are more than the
above, then multiple cycles are needed to ferry the operands
to the newly created functional unit increasing the latency of
the operation. This is reflected as NOx in the cost function.

The amount of bit operations in a segment, favors its im-
plementation in hardware, since such an instruction requires
a small cycle count and has high performance gain on the ap-
plication program. The amount of bit operations in a segment
is reflected in the cost function as BOx.

Finally, the type of operands, TOx, in an instruction re-
lates to the type of register file and the manipulation of the
operands. If the type of operands is different, then the pro-
cessor needs extra registers or even custom designed registers.
These registers increase the area of an extensible instruction.
If the manipulation of the operands is needed, then the la-
tency of the instruction increases as well. The increase in
latency and area is reflected as TOx in the cost function. By
including these four factors (FUx, NOx, BOx and TOx) in
the fitting function, the fitting function relates to the speedup
/ area ratio of an extensible instruction for a code segment.
In the result section, Fig. 7 shows how well the fitting func-
tion indicates the speedup/area ratio of the instructions, for
a variety of code segments.

Fig. 4 gives an example of how the fitting function is used.
The example consists of two segments: fmult and quan where
fmult is use up 22% of the execution time. The number of
operands of this function is 3 (namely an, srn. The opera-
tion types in the function are mostly bit operations (i.e. and,
left shift, right shift etc.), so BOfmult = 0.8. The types of
operands are integers and therefore TOfmult = 1. Thus the
value of the fitting function 0.176 whereas quan will yield 0.28
indicating that there is a higher benefit in quan rather than
fmult. As shown later in Table 2, the extensible instruction,
QUAN, has better area, speedup, and latency than the ex-
tensible instruction, FMULT.

4.3 Selecting a set of extensible instructions
The selection of an extensible instruction is based on the

area (Area Inst) to speed-up ratio which is clock-cycle based
(Sp Inst), latency (maximum clock period of all extensible
instructions and the pre-configured coprocessor), and percent-
age of total cycle-count (%jk) for the function in the appli-

294

cation under consideration for the pre-configured processor
k. We define the potential speedup/area ratio, PSARjk, of
extensible instruction j in extensible processor k as:

PSARjk =
%jk × Sp Instjk

Area Instj ×Max(Latencyj , Clk Pdk)
(2)

PSARjk indicates the performance gain per area of an appli-
cation when the extensible instruction is implemented. The
ratio is used to rank the instructions in order from the most
performance gain per area to the least. In addition, our equa-
tion takes into account the latency of the instruction which is
critical to the real performance of the application.

4.4 Performance and Area Estimation
After a pre-configured processor with coprocessor and a set

of extensible instructions are selected, we perform an estima-
tion of execution time (step 11 of Fig. 2). The first part of
the equation 3 calculates the cycle-count of an application
program running on the proposed extensible processor, then
the cycle count is multiplied by the maximum latency. Max-
imum latency is the maximum clock period value of all the
extensible instructions and the pre-configured processor that
have been selected. The execution time estimation, ETEjk,
for an extensible processor k with a set of selected extensible
instruction (from 1 to j) is defined as:

ETEjk = {CCk×(1−
∑

j

%jk)+
∑

j

CCk ×%jk

Sp Instjk
}×Latencymax

(3)
where CCk is the original total cycle-count of an application
running on an extensible processor k.

The area estimation used in the selection of pre-configured
processor and extensible instructions, is defined as:

AEjk = Areabase +
∑

Areacopr +
∑

Areainst (4)

where, Areabase is the number of gates used by the base pro-
cessor, Areacopr is the additional gates incurred by the se-
lected coprocessor and Areainst is the number of gates that
the selected instruction occupy. The first two terms of the
equation 4 are estimated using the Xtensa generator [7] and
the final term is estimated using the Design Compiler from
Synopsys, Inc. [3]. Since the busses are not changed signif-
icantly by the addition of coprocessors, the gate count still
gives a good indication of the area. The custom register files
and any extra tristates inserted for increased bus lengths are
reflected by the last term.

4.5 Overall Design Flow Algorithm
The overall algorithm brings together the various steps in

the INSIDE system. We first compile, simulate and profile
the application program to obtain a list of critical functions,
cf. Then we calculate the cost functions for area and speed
area ratio, AE and EP , of each pre-configured processor. We
then select a processor with the highest value of EP , with AE
being less than the area constraint. From the list of critical
functions, we exhaustively search all possible combinations
of code segments which are consecutive lines of code. We
rank the “code segments” according to our fitting function,
CodeSegment. We select code segments with a CodeSegment
value greater than 0.001. Then, if any of the “selected code
segment”, scs, do not exist in the instruction library, we create
the instruction manually and then add it to the extensible in-
struction library. We continue to implement instructions until
all the selected code segments are available in the library. Af-
ter this we run the Instruction selection algorithm to select
a set of extensible instructions using cost functions, PSAR

(potential speed area ratio) and AE. Finally we perform an
estimation, ETE, to check on the performance of the cre-
ated extensible processor. Fig. 5 gives the overall design flow
algorithm of the INSIDE system.

Overall INSIDE Algorithm() {
\∗ Compile, simulate and profile the application ∗\
Compile the application program;
Simulate the application program using ISS;
Profile the application program (a list of critical functions, cfi);

\∗ Selecting a pre-configured processor ∗\
For (i = 1 to w pre-configured processor) { (Step 2)

EPi = 1
CCi×Clk P Di×Area P roci

;

AEi = Areabasei
+

∑
Areacopri

;
}
For (i = 1 to w pre-configured processor) { (Step 3)

If (AEi < Area Constaint)
Select processor with the highest value of EP ;

}

\∗ Identifying code segment ∗\
For (i = 1 to x critical functions, cfi) {

Search exhaustively for all code segments, csij ; (step 4)
For (j = 1 to y code segment, csij , in function i) { (step 5)

CodeSegmentj = FUj × 1

dNOj
α

e
× TOj × BOj ;

If (CodeSegmentj of csij > 0.001) {
Insert into a list of selected code segment, scsj ;

}
}

}
\∗ Manually checking whether a selected
code segment matches an instruction ∗\
For (j = 1 to z selected code segment, scsj) { (Step 6)

If (selected code segment, scsj , is not in library) {
Manually create code segment into instruction; (step 7a)
Characterize the instruction; (steps 7b-7c)
Insert the extensible into the library; (step 7d)

} Else {
Continue search; (step 8)

}
}

\∗ Selecting a set of extensible instruction ∗\
For all extensible instructions in instruction library { (step 9)

PSARjk =
%jk×Sp Instjk

Area Instj×Max(Latencyj,Clk P Dk) ;

}
For (j = the highest PSAR to the lowest PSAR) { (step 10)

If (Area Remain > Area Instj) {
Select Instj ;
AEjk = Areabasek

+
∑

Areacoprk
+

∑
Areainstj

;

Area Remain = Area Constraint - AEjk;
}

}

\∗ Execution time estimation ∗\ (step 11)

ETEjk = {CCk × (1−∑
%jk) +

∑ CCk×%jk
Sp Instjk

} × Latencymax;

}

Figure 5: Overall algorithm of the INSIDE system

5. EXPERIMENTS & RESULTS
We have set up our design flow described in the previous

section using tools and scripts to design extensible processors
for a set of applications. The target extensible processor used
in our experiments is the Xtensa processor from Tensilica,
Inc. Two libraries have also been created: a pre-configured
processor library and a library of pre-designed extensible in-
structions, which stores a set of pre-configured processors and
all the extensible instructions generated through our method-
ology respectively. These experiments were conducted on a
Sun UltraSPARC10 running at 440MHz with 1Gb of RAM.

We have pre-configured three extensible processors in the
first library, namely P1, P2, and P3. These processors are
configured from the T1040.0 version of the Xtensa processor
in 0.18µ technology. Pre-configured processor P1 has a Vectra

295

Pre-configured Processor P1 P2 P3

Area [mm2] 4.23 2.28 1.7
Area [gates] 159800 86720 61620
Power [mW] 161 108 96

Clock Rate [MHz] 158 155 183

Table 1: Hardware Cost for Each Processor

Extensible Application Area Speedup under Latency Cost
Inst Used [gates] P1 P2 P3 [ns] function

GSMS gsmdec, gsmenc 2740 3.50×1.12×1.20× 6.00 0.03
CAL 1 gsmdec, gsmenc 16000 4.50×4.50×3.50× 6.00 0.009

GSMMR gsmdec, gsmenc 23400 3.45× N.A. N.A. 7.46 0.004
GSMLM gsmdec, gsmenc 13200 N.A. 1.25×1.30× 6.25 0.003

DC3 adpcmenc 2630 N.A. 1.20×1.30× 6.00 0.02
DC4 adpcmenc 5810 3.65×3.20×3.00× 6.00 0.03

DC1,DC2 adpcmenc 10154 1.30×1.20×1.50× 6.00 0.004

MOD3 voice 5500 N.A. 17.0×10.9× 6.40 0.11
LDE voice, mpeg2dec 1100 N.A. 2.50× N.A. 6.50 0.06

MN,LP,CB voice, mpeg2dec 6800 3.52×5.28×6.48× 6.80 0.03
FM32 voice, mpeg2dec 32000 8.98× N.A. 11.6× 7.10 0.02

FREXP voice, mpeg2dec 3200 N.A. 1.90× N.A. 6.90 0.02
LDE,FRE voice, mpeg2dec 3300 N.A. 3.30× N.A. 7.00 0.02
FREXPLN voice, mpeg2dec 3300 N.A. 1.10× N.A. 6.90 0.01

FD32 voice, mpeg2dec 53800 N.A. 15.9×17.4× 14.6 0.01
FA32 voice, mpeg2dec 32000 8.31× N.A. 8.14× 8.50 0.009

CC mpeg2dec 50 3.30×4.12×4.20× 4.33 0.34
MYSAT mpeg2dec 180 4.51×5.55×5.55× 5.57 0.12
ADD14 mpeg2dec 1065 3.30× N.A. N.A. 6.00 0.11
ADD8 mpeg2dec 950 1.20×1.30×1.30× 5.96 0.05

QUAN g721dec, g721enc 1200 8.30×10.0×10.0× 6.00 0.28
FMULT g721dec, g721enc 10000 10.0×24.0×24.0× 8.15 0.22

RECONS. g721dec, g721enc 7000 2.60×2.50×2.50× 7.20 0.007
SSIZE g721dec, g721enc 21000 3.00×3.00×3.00× 7.50 0.005

Table 2: Extensible Instructions Library

DSP engine, P2 has a floating point unit, and P3 is the base
processor with no additional coprocessor. All processors are
set up with direct mapped 1KB instruction and data caches,
128-bit wide system bus and a generic register file with 64
32-bit registers. Table 1 shows the parameters of these pre-
configured processors. The instruction library contains 26
specific instructions in total. Table 2 shows the information
available to the designer from the extensible instruction li-
brary. The first column is the extensible instruction name.
The second column lists the application name that uses the
extensible instruction. The applications in bold shows from
which of the applications the instruction was derived. The
next five columns indicates the area, the speedup of the spec-
ified instruction when associated with processor P1, P2, P3,
and latency of the instruction respectively. The last column
is the fitting function’s value of the corresponding code seg-
ment. Please note that the fitting function is only compa-
rable within the application from which the instruction was
derived. While the cost functions of GSMS and CAL 1 are
directly comparable, GSMS and DC3 are not.

We performed experiments on seven multimedia benchmarks
that were obtained from [11, 21]. These are adpcm encoder,
g721 encoder, g721 decoder, gsm encoder, gsm decoder, mpeg2
decoder, voice recognition encoder. For verification purposes,
we simulated all the possible combinations of extensible pro-
cessors with configurable coprocessors and instructions on
each benchmark, so that the entire design space (including
the Pareto points) of each benchmark is obtained. In addi-
tion, we started with a tight area constraint and relaxed the
area constraint during our experiments in order to obtain all
the possible Pareto points in the design space.

5.1 Results
Our experiments evaluate the design flow of the INSIDE

system. We looked at: i) the efficacy of the methodology
for identifying code segments for implementation as instruc-

Execution Time vs Area

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 50,000 100,000 150,000 200,000 250,000 300,000

Area [gates]

E
xe

cu
tio

n
Ti

m
e

[s
ec

on
d]

(a) Full design space

Execution Time vs Area

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 50,000 100,000 150,000 200,000 250,000 300,000
Area [gates]

E
xe

cu
tio

n
Ti

m
e

[s
ec

on
d]

(b) Pareto points

Figure 6: A benchmark’s design space.

tions; ii) the efficiency of the heuristic algorithm (Part I) for
selecting a pre-configured processor with coprocessor; iii) the
efficiency of the heuristic algorithm for selecting a set of exten-
sible instructions (Part II); and iv) the accuracy of the execu-
tion time estimation. Table 3 summarizes these results. The
first column of Table 3 indicates the application name, the
second column shows the number of Pareto points obtained
using the INSIDE system. The total number of Pareto points
in the design space is shown in brackets. Column three shows
the error between the value obtained by the performance esti-
mator in equation 3 and the performance value obtained using
ISS. The next four columns are the optimal solution and the
original solution of an application with respect to area and
execution time. Finally, the last two columns are the explo-
ration time of the full design space using simulation and our
INSIDE system respectively.

The design space exploration time for our design flow is on
average 2% (the comparison between the last two columns in
Table 3) of the design space exploration time using full sim-
ulation methodology. Fig. 6 shows the design space of the
voice recognition benchmark with 576 configurations and the
Pareto points walk through the design space using the IN-
SIDE design flow. For this benchmark, the design process
takes approximately 24000 minutes (400 hours) to explore
the entire design space, whereas our design flow took only
150 minutes (2.5 hours) to obtain these Pareto points in the
design space. Column two of Table 2 shows that an extensible
instruction can be reused in more than one application within
the same domain. This methodology eliminates repeated ef-
fort in the creation of extensible instruction in our INSIDE
system. The result clearly indicates that the INSIDE system
shortens the design turn-around-time of extensible processor.

To evaluate the effectiveness of the fitting function of the
code segment, we included the cost function value of the code
segment in the last column of Table 2. Fig. 7 shows a rela-
tionship between the speed/area ratio of the instruction and
the fitting function in four different benchmarks. Note that
the cost function’s value for different code segments should
only be compared within a benchmark. The benchmarks un-
der consideration improved in performance by up to 7x (on
average 2.03x) (the comparison of execution time between our
best solution (column 5 in Table 3) and the original solution
(column 7) due to the inclusion of coprocessor and exten-
sible instructions. The hardware overhead was 25% on av-
erage(compare the area from column 4 and column 6 respec-
tively). The result shows that the methodology for identifying
instructions indicates useful instructions to extract from an
application program.

The second column from Table 3, shows that the number
of Pareto points obtained using the INSIDE system. The
total number of Pareto points in the design space is shown in
brackets. The heuristic algorithm (Part I & II - for selecting

296

Application. Pareto Points Error rate of perf. Our Best Solution wrt time Original Solution Exploration Time
obtained estimation on Area Execution Area Execution Full INSIDE

(Total Pareto Points) Pareto Points [%] [gates] Time [sec.] [gates] Time [sec.] [minutes] [minutes]

adpcm encoder 3(6) 3% 77,964 1.77 61,620 2.06 3100 100
gsm encoder 4(4) 7% 79,540 13.36 61,620 13.68 9600 160
gsm decoder 5(5) 7% 78,093 6.58 61,620 7.21 3840 110
g721 encoder 4(6) 4% 73,200 1.96 61,620 2.69 1800 90
g721 decoder 2(3) 5% 63,200 2.06 61,620 2.81 1800 90

mpeg2 decoder 5(5) 7% 63,255 0.6321 61,620 0.8021 3600 45
voice recognition 9(9) 4% 105,900 0.2638 61,620 1.8018 24000 150

Table 3: Experimental results
G721 Decoder

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

QUAN FMULT RECONS SSIZE

Voice Encoder

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MOD3 LDE MN, LP, CB FM32 FREXP LDE, FRE FREXPLN FD32 FA32

Adpcm Encoder

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

DC3 DC4 DC1, DC2

GSM Decoder

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

GSMS CAL_1 GSMMR GSMLM

CodeSegment

Speedup/area

Figure 7: The relationship between the fitting func-
tion and speedup/area ratio of the instruction.

pre-configured processor, and extensible instructions when a
tight area constraint is given and then progressively relaxed)
is able to obtain on average 83% of the Pareto points for all the
benchmarks. Although our algorithm does not obtain all the
Pareto points, application performance is on average within
3% of the Pareto points’(which were not obtained) application
performance. The reason that our heuristic algorithm fails to
deliver all Pareto points, is due to the heuristic which searches
for ratios rather than absolute values.

Finally, in order to show the efficiency and the accuracy of
the execution time estimation of the system, we estimated the
execution time for all the obtained Pareto points for exten-
sible processors on each benchmark and compared with the
execution time obtained using ISS. The estimation of the ex-
ecution time is on average within 5% (column 5 in Table 3)
of the real execution time of an application program.

6. CONCLUSIONS
This paper described the INSIDE system, for reducing the

design turn-around-time of an extensible processor. This re-
duction is achieved through the identification of efficient code
segments to implement as extensible instructions, and a two-
level hierarchical selection approach: first, the design space
is limited through selection of a pre-configured processor (in-
cluding a coprocessor), then a set of pre-designed (from a
library) extensible instructions is selected for that extensible
processor. In addition, execution time estimation for an ap-
plication program running on an readily configured extensible
processor is performed. By use of the INSIDE system it has
been demonstrated how seven different, real life, multimedia
benchmarks can be designed within an extensible processor
environment. The design space exploration time of the IN-
SIDE system is on average 2% of the design space exploration
time using full simulation for a given set of benchmarks. The
fitting function for identifying the right code segment relates
to the speed / area ratio of the instruction. In addition, our

heuristic algorithm was able to locate on average 83% of all
Pareto points from the entire design space in all benchmarks.
The execution time estimation for the proposed extensible
processor is on average within 5% of results obtained with an
ISS, and is generated in typically less than a second. Finally,
the application program execution time is reduced by up to
7x (on average 2.03x), with an average area overhead of 25%
on the benchmarks.

7. REFERENCES
[1] Arctangent processor. ARC International. (http://www.arc.com).
[2] Asip-meister. (http://www.eda-meister.org/asip-meister/).
[3] Design compiler. Synopsys Inc. (http://www.synopsys.com).
[4] Jazz dsp. Improv Systems Inc. (http://www.improvsys.com).
[5] Lisatek. CoWare Inc. (http://www.coware.com).
[6] Sp-5flex dsp core. 3DSP Corp. (http://www.3dsp.com).
[7] Xtensa processor. Tensilica Inc. (http://www.tensilica.com).
[8] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi. An

asip instruction set optimization algorithm with functional mod-
ule sharing constraint. In DAC, pages 526–532. IEEE Computer
Society Press, 1993.

[9] N. Binh, M. Imai, and Y. Takeuchi. A performance maximization
algorithm to design asips under the constraint of chip area includ-
ing ram and rom size. In ASP-DAC, 1998.

[10] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. Instruction
generation and regularity extraction for reconfigurable processors.
In CASES, 2002.

[11] N. Cheung, J. Henkel, and S. Parameswaran. Rapid configuration
& instruction selection for an asip: A case study. In DATE, 2003.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman and
Co, 1979.

[13] R. Gonzalez. Xtensa: A configurable and extensible processor.
IEEE Micro, 2000.

[14] M. Gschwind. Instruction set selection for asip design. In 7th inter-
national workshop on Hardware/software codesign, pages 7–11.
ACM Press, 1999.

[15] T. V. K. Gupta, P. Sharma, M. Balakrishnan, and S. Malik. Pro-
cessor evaluation in an embedded systems design environment. In
VLSI Design, pages 98–103, 2000.

[16] M. Imai, N. Binh, and A. Shiomi. A new hw/sw partitioning al-
gorithm for synthesizing the highest performance pipelined asips
with multiple identical fus. In EURO-VHDL, pages 126–131. IEEE
Computer Society Press, 1996.

[17] M. K. Jain, L. Wehmeyer, S. Steinke, P. Marwedel, and M. Bal-
akrishnan. Evaluating register file size in asip design. In CODES,
pages 109–114, 2001.

[18] R. Kastner, S. Ogrenci-Memik, E. Bozorgzadeh, and M. Sar-
rafzadeh. Instruction generation for hybrid reconfigurable systems.
In ICCAD, 2001.

[19] V. Kathail, shail Aditya, R. Schreiber, B. R. Rau, D. C. Cron-
quist, and M. Sivaraman. Pico: Automatically designing custom
computers. Computer, 35(9):39–47, Sept 2002.

[20] S. Kobayashi, H. Mita, Y. Takeuchi, and M. Imai. Design space
exploration for dsp applications using the asip development system
peas-iii. In ASSP, pages 3168 – 3171, 2002.

[21] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A
tool for evaluating and synthesizing multimedia and communica-
tons systems. In International Symposium on Microarchitecture,
pages 330–335, 1997.

[22] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding for
automatic instruction set desifn of configurable asips. In ICCAD,
2002.

[23] F. Sun, S. Ravi, A. Raghunathan, and N. Jha. Synthesis of custom
processors based on extensible platforms. In ICCAD, 2002.

[24] J.-H. Yang, B.-W. Kim, et al. Metacore: an application specific
dsp development system. In DAC, pages 800–803, 1998.

[25] Q. Zhao, B. Mesman, and T. Basten. Practical instruction set
design and compiler retargetability using static resource models.
In DATE, pages 1021–1026, 2002.

297

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

