
Placement-Driven Technology Mapping for LUT-Based FPGAs

Joey Y. Lin*, Ashok Jagannathan+, Jason Cong+
*Aplus Design Technologies, Inc.

+UCLA Computer Science Department
lin@aplus-dt.com, {ashokj, cong}@cs.ucla.edu

ABSTRACT

In this paper, we study the problem of placement-driven

technology mapping for table-lookup based FPGA architectures to
optimize circuit performance. Early work on technology mapping
for FPGAs such as Chortle-d[14] and Flowmap[3] aim to optimize
the depth of the mapped solution without consideration of
interconnect delay. Later works such as Flowmap-d[7], Bias-
Clus[4] and EdgeMap consider interconnect delays during
mapping, but do not take into consideration the effects of their
mapping solution on the final placement. Our work focuses on the
interaction between the mapping and placement stages. First, the
interconnect delay information is estimated from the placement,
and used during the labeling process. A placement-based mapping
solution which considers both global cell congestion and local cell
congestion is then developed. Finally, a legalization step and
detailed placement is performed to realize the design. We have
implemented our algorithm in a LUT based FPGA technology
mapping package named PDM (Placement-Driven Mapping) and
tested the implementation on a set of MCNC benchmarks. We use
the tool VPR[1][2] for placement and routing of the mapped
netlist. Experimental results show the longest path delay on a set of
large MCNC benchmarks decreased by 12.3% on the average.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS – Design Aids.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Logic re-synthesis, FPGA synthesis, mapping

1. INTRODUCTION

The interaction between synthesis and physical design has

received increased attention from researchers. In general, logic
synthesis and optimization techniques have significant impact on

the performance of large circuits. The logic structure decided by
synthesis stage may cause remarkable differences in the quality of
their physical implementations. It is expected that a tight
interaction between synthesis and physical design can lead to
better circuit performance.

Traditional design methodology for lookup-table (LUT) based
FPGAs consists of a technology mapping phase, where a given
Boolean circuit is converted into a functionally equivalent network
comprised only of LUTs, followed by a placement and routing
phase to realize an implementation of the mapped network. As the
routing resources in FPGAs are slower and more limited compared
to ASIC technologies, the technology mapping process has a
significant impact on the performance of the implemented circuit.
For early technologies where gate delays were dominant, the
objective of the technology mapping process was to minimize the
depth of the mapped network. Much of the early work on LUT-
based FPGA technology mapping addresses exactly this problem.
The Flowmap algorithm [3] solves this problem optimally using
elegant network flow computations. Cut enumeration based
algorithms such as Cutmap [8] allow a trade-off between the depth
and area (in terms of the number of LUTs) in the mapped network.

However, with the advent of deep submicron technology, the
delay of the interconnects has started to dominate the gate delay.
Under such conditions, minimizing the depth of the mapped
network does not accurately capture the performance of the circuit
after placement and routing. More recent mapping algorithms such
as Flowap-d [7], Bias-Clus[4] and Edge-Map[9] consider the
delays of the wires during mapping. Flowmap-d assumes that each
net may have a different delay but uses the same delay for every
segment of net, while Bias-Clus and Edge-Map accommodate non-
uniform delays for different segments of the same net. However,
none of these approaches consider the effect of the resulting
mapping solution on placement when the solution is generated.

The work in [5] proposes a simultaneous approach to
technology mapping and linear placement for tree like circuits.
Their work focuses on ASIC technology, and can also be applied
to FPGAs. However, experimental results in Flowmap [3] have
shown that such a decomposition of the circuit into disjoint trees
followed by mapping may result in significant increase in the area
of the mapped netlist, which may not be desirable.

We identify two main drawbacks with the existing approaches
for technology mapping for FPGAs:

1) They assume that the delays on the interconnect
segments are “fixed” during and after mapping, which does not
always hold. For example, the delays of the visible edges
mentioned in [4] will significantly change depending on the
locations of the LUTs connected by these edges, which is
determined only during placement. This assumption makes the
post-layout delay of these mapped solutions less predictable from
the mapping solution.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FPGA ’03, February 23--25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/2003…$5.00.

2) They do not consider the effect of the mapping solution
on the final layout when decisions are made during the generation
of the mapped solution itself.

In this work, we propose a heuristic solution to the
simultaneous technology mapping and placement problem for
FPGAs, without decomposing the original network into disjoint
trees. In this context, we introduce a placement-driven mapping
technique to consider the effect of mapping decisions on the
interconnect delay and cell congestion in the placement. Basically,
we eliminate the notion of “fixed” delays for interconnects as in
[4] and use a table-lookup method to estimate edge delays based
on the current mapping solution and its associated placement. Our
approach consists of two phases – (a) a cut-enumeration based
technique for simultaneous technology mapping and coarse
placement generation with consideration of dynamically changing
interconnect delays and cell congestion and (b) placement
legalization and refinement. In (a), coarse placement implies that
there may be overlapping cells in the placement.

The rest of the paper is organized as follows. In Section 2, we
formally define our problem and outline our approach. In Section
3, we briefly talk about our timing-driven decomposition. In
Section 4, we discuss in detail our simultaneous mapping and
placement methodology. Section 5 deals with the legalization and
refinement of the placement generated by the mapping algorithm,
while Section 6 presents the experimental results. The conclusions
and possible future work are presented in Section 7.

2. PRELIMINARIES AND PROBLEM

FORMULATION

A general Boolean network N can be represented as a directed

acyclic graph (DAG) where each node represents a logic gate, and
a directed edge (u, v) exists if the output of gate u is an input of
gate v. A primary input (PI) node has no incoming edge and a
primary output (PO) node has no outgoing edge. We use input(v)
to denote the set of nodes which are fanins of gate v. Given a
subgraph H, input(H) denotes the set of nodes outside H which are
the inputs to the gates in H. For a node v in the network, a cone of
v, denoted Cv, is a subgraph consisting of v and its predecessors
such that any path connecting a node in Cv and v lies entirely in Cv.
If |input(Cv)| ≤ K, we call Cv as a K-feasible cone at v and a K-
feasible cut is the corresponding input set of this cone. A Boolean
network is K-bounded if |input(v)| ≤ K for each node v.

The technology mapping problem for K-LUT based FPGAs is
to cover a given K-bounded Boolean network N into a functionally
equivalent network M comprised of K-LUTs, such that the circuit
delay and/or area is minimized. The circuit delay depends on the
delay model used to estimate the delay of gates and interconnects
during the mapping process.

Such a Boolean network of K-LUTs can be implemented on a
lookup-table based FPGA, using FPGA placement and routing
tools. We assume that each programmable logic block on the
FPGA is a K-input lookup-table (K-LUT) that can implement any
K-input Boolean function. The placement process will assign a pair
of coordinates for each LUT u, denoted as location(u). Since two
LUTs cannot be placed in the same location, we have
location(u)≠location(v) when u≠v. A natural objective of
performance-driven placement algorithms is to generate a
placement which minimizes the maximum delay along any path in
the placement. The delay along any path in the placement comes
from both the gates and the interconnects along that path. The gate

delay is usually a constant value dg for LUT-based FPGAs.
However, the interconnect delay depends on many factors, such as
the wire length, capacitive load, etc. We assume that the
interconnect delay between two locations a and b, denoted delay(a,
b), can be obtained by a table-lookup method.

Ideally, a simultaneous approach to technology mapping and
placement would produce an implementation with the best
performance. However, due to practical limitations, a two-step
approach as discussed above is generally followed. Since the
technology mapping and the placement generation are decoupled,
we propose that a placement-driven technology mapping of the
circuit based on the generated placement could significantly
improve the performance of the circuit.

Formally, we state the placement-driven technology mapping
problem as follows:

Given a placement solution of K-LUT network M and delay

models for gates and interconnects, generate another K-LUT
network M’ and corresponding placement with better performance.

Figure 1 shows the different stages of our approach. The

circuit is first optimized by various technology independent
optimization techniques [11]. We use the FPGA technology
mapping algorithm Cutmap [8] to generate the initial mapping
solution and VPR [2] to place and route the mapped LUT network.
The input to our placement-driven mapping approach is the
mapped LUT netlist generated by Cutmap and the corresponding
placement generated by VPR. Our work has three phases:
(a) Timing-driven logic decomposition of the LUT-network into

2-input gates and assigning locations to these gates.
(b) Placement-driven mapping, which, starting from the initial

decomposed network of 2-input gates with locations,
generates another K-LUT network to improve the delay
and/or area. A placement for this newly generated network is
also produced during this step. However, this placement may
not be legal – i.e., more than two LUTs can be positioned at
the same location.

(c) Placement legalization and refinement phase which removes
the overlaps in LUT positions and further refines the
placement for performance.

 Initial Design

Technology Independent Logic
Optimization

Generation of initial mapping
and corresponding placement

Placement-driven technology
mapping

Placement legalization and
refinement

Logic Decomposition into 2-
input gates

Figure 1. Optimization flow

In the following sections, each of these three steps is
discussed in detail.

3. TIMING-DRIVEN LOGIC

DECOMPOSITION

In order to search a large mapping solution space, we first

decompose the mapped network into a 2-input AND/OR gate
network. Since the placement for the initial mapping solution is
given, we can derive some useful delay information to guide our
decomposition. Our decomposition method is a modified version
of the DMIG [13] decomposition algorithm to consider
interconnect delay. We decompose the gates in topological order
starting from the primary inputs. Therefore, when a gate is
considered for decomposition, all of its inputs have already been
decomposed. All the 2-input gates formed by decomposing a LUT
are assigned the same location as the LUT in the placement. The
original DMIG algorithm computes the arrival times of all input
signals at a LUT, and combines the two early arriving signals
(much like building a Huffman code) to form a 2-input gate. In our
version, since we know the locations of the gates being
decomposed, we compute these arrival times not only based on
gate delays, but also based on the interconnect delays between the
fanin gate location and the gate being decomposed. We use a delay
lookup-table to get the delay estimate between two locations in the
placement. This guarantees a minimum delay decomposition for
each node, based on the given gate and interconnect delay models.

4. PLACEMENT-DRIVEN MAPPING

Once the network is decomposed and locations are assigned

to the 2-input gates in the decomposed network, we apply our
placement-driven mapping technique on this network. The
mapping process is done in two phases (1) label each node in
network with their best possible signal arrival time, and (2)
perform the actual mapping of simple gates into LUTs while
considering both delay and area. Both these phases are explained
in detail below.

4.1 Labeling phase

In the labeling phase, we will label each node with the best

arrival time calculated based on the interconnect delay model
associated with our placement. In order to estimate interconnect
delays, each mapped LUT must be assigned a physical location.
During the mapping stage we assume that the LUT will be placed
at the location of the root node of the corresponding cone. Based
on this assumption, the interconnect delay between two LUTs
becomes the delay between the corresponding root node locations.

Given a node v, since each K-feasible cut corresponds to a
mapping solution of this node, we will first find all of its K-
feasible cuts Cutv. Since we work on a 2-bounded network, it is
efficient to use cut enumeration technique[10] to calculate Cutv.
Suppose node v has two inputs w and u, and Cutw and Cutu are
known. We can derive
 Cutv={Xw∪Xu | Xw∈Cutw∪{{w}}, Xu∈Cutu∪{{u}}, |Xw∪Xu |≤K}

After finding all the cuts, we can calculate the maximum
signal arrival time AX for each cut X. The signal arrival time of
node v can be separated into three parts -- the arrival time to an
input node u, the interconnect delay between u and v, and the gate

delay of v. The arrival time AX is max{label(u)+delay(location(u),
location(v))+dg|u∈X }.

Thus, our labeling phase proceeds as shown below:
0. Assign 0 to label(u) for node u which is a PI or FF output;
1. For each node v in topological order
2. Enumerate all K-feasible cut into Cutv;
3. label(v) = ∞;
4. For each cut X in Cutv
5. Calculate AX as max{label(u)+ delay(location(u),

location(v))+dg |u∈X };
6. if (label(v)> AX)
7. label(v) = AX;

Theorem: Under the assumptions that each LUT will be
placed at the root node of the corresponding cone, the above
mentioned algorithm finds the best signal arrival time for each
node under the given gate and interconnect delay models.

The proof of this theorem is a simple extension of the proof of
the labeling phase of existing mapping algorithms. Interested
readers are pointed to [3].

4.2 Mapping phase

Although we find the best signal arrival time during the

labeling phase, we cannot determine whether we can find a
mapping and placement solution to achieve this best arrival time.
This problem is mainly due to our assumption made in the labeling
phase that every LUT will be placed at the location of the root
node of the K-feasible cone. But in the original network, a LUT l
can be decomposed to several 2-input nodes. If two of them are the
root nodes of different K-feasible cones, we need to place 2 LUTs
at the slot of LUT l. This will make the placement solution
infeasible. This is the so called cell congestion problem and it is
the key problem in our placement-driven mapping.

We classify the cell congestion problem into two types:
global cell congestion and local cell congestion. Global cell
congestion is caused by the total area increase between our
mapping and original mapping. The placement algorithm usually
packs the LUT network in a small area and if we increase the total
number of LUTs by a large amount, we must change the locations
of many LUTs in the corresponding placement. As a consequence,
the placement information we exploit in the labeling phase
becomes invalid. Local cell congestion means that many LUTs are
assigned to a small area. Although neighborhood areas may still be
empty, we still need to move those LUTs far away.

Our mapping phase is an iterative procedure and contains
multiple mapping passes. Each pass uses the cell congestion
information gathered during previous iterations to guide the
mapping decisions made during this pass. Mapping in each pass
starts from the PO, and maps nodes backward until PI. Since the
largest label in our labeling phase is the best critical path we
expected, we use it as our optimization target, and set it as the
signal required arrival time for each PO.

When we map a node v, first we calculate the required arrival
time of this node require(v). This value can be derived from those
nodes in its fanout cone that are already mapped. For example, if
node u is a node already mapped and v belongs to its cut,
require(v)=min(require(v),require(u)-delay(location(v),
location(u))-dg). It is easy to prove that if the signal arrival time at
node v is earlier than require(v), we can achieve the minimum
delay at the POs in the mapping solution.

After calculating require(v), we can determine the possible
candidate cuts from Cutv whose best arrival time is less than
require(v). For each candidate cut, we will evaluate it with a cost
function which handles the cell congestion problem. We will
choose the cut with the best cost as the mapping solution for node
v.

The cost function is trying to handle the important cell
congestion problem. For each cut, the cost is the sum of all the
nodes in this cut. If a cut is selected in the mapping phase, the
nodes in this cut will be implemented in the placement. Therefore
the cost of these nodes must represent their contribution to the cell
congestion. We define the cost with the following priorities.

♦ 1st priority

If a node is already in the cut of previously mapped node in
the same mapping pass, using this node will increase neither global
nor local cell congestion. Thus its cost is set to 0.

♦ 2nd priority

If a node fans out to many LUTs in the previous mapping
passes, it is very likely to be reused in this mapping pass. We will
assign the node with a very small cost ε.

♦ 3rd priority

Our goal is to find a mapping solution without cell
congestion. Actually the original mapping is a solution without any
cell congestion. The only problem is that it cannot meet our timing
target. If our new mapping solution only made changes at some
critical points, it will introduce less cell congestion. Our 3rd priority
cost is based on this observation -- if a node is the root node of any
LUT in the original mapping solution, it is assigned a small cost
value δ, with δ > ε.

During the procedure of generating mapping solutions
backward from primary outputs, when a root node is mapped and
the original mapping solution can satisfy the timing requirement,
the cost of the original cut will be small due to the small δ.
Therefore the original solution will be retained for this node. The
exception is when there is another cut whose nodes are of 1st or 2nd
priority. In this case the new changes will only result in fewer
LUTs than the original solution, and it is less likely to introduce
new LUTs.

♦ 4th priority

We use a hierarchical area control scheme to evaluate the
local congestion cost. In this scheme, we count the area increase in
several bin levels as in Figure 2. For example, if we are trying to
put a new node v into our mapping solution, we check whether we
will have area overflow in the adjacent bin regions. The bin
regions are designed hierarchically, from smallest size to largest
size. Penalty costs will be given to bins at every level if the area
overflows.

♦ 5th priority

We also adopt the idea from the FPGA routing tool
PathFinder [12]. After each mapping pass, we accumulate the
actual number of nodes assigned in each small region. In the
ongoing mapping pass, we will use these records to guide the new
mapping, i.e., we assign a node with a high cost if this node is in a
region which contains a lot of LUTs in previous passes.

The 1st, 2nd and 3rd priority costs are applied to handle global
cell congestion, and the 3rd, 4th and 5th priority costs are for local

cell congestion. With these cost evaluations, we get a best timing
mapping solution with less cell congestion problems. Since we
may still have some congestion, we need a legalization step to give
us a legalized placement.

A few experiments are carried out to estimate the effect of
each cost. The results show that only 2.3% cuts are using the 4th
and 5th priority costs. Most of the cuts are only use 1st, 2nd and 3rd
priority cost. Therefore, the majority of LUTs in the original
circuits are unchanged.

v

Figure 2. Hierarchical area control
5. PLACEMENT LEGALIZATION AND

REFINEMENT

Though the mapping algorithm described in the previous

section tries to minimize the cell congestion, it is clear that the
algorithm cannot guarantee an overlap-free placement. We need a
method to remove these overlaps and obtain a high-quality
placement using the location hints provided by the mapping
solution, without significantly sacrificing the performance
estimated by the mapping algorithm. We perform this in two steps
(i) a timing-driven legalization step, where we move overlapping
cells into empty locations in their neighborhood based on the
timing slack available for the cell and, (ii) a simulated annealing
based placement refinement phase, where we further refine the
legalized placement to improve the circuit performance.

During the legalization phase, we compute the available
timing slack for each LUT and flip-flop in the mapping solution.
Cells positioned in the placement where there are no overlaps after
the mapping phase are not affected by the legalization process. We
sort all the overlapping cells in the placement (both flip-flops and
LUTs) in non-decreasing order of their timing slacks. From this
list, we move one cell at a time to the closest empty location in the
placement till the placement is legalized. It is important to note that
the movement of one cell might affect the slacks associated with
other cells. In extreme case, we can recompute the slacks after
each cell move. In practice, however, performing timing analysis
after each cell move can be expensive in terms of runtime, we
recompute the slacks after every n cell movements, where n is a
user specified parameter. We choose n=50 in our experiment.

Since the legalization is a greedy approach to remove
overlaps, it is oblivious to the effect of individual cell movements
on the global circuit performance. Hence, we use a low
temperature simulated annealing engine in the second phase to
further improve the placement after the legalization step. The idea
is to allow movement of cells within a small area around its
location in the legalized placement which will potentially result in

the reduction of the critical path delay of the placement.
Experimental results show significant gains with such a placement
refinement approach.

6. EXPERIMENTAL RESULTS

We have implemented our mapping algorithm in C++ on top

of SIS [11] framework and tested on a set of MCNC benchmarks.
We use VPR’s [2] placement and routing engine to generate the
interconnect delay table to be used by our mapping algorithm and
perform layout of the mapped networks. We use a 4-input LUT
architecture for all our experiments. Several experimental setup
issues are discussed in this section.

For each circuit, we first perform technology-independent
logic optimization using script.algebraic in SIS. We then generate
a technology mapping solution using the Cutmap [8] algorithm.
The mapped netlist is packed into a set of BLEs using the tool T-
VPACK [2]. This network of BLEs is placed and routed using
VPR to obtain the initial locations for the LUTs and flip-flops in
the mapped network. We then use a timing-driven version of the
DMIG [13] algorithm discussed earlier to decompose the LUTs in
the network into a set of 2-input gates. The delay of a 2-input gate
is assumed to be 1/3rd of LUT delay during decomposition. All the
2-input gates generated by decomposing a LUT get the same
location as that of the LUT.

Our mapping algorithm also generates a mapped netlist and
locations for LUTs and flip-flops in the network. Ideally, the
placement legalization and refinement step would work directly on
a network of LUTs and flip-flops, allowing each element to move
independently. However, as we do not have a layout tool which
can work on these elements independently, we use T-VPACK to
pack our mapped netlist into a network of BLEs. The location of a
BLE is decided as follows:
• If the BLE contains a flip-flop (irrespective of whether it also

contains a LUT or not), then the location of the flip-flop in the
mapped network is the initial location of the BLE.

• If the BLE contains only a LUT, then the location of the LUT
in the mapped network is the initial location of the BLE.
We implemented the legalization algorithm on top of VPR

data structures, which now legalizes BLEs and not flip-flops and
LUTs individually. After legalization, we use VPR’s simulated
annealing engine to further refine the placement. Since we only
want to perturb the solution by a small amount, we start the
annealing process at a low temperature and limit the movement of
blocks by VPR to a small region around its location in the
legalized placement.

In our detail placement experiments with VPR, the
temperature is varied from 10-4 to 10-8, α=0.97, the starting
movement range is set to 10. During the detail placement phase,
we only focus on the critical path. So the –timing_tradeoff
parameter is set to 1 and starting critical path exp is set to 3.

The experimental results for a set of MCNC benchmark
circuits are listed in Table 1. We selected sequential benchmarks
that have more than 2000 internal nodes in the initial netlist.
Column 2 shows the width and height of the placement area.
Columns 3, 4, 6 and 7 show the number of LUTs and CLBs
respectively after the mapping and packing stages. Column 8 gives
the percentage increase in the number of CLBs. Columns 9 and 10
represent the local congestion. The 4x4 overflow value is
calculated as the maximum number of LUTs in any 4x4 CLB
region divided by 16 after the mapping stage. The 8x8 overflow
value is calculated similarly. Columns 5, 12 and 13 are the longest
path delay estimated by VPR after the placement stage. Column 11
is the largest delay label obtained after the labeling phase as
described in Section 4.1.

Table 1 shows that the placement-driven mapping improves
performance by 12.3% on the average. From the data, we can see
that there is a consistent improvement in the longest path delay for
all the big circuits (with greater than 1000 LUTs). This is probably
due to the fact that the large circuits have a lot of paths available
for the detailed placement tool to trade-off, which may not be the
case with smaller circuits. Also, for all these cases, the local and
global cell congestion values are very low. Thus the final detailed
placement can do a better job in legalizing these mapped results.

Cutmap Placement-driven Mapping

Circuit
Chip
size LUT CLB

Longest
path(ns) LUT CLB

Area
increase

4x4
overflow

8x8
overflow

Largest
label(ns)

Longest
path(ns)

Delay
reduction

s9234 24 400 446 44.2 444 486 9.0% 1.6875 1.031 37.5 43.6 1.4%

s5378 32 524 551 40 530 558 1.3% 1.1875 1.016 34.7 36.3 9.3%

s13207 40 921 1127 62.3 908 1114 -1.2% 1.3125 1.0625 60.5 63.7 -2.2%

cordic 40 1236 1247 46.2 1242 1253 0.5% 1.25 1.031 45.8 45.1 2.4%

s15850 40 1254 1351 73.4 1225 1322 -2.1% 1.125 1 74.1 73.3 0.1%

dsip 56 1371 1371 61.4 1370 1370 -0.1% 1 1 21.5 40.1 34.7%

mult32 56 2623 2655 334.7 2622 2654 0.0% 1 1 192.2 320.4 4.3%

s35932 64 2937 3216 81.8 2921 3200 -0.5% 1 0.953 33.1 58.2 28.9%

s38417 64 3728 4023 81.6 3646 3941 -2.0% 1.0625 1.016 74.9 68 16.7%

s38584 72 4688 4885 80.8 4460 4657 -4.7% 1.0625 1 72.5 58.1 28.1%

 12.3%

Table 1. Area and delay comparison between cutmap and placement-driven mapping

On the other hand, circuits that have higher cell congestion values
have smaller improvements or even worse longest path delay as in
the case of s13207.

In order to evaluate the importance of the components of the
cost function, we also collected delay results for different cost
function settings. In Table 2, we show results with and without 3rd
priority cost. Method A is using all the 5 priority cost assignments.
Method B is using all the other cost assignment except for the 3rd
priority cost. We can find that the 3rd cost consistently improves
the solution quality. Thus, this cost function is important in
balancing the timing requirement and congestion well during the
mapping process.

7. CONCLUSIONS AND FUTURE WORK

We studied the problem of placement-driven technology

mapping for LUT-based FPGAs. A general delay model, which
considers dynamically changing interconnect delays based on
actual LUT locations is considered. An effective technology
mapping algorithm based on the cut-enumeration technique was
developed which optimizes the circuit performance with
consideration of interconnect delays and cell congestion.
Experimental results show significant improvements in the post-
layout timing results on a set of large circuits compared to
traditional interconnect-delay unaware mapping approaches.

Future work will include developing a better legalization and
incremental placement tool that can deal with cell congestion
issues better. Also, as routing resources in FPGAs are scarce, we
would like to extend our mapping algorithm to consider routing
congestion when generating the mapping solution.

8. ACKNOWLEDGEMENT

This research is funded partially by the Semiconductor

Research Corporation under grant 2001-TJ-910 and the National
Science Foundation under contract CCR0096383.

9. REFERENCES

[1] A. Marquardt, V. Betz, and J. Rose, “Timing-driven

placement for FPGAs,” Proceedings of ACM/SIGDA
International Symposium on FPGAs, Monterey, CA, pp 203-
213, Feb 2000.

[2] V. Betz, and J. Rose, “VPR: A new packing, placement and
routing tool for FPGA research,” Proceedings of Field
Programmable Logic, Seventh International Workshop
(Oxford, UK, Sept 1997), pp 213-222.

[3] J. Cong and Y. Ding. “An optimal technology mapping
algorithm for delay minimization in lookup-table based FPGA
designs,” Proceedings of the IEEE International Conference
on CAD, pp 48-53, Nov. 1992.

[4] A. Mathur and C. L. Liu. “Performance-driven technology
mapping for lookup-table based FPGAs using the general
delay model,” Proceedings of International ACM/SIGDA
Workshop on FPGAs, Feb 1994.

[5] J. Lou, A. H. Salek and M. Pedram, “An exact solution to
simultaneous technology mapping and linear placement
problem,” Proceedings of the International Conference on
Computer Design, pages 671-675, Nov. 1997.

[6] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based
FPGA technology mapping,” IEEE Transactions on VLSI
Systems, Vol. 2, June 1994.

[7] J. Cong, Y. Ding, T. Gao and K. C. Chen, “LUT-based FPGA
technology mapping under arbitrary net-delay model,”
Computers and Graphics, vol. 18, no. 4, pp. 507-516, 1994.

[8] J. Cong and Y. Hwang, “Simultaneous depth and area
minimization in LUT-based FPGA mapping,” Proceedings of
ACM/SIGDA International Symposium on FPGAs, Monterey,
California, pp. 68-74, February 1995.

[9] H. Yang and D. F. Wong, “Edge-map: optimal performance-
driven technology mapping for iterative LUT based FPGA
designs,” Proceedings of IEEE/ACM International
Conference on CAD, pp 150-155, Nov. 1994.

[10] J. Cong, C. Wu and E. Ding, “Cut ranking and pruning:
enabling a general and efficient FPGA mapping solution,”
Proceedings of ACM/SIGDA International Symposium on
FPGAs, Monterey, California, pp. 29-35, Feb. 1999.

[11] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton
and A. Sangiovanni-Vincentelli, “SIS: A system for
sequential circuit synthesis”, Memorandum No. UCB/ERL
M92/41, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley, May 1992.

[12] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-
based performance-driven router for FPGAs,” Proceedings of
3rd ACM/SIGDA International Symposium on FPGAs, Feb.
1995, pp.111-117.

[13] K. C. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar,
“DAG-map: graph-based FPGA technology mapping for
delay optimization,” IEEE Design & Test, pp. 7-20, Sept.
1992.

[14] R. J. Francis, J. Rose and Z. Vranesic, “Technology mapping
of lookup table-based FPGAs for performance,” Proceedings
of IEEE International Conference on CAD, pp. 568-571, Nov.
1991.

Circuit Original Method A Reduction Method B Reduction

s9234 44.2 43.6 1.4% 40.7 7.9%

s5378 40 36.3 9.3% 41.9 -4.7%

s13207 62.3 63.7 -2.2% 67.9 -9.0%

cordic 46.2 45.1 2.4% 44.2 4.3%

s15850 73.4 73.3 0.1% 74.2 -1.1%

dsip 61.4 40.1 34.7% 48.7 20.7%

mult32 334.7 320.4 4.3% 315.7 5.7%

s35932 81.8 58.2 28.9% 89.8 -9.8%

s38417 81.6 68 16.7% N/A N/A

s38584 80.8 58.1 28.1% 67.9 16.0%

 12.3% 3.3%

Table 2. Comparison between different cost assignment
methods
Note: N/A means that the new solution cannot fit into the original
placement grid due to area increase.

	Main Page
	FPGA03
	Front Matter
	Table of Contents
	Author Index

