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ABSTRACT
We present a technique to derive fully testable circuits under
the Stuck-At Fault Model (SAFM) and the Path-Delay Fault
Model (PDFM). Starting from a function description as a
Binary Decision Diagram (BDD) the netlist is generated by
a linear time mapping algorithm. Only one additional input
and one inverter are needed to achieve 100% testable circuits
under SAFM and PDFM. Experiments are given to show the
advantages of the the technique in comparison to previously
presented methods.

Categories and Subject Descriptors
B.6 [Logic Design]: Design Sytles—combinational logic;
B.8 [Performance and Reliability]: Testing

General Terms
Algorithms, Design, Testing

Keywords
Decision Diagrams, BDDs, Logic Synthesis, Design for Testa-
bility, Multiplexor based Circuits

1. INTRODUCTION
Since Binary Decision Diagrams (BDDs) have been pro-

posed in [12, 1] several applications have been studied, where
this data structure can be successfully applied. In formal
verification and logic synthesis BDDs have become the state-
of-the-art for function representation and manipulation (see
e.g. [9]). BDDs have also been studied in logic synthesis,
since they allow to combine aspects of circuit synthesis and
technology mapping [11]. Recently, there is a renewed in-
terest in multiplexor based design styles, since often multi-
plexor nodes can be realized at very low cost (as e.g. Pass
Transistor Logic (PTL)). In addition, these techniques allow
to consider layout aspects during the synthesis step and by
this guarantee high design quality (see e.g. [14, 13]).

One of the most important steps during circuit design
is the testability of the netlist. Multiplexor circuits derived
from BDDs have been studied intensively under various fault
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models [3, 2, 5, 4]. (For an overview see [6].) But none of
these approaches can guarantee 100% testability in a “sys-
tematic way”. E.g. in [5] an algorithm is given that can
compute all redundancies of the circuit in polynomial time.
But the removal of these redundancies can generate new ones
(so-called 2nd-generation redundancies). For their removal
only classical ATPG can be applied.

In this paper, a simple transformation is presented that
guarantees full testability of a circuit derived from a BDD
description under the stuck-at fault model and the robust
path-delay fault model. The size of the circuit is directly
proportional to the given BDD size. All optimizations of
the BDDs based on variable ordering directly transfer to
the resulting circuit sizes. Only one extra input and one
inverter are needed. The resulting circuits are free of redun-
dancies. The algorithm has been implemented as a tool for
Multiplexor Transformation for Testabilty (MuTaTe). Ex-
perimental results are given that show the advantages of the
approach compared to traditional synthesis approaches and
to “classical” mapping of BDDs.

2. PRELIMINARIES

2.1 Binary Decision Diagrams
As is well-known a Boolean function f : Bn → B can be

represented by a Binary Decision Diagram (BDD) which is
a directed acyclic graph where a Shannon decomposition

f = xiflow(v) + xifhigh(v) (1 ≤ i ≤ n)

is carried out in each node. A BDD is called ordered if each
variable is encountered at most once on each path from the
root to a terminal node and if the variables are encountered
in the same order on all such paths. A BDD is called re-
duced if it does not contain isomorphic subgraphs nor does
it have redundant nodes. Reduced and ordered BDDs are a
canonical representation since for each Boolean function the
BDD is uniquely specified [8]. In the following, we refer to
reduced and ordered BDDs for brevity as BDDs.

2.2 BDD Circuits
It is well-known, that BDDs directly correspond to mul-

tiplexor based Boolean circuits, called BDD circuits in this
paper. More exactly: BDD circuits are combinational logic
circuits defined over a fixed library. The typical multiplexor
cell is denoted as MUX, and it is defined as given in Figure 1
by its standard AND-, OR-, INVERTER-based realization1.
The left input is called control input, the upper inputs are
called data inputs (left data input = 0-input, right data in-
put = 1-input).

The BDD circuit of a BDD is now obtained by the fol-
lowing construction: Traverse the BDD in topological order

1All results in the following also transfer to different real-
izations.

80



MUX

S

S
=

d 1
d 0

d 0
d 1

Figure 1: Multiplexor cell MUX

and replace each non-terminal node v in the BDD by a MUX
cell, connect the control input with the primary input xi,
corresponding to the label of the BDD node. Then, connect
the 0-input to low(v), the 1-input to high(v). At the end
connect the output of the multiplexor which substituted the
root node with a primary output.

Remark 1. As has been suggested in previous papers [5,
4], the MUX cells connected to constant values can be simpli-
fied. But in our approach we do not make use of this, since
- as will be shown later - this “destroys” the testability.

2.3 Fault Models
We consider a static and a dynamic fault model, i.e. the

Stuck-At Fault Model (SAFM) [7] and the Path-Delay Fault
Model (PDFM) [17].

A fault in SAFM causes exactly one input or output pin
of a node in the circuit to have a fixed constant value (0 or
1) independently of the values applied to the inputs of the
circuit.

In the PDFM it is checked whether the propagation delays
of all paths in a given circuit are less than the system clock
interval. For the detection of a path delay fault a pair of
patterns (I1, I2) is required rather than a single pattern as in
SAFM: The initialization vector I1 is applied and all signals
of the circuit are allowed to stabilize; then the propagation
vector I2 is applied and after the system clock interval the
outputs of C are controlled.

Definition 1. A two-pattern test is called a robust test
for a path delay fault (RPDF test) on a path, if it detects
that fault independently of all other delays in the circuit and
all other delay faults not located on this path.

It turns out that for the circuits considered in this paper
the construction of tests with the following (even stronger)
property is possible: For each path delay fault there exists
a robust test (I1, I2) which sets all off-path inputs to non-
controlling values on application of I1 and remains stable
during application of I2, i.e. the values on the off-path in-
puts are not invalidated by hazards or races2. Robust tests
with the properties mentioned above are also called strong
RPDF tests. In the following we only use such tests, but
for simplicity we call them RPDF tests, too. For a detailed
classification of PDFs see [15].

3. BDD TRANSFORMATION
In this section we first describe the transformation how to

derive a circuit from a given BDD description. Then, some
properties of the resulting circuits are discussed. In the next
sections testability properties regarding the SAFM and the
PDFM are studied.

2A controlling value at the input of a node is the value that
completely determines the value at the output, e.g. 1 (0) is
the controlling value for OR (AND) and 0 (1) is the non-
controlling value for OR (AND).
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Figure 2: Example for transformation

Analogously to the “standard approach” from [5] the cir-
cuit is generated by traversing the BDD and substituting
each node with a MUX cell. But, the methods differ when
reaching nodes that have one or two pointers to terminal
nodes. In this case, usually the MUX cell is simplified.
E.g. if the 0-input is connected to constant 0, the MUX
cell can be simplified and can be substituted by an AND
gate.

Here, all nodes - also the ones pointing to terminals -
are substituted by complete multiplexor cells. The terminal
node 0 is then substituted by a new primary input t (=test).
Furthermore, t is connected to the 1-terminal of the BDD
by an inverter.

Example 1. In Figure 2(a) a BDD for function f =
x1x2 + x3 is shown. It is drawn upside down to underline
the simialarities to the resulting circuit. The low-edges of
the nodes are given as dotted lines. If the approach from
[5] is applied, the BDD circuit in Figure 2(b) results (shown
without simplification). While the transformation described
above generates the circuit in Figure 2(c).

Remark 2. It is important to notice that for mutliplexor
based design styles, like e.g. PTL, the “simplification” of the
MUX cell does not really imply savings in area or delay,
since the complete multiplexor cell is often easier to realize.

If t is set to constant 0, the circuit computes the original
function. If t is set to 1, the complement is computed. It
is important to observe, that by changing the value of t all
“internal” signals, i.e. signals corresponding to edges in the
BDD, change their value. This can be seen as follows:

f = xig + xih

= (xig)(xih)

= (xi + g)(xi + h)

= xig + xih

Applying this recursively to the BDD or the BDD circuit,
respectively, shows that all signals change their value. This
guarantees a simple application of the values needed at the
fault location.

Furthermore, the propagation of the faulty behavior to
an output has to be ensured. This is one of the reasons,
why circuits based on multiplexor cells became very popular,
since due to the control input a propagating path can easily
be generated. Thus, the propagation of a value from a fault
location is no problem and the only thing to be done is to
apply the value that shows the faulty behavior.

In previous approaches (see e.g. [5, 4]), modifications of
the circuit were described, but these change the multiplexor
structure and by this also destroy the propagation properties
of multiplexors.

81



Table 1: Classical approaches
name in out original optimized

lits NoP PDFC lits NoP PDFC
5xp1 7 10 391 296 98.4 158 1071 19.9
C17 5 2 23 11 100.0 10 11 100.0
alu2 10 6 909 69521 1.0 415 61362 0.9
b9 41 21 408 301 93.3 171 410 89.0
clip 9 5 1026 888 90.4 273 571 74.3
con1 7 2 48 23 100.0 21 22 100.0
count 35 16 338 368 100.0 159 384 100.0
i1 25 13 118 97 97.4 50 98 77.5
i5 133 66 689 883 100.0 198 672 100.0
t481 16 1 2673 4752 100.0 532 2405 89.5
tcon 17 16 90 56 85.7 32 40 100.0
9sym 9 1 655 522 96.5 333 518 91.1
f51m 8 8 409 319 98.2 155 30950 0.7
z4ml 7 4 325 252 100.0 46 368 25.2
x2 10 7 97 90 74.4 51 79 81.0

3.1 Stuck-At Fault Model
As has been observed in [5] stuck-at redundancies in a

mapped BDD circuit can only occur if one of the values 01
or 10 is not applicable to the data inputs of this cell. On
the other hand, a straightforward computation shows that
at least one of the values is applicable. But due to the
properties of the new input t, i.e. all internal signals change
their value, the missing value can be applied by changing
the value at t. We obtain:

Theorem 1. By one additional input and one inverter a
circuit can be generated from a BDD that is 100% testable
for single stuck-at faults.

For the generation of a test, the efficient polynomial syn-
thesis operations on BDDs can be used [8]. For each mul-
tiplexor cell the set of applicable values can easily be com-
puted by carrying out AND-operations on the corresponding
BDD nodes. The propagating path can be determined by a
linear time graph traversal.

Lemma 1. In the resulting circuits, test pattern genera-
tion for stuck-at faults can be carried out in polynomial time.

3.2 Path-Delay Fault Model
The same arguments as given above also ensure that all

paths are testable under the PDFM. At each cell the values
10 or 01 can be applied (dependent on t). Thus, the paths
starting at an input corresponding to the variable xi can be
propagated along any of the two AND-gates (see Figure 1).
Furthermore, due to the propagation along the multiplexors,
it is easy to see that the paths starting at t can be tested.
We obtain:

Theorem 2. By one additional input and one inverter a
circuit can be generated from a BDD that is 100% testable
for robust path-delay faults.

After the applicable values have been determined based on
BDD operations, two patterns for a robust test can be de-
termined by a traversal of the circuit in linear time.

Lemma 2. In the resulting circuits, test pattern genera-
tion for path-delay faults can be carried out in polynomial
time.

3.3 Partial Simplification
As has been observed in Remark 1 the simplification of

the MUX cells can destroy the testability. But not all types
of simplifications have this property, i.e. if both data inputs
have constant values the MUX cell can be substituted by a
simple wire or an inverter. Dependent on the design style
this should be preferred.

4. EXPERIMENTAL RESULTS
The technique described above has been implemented as

the tool MuTaTe (=Multiplexor Transformation for Test-
abilty). The program is implemented in C and all exper-
iments have been carried out on a SUN Sparc 20 with 64
MByte of main memory. For the experiments we used some
of the benchmarks from LGSynth91 [19]. As the underly-
ing BDD package CUDD has been used [18]. Due to page
limitation we restrict ourselves to a study of the PDF cover-
age (PDFC) of the circuits3. For each circuit we report the
number of literals (measured using SIS [16]), the number of
paths (NoP) that have to be tested and the PDFC in per-
cent. Of course, the NoP can become a crucial factor, since
a large number results in high test costs.

In Table 1 the name of the benchmark is given in the first
column followed by the number of inputs and outputs in
column two and three, respectively. The number of literals,
the number of paths and the PDFC are given in column lits,
NoP and PDFC, respectively. Column original gives the
number for the benchmark as it is given in the description.
Column optimized gives the numbers for the circuits that
have been optimized by SIS using script rugged. As can be
seen, the PDFC varies a lot. While some circuits have a
testability of 100%, for others only one percent of the paths
(or even less) are robustly testable. It is also important
to notice that the optimization techniques used can result
in a large number of untestable paths although the original
circuit was very well testable. Consider e.g. circuit f51m as
the most obvious example. Even though the original circuit
had a PDFC of 98.2%, the coverage of the optimized netlist
is less than 1%.

In a second series of experiments we study the PDF testa-
bility of BDD circuits. The results are given in Table 2 and
3 for BDDs with and without optimization of the variable
ordering, respectively. In column MUX-map the results are
given for a direct mapping of BDDs with simplification of the
constant values as described in [5]. As has been observed in
Remark 1, the “full simplification” can result in untestable
paths. But already in this case the resulting BDD circuits
have a significant better testability than the ones generated
by SIS (see above), i.e. always more than 60%.

The results for the new approach are given in the next
two blocks. Column MuTaTe gives the results for a direct
mapping, i.e. the new test input is connected to each con-
stant input to a MUX cell, while MuTaTe-S performs the
simplifications described in Section 3.34.

As can be seen in both cases 100% PDFC is ensured. As
is well known the size of a BDD (and by this of the resulting
BDD circuit) largely depends on the chosen variable order-
ing. Comparing the literal count of the final circuits in Table
3, i.e. the size optimized BDDs, with those of SIS in Table
1, it can be seen that the synthesis methods are somehow
“orthogonal”. For several circuits the sizes are comparable,
while in some cases SIS is significantly better (see e.g. b9),
while for others BDDs are better suited. E.g. for t481 the
BDD circuit generated by MuTaTe-S is seven times smaller
than the corresponding circuit produced by SIS. Further-
more, the synthesis scenario considered in our experiments
is to be seen as “worst case” for BDD circuits (cf. Remark
2), since all cells are mapped to basic gates. For MUX ori-
ented design styles the reduction in size can be expected to
be even larger.

5. CONCLUSIONS
A new approach to generate multiplexor circuits from an

initial BDD description has been described. The resulting

3In a preliminary version of this paper also experiments for
the SAFM have been reported [10].
4In some rare cases (e.g. tcon) this reduction also removed
the additional input. In these cases 100% PDFC is ensured
while no additional input is needed.
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Table 2: Path delay fault coverage of BDD circuits
name MUX-map MuTaTe MuTaTe-S

lits NoP PDFC lits NoP PDFC lits NoP PDFC
5xp1 273 273 89.0 320 574 100.0 308 364 100.0
C17 26 22 68.1 41 44 100.0 29 26 100.0
alu2 652 873 86.9 718 1713 100.0 698 984 100.0
b9 609 1773 64.6 768 3429 100.0 700 2370 100.0
clip 603 954 79.4 667 1862 100.0 655 1130 100.0
con1 53 47 74.4 77 95 100.0 61 59 100.0
count 832 2248 66.1 928 4072 100.0 864 2704 100.0
i1 157 137 74.4 230 295 100.0 186 184 100.0
i5 2659 44198 61.3 3032 81381 100.0 2768 51345 100.0
t481 301 4518 86.1 328 8671 100.0 312 5473 100.0
tcon 32 40 100.0 96 112 100.0 32 40 100.0
9sym 84 328 72.5 97 658 100.0 93 490 100.0
f51m 239 326 99.3 262 668 100.0 242 332 100.0
z4ml 75 175 77.1 92 358 100.0 84 232 100.0
x2 147 188 72.3 183 379 100.0 171 244 100.0

Table 3: Path delay fault coverage of optimized
BDD circuits

name MUX-map MuTaTe MuTaTe-S
lits NoP PDFC lits NoP PDFC lits NoP PDFC

5xp1 131 218 83.0 168 463 100.0 160 337 100.0
C17 21 18 66.6 29 35 100.0 25 23 100.0
alu2 673 749 84.5 746 1446 100.0 730 867 100.0
b9 374 870 66.7 520 1707 100.0 468 1227 100.0
clip 353 764 76.4 391 1466 100.0 379 938 100.0
con1 38 28 85.7 61 59 100.0 45 35 100.0
count 221 624 58.9 320 1024 100.0 252 880 100.0
i1 141 111 71.1 194 226 100.0 170 142 100.0
i5 341 1102 67.6 552 2301 100.0 540 1998 100.0
t481 72 4065 74.6 80 7201 100.0 76 4996 100.0
tcon 32 40 100.0 96 112 100.0 32 40 100.0
9sym 84 328 72.5 97 658 100.0 93 490 100.0
f51m 133 236 83.8 158 494 100.0 146 314 100.0
z4ml 51 169 72.7 64 346 100.0 60 238 100.0
x2 87 80 73.7 123 160 100.0 111 112 100.0

circuits are fully testable under the stuck-at fault model and
under the (robust) path-delay fault model. The transfor-
mation only needs one extra input and one inverter. The
algorithm has been implemented as the program MuTaTe.
Experimental studies have demonstrated the advantages of
the approach.

It is focus of current work to study the stuck-at testability
of the generated circuits in more detail, i.e. to develop re-
ordering heuristics that generate BDD circuits of small size
with good random pattern testability.
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