
Ubiquitous Access to Reconfigurable Hardware:
Application Scenarios and Implementation Issues

Leandro Soares Indrusiak 1,2, Florian Lubitz 2, Ricardo Reis 1, Manfred Glesner 2
1 Instituto de Informática, UFRGS, Porto Alegre, Brazil

 2 Microelectronic Systems Institute, TU Darmstadt, Darmstadt, Germany
E-mail: <lsi, flubitz, glesner>@mes.tu-darmstadt.de, reis@inf.ufrgs.br

Abstract

This paper presents an approach for the integration of
reconfigurable hardware and computer applications
based on the concept of ubiquitous computing. The goal is
to allow a network of reconfigurable hardware modules
to be transparently accessible by client applications. The
communication between them is done at the API level,
and a Jini-based infrastructure is used to provide an
interface for the client applications to find available
reconfigurable hardware modules over the network. A
DES-based cryptography system was implemented as a
case study.

1 Introduction

The concept of ubiquity, initially introduced within

the computer systems world by Weiser in the early 1990s
[1], comprehends the ability to exist everywhere at the
same time. Weiser's interpretation of this concept
advocated that computer systems should disappear into
the background, requiring minimum - if any - attention
overhead from its users. In this paper, we explore such
concept to create a higher level of abstraction for the
usage of reconfigurable hardware platforms. Our goal is,
quoting Weiser, to allow reconfigurable hardware
"disappear in [a] way [we are] freed to use them without
thinking and so to focus beyond them on new goals". We
are aware that it is an ambitious statement - as it was
Weiser's goal when stated a decade ago - so we focus first
on a few application scenarios, described in Section 3.
The underlying approach, however, is general enough to
be extended into other application domains. In Section 4,
some implementation issues are covered, followed by a
case study where we use a cryptography system to
validate our approach on two of the proposed application
scenarios. The paper is closed with the envisioned
extensions for this work and with our conclusions on the

benefits of applying the concept of ubiquity in the
reconfigurable hardware arena.

2 Ubiquitous reconfigurable computing

The possibilities granted by the integration of

reconfigurable hardware modules to computer systems are
well known [2]. Applications domains range from
consumer electronic devices which can be upgraded after
deployment, to emulation platforms supporting the design
and verification of electronic systems. Such integration,
however, requires specific expertise from the designers
and the integration procedure itself can be very time-
consuming.

Our work aims to reduce the integration overhead of
reconfigurable hardware modules and computer systems.
We propose to reduce such overhead by raising the level
of abstraction of the integration architecture, allowing the
communication to be done via message passing, as
proposed in the object-oriented paradigm. By using this
approach, each reconfigurable hardware module can be
seen by the rest of the system as an object1. Thus, it
should be reconfigured and used through method calls.
This can make a significant difference for the system
designer, because he/she can abstract the internal details
of the reconfigurable module - a typical result of the
encapsulation feature of object-oriented systems - and can
design the whole system communication at the API level.
In such approach, all the subsystems depending on the
reconfigurable hardware module can call a configuration
method to set up the desired functionality, and then call
methods to pass the data to be processed and receive the
results. Figure 1 depicts such possibility.

In order to cope with the demands of the current
application scenarios - where the computation is
performed by several interconnected appliances - we also
have to support the integration of reconfigurable hardware

1 an entity with a well defined boundary and identity that encapsulates
state and behavior [3]

1530-1591/03 $17.00  2003 IEEE

modules into distributed computer systems. We can
expect that each subsystem could be in a different
location, connected to the others by a heterogeneous
network. So, our approach should allow those subsystems
to interact with any number of encapsulated
reconfigurable hardware modules. The minimum
infrastructure to do so comprehends distributed resource
localization and remote method invocation. The first
technique provides means for the distributed objects to
locate other objects according to their needs, while the
second one is responsible for the common dialect used by
the objects to exchange messages once they have establish
communication. Section 4 will cover those techniques in
more detail.

Figure 1. Reconfigurable hardware

encapsulation

3 Application scenarios

Many of the applications of reconfigurable hardware

can benefit from the proposed approach. For instance,
devices which were already deployed - such as an ad-hoc
network of sensors - could be located and upgraded by
method calls if they have encapsulated reconfigurable
hardware supported by an infrastructure for localization
and remote method invocation. Another application
scenario would be the use of reconfigurable hardware
modules as accelerators for specific computational tasks.
For instance, a mobile device which needs to decode a
stream of data and does not have the computational power
to do so could use the resource localization feature to
search for a reconfigurable hardware module which is
able to decode the data stream.

A third application could be found on the use of
reconfigurable hardware as a prototyping platform. Let's
imagine a system design specification done in the

functional level. Once that specification fulfills the
functional requirements, it should be submit to successive
synthesis steps in order to be implemented as a physical
entity. Reconfigurable platforms are being used as an
intermediate stage within such process, allowing system
designers to verify the correctness of their designs prior to
the final implementation. Our approach could provide a
simpler way to integrate the functional specification with
the prototyping platform, in such a way that they can
inter-operate. This would allow a mixture of simulation
and emulation in the functional level, because one could
synthesize and implement part of the functional
specification in the reconfigurable hardware and still be
able to perform the functional simulation, as the rest of
the specification would communicate with the prototype
in the same way it did before with the functional
description.

Similarly to the prototyping platform scenario, a
distributed IP core validation system could benefit from
the proposed approach. In simulation systems such as
those presented in [4,5], a designer access remotely an IP
core so it can be simulated together with the rest of the
design. Our approach could provide a layer between the
IP core repository and the client, so the cores could be
accessed seamlessly, without a previous connection to a
predefined server. Another advantage would be the
possibility of simulating an actual core implemented in a
reconfigurable module, instead of the simulation models
proposed in [4,5].

Finally, we can envision also the benefits of
ubiquitous access to the application reported in [6], which
uses FPGA boards as an educational resource for distance
learning and on-the-job training.

4 Implementation issues

Several design decisions were taken in order to

implement the proposed concepts. The first of them
regarded the underlying network infrastructure over
which the objects should communicate. As TCP/IP
networks are nowadays the de facto standard for the
intercommunication of computer systems, this was not
much of a choice. By using TCP/IP as underlying
infrastructure, the deployment of reconfigurable modules
can be done over any Internet-like network.

The following decision regarded the implementation
of the infrastructure allowing ubiquitous access to the
reconfigurable hardware modules. We consider a module
to be ubiquitously accessible if a client application is able
to use its reconfigurable hardware services no matter
where it is located or which kind of reconfigurable
devices it has. It is also desirable that the infrastructure
allows the reconfigurable hardware module to be
included, moved or and excluded dynamically within the

configuration bank

sub
system

A
sub

system
B

distributed system, aiming to more flexibility and fault
tolerance.

There are some middleware solutions which can fulfill
those needs, such as CORBA [7], Jini [8] and UPnP [9].
All of them work over TCP/IP networks, and share the
common architecture showed on Figure 2. In principle,
any of them could be used to support our approach.

Our implementation uses Jini, mainly because of the
freely available development tools and because most of
the facilities for service lookup, discovery and join are
already implemented and freely available. Jini also
includes a programming model - built over the Java
language framework - covering leases, events and
transactions. The remote method invocation infrastructure
also rely on Java language features, specifically on the
JavaRMI package. Such programming model uses local
proxies to reference remote objects, so in the application
domain all method calls seem to be local, reducing the
overhead usually associated to dealing with remote
subsystems.

Figure 2. Middleware architecture

The procedure a client goes through in order to access

the reconfigurable module is described in the UML
sequence diagram in Figure 3. Initially, the client searches
for a lookup service. If the network address of the lookup
server is known, a direct connection is established.
Otherwise, an UDP multicast request can be sent, which
would be replied by the lookup servers reached by the
request.

 When the connection with the lookup server is
established, the client should perform the service lookup.
Such lookup is usually done based on a key which
provides unique identification of the service. In our
implementation, such key would identify the desired
configuration for the reconfigurable module. By using
Jini, we also have the possibility of using an object as a
key, so a more sophisticated lookup can be done. It allows
a scenario where the client is able to provide a specific
configuration as a key. In such case, the lookup server
can use the attributes of this configuration (target device,
logical capacity, etc.) to find an available reconfigurable
module which matches the request. In Figure 3, however,
the general case is depicted, when the configurations are

all pre-stored in a configuration bank (in our
implementation, a special Jini service called JavaSpaces
[10] is being used to store the configurations).

By relying in such approach, the client can access a
reconfigurable hardware module in a completely
transparent way. Its location - as well as the location of
the lookup server - are dynamically obtained during
runtime and are transparent for the client developer. The
internal functionality of the reconfigurable hardware
module is also hidden, since the client access it through a
proxy object. The interface of such proxy object - the API
calls it support - are the only information the client
requires in development time.

In order to map the API calls into specific functions -
which are usually particular for each type of
reconfigurable hardware platform - we use a backend
module in the host computer in which the reconfigurable
hardware module is connected. Such backend is
developed specifically for a single type of reconfigurable
platform and handles the platform-dependent
functionality - e.g. setting up for configuration, accessing
memory modules, etc. Our implementation was done in a
XESS XCV-800 Virtex Board, so we implemented a
specific backend API for it, encapsulating on it the
functionality to program the FPGA and access the SRAM
memory banks.

Figure 3. Accessing reconfigurable hardware

Another problem which must be solved in the backend
module is the data abstraction support. While in the
object-oriented domain all the computation is based in
complex data types, when it comes to hardware such data
types should be processed at the bit level. In order to
make the bit level computation invisible from the object-
oriented domain, we provide a data conversion interface
API, which can be used with small updates in a wide

client service

middleware

queries for
service

advertises
service

leased
service
attributes

lookup serviceclient reconfigurable
hardware service

reconfigurable
hardware backend

configuration
bank

create()

registerService()discoverLookup()

lookupService()

configure()

getConfiguration()

configure()

process()

process()

range of reconfigurable platforms. Such interface
organize the data to be processed by the reconfigurable
module in a bit array, including in such array the
information about the data types. The array is uploaded to
the reconfigurable module's memory, where the
reconfigurable processor reads, it, processes it and write
the results back so the backend can do the inverse
operation and send the results back to the object domain

In order to facilitate the development of hardware
configurations supporting our approach, we provide a
HDL description of a module which is able to read the
data array assembled by the backend module and
reconstruct it as data types which are tractable within the
HDL domain. The inverse path is of course implemented,
so that the results of the data processing done by the
reconfigurable processor can be written into the memory
in such a way the backend module can rebuild into data
types.

This type abstraction module should be built on top of
the memory interface module (in our implementation we
use the XESS memory interface developed by [11]). By
using such module, the designers of the configurations for
the reconfigurable processor can focus on its
functionality, without particular care to the fact that the
processor will be encapsulated and integrated into a
distributed objects environment. Figure 4 depicts the
layered architecture we provided to grant the complete
separation between domains.

Figure 4. Abstraction layers to application
development and hardware design

5 Case study: cryptography system

In order to validate the proposed approach, a

cryptography system was implemented. It was designed
over the proposed infrastructure, so the system could take
advantage on reconfigurable hardware modules which
were available in the network.

The first experiment covered the application scenario
where a developer can incrementally prototype the target
system described in the functional level. The chosen

example is a messaging system that sends and receives
encrypted messages using the DES encryption algorithm.
We implemented the whole system functionality using
Java language, so that the potential users can evaluate if it
fulfill their functional needs. In the next step, we started
the incremental prototyping of the system by
implementing some system modules in reconfigurable
hardware. So, the DES encrypt and decrypt modules had
to be converted to HDL in order to be synthesized and
implemented in our FPGA prototyping board. We used an
HDL core for the DES algorithm [12] in this
implementation, but when such possibility is not available
the conversion can be done with design automation tools
such as Forge [13] or even by hand if the design isn't too
complex. We used the type abstraction and the memory
access interfaces depicted in Figure 4, so the HDL core
could be integrated easily.

After the configuration was generated, it was stored
in the JavaSpaces repository. A Jini service federation
was initialized, and a service for the FPGA board was
registered on it.

In the application side, we replaced the software
objects which were performing the DES encrypting and
decrypting by proxy objects with the same external
interface. The rest of the application objects were not
changed, because the API they used to communicate with
the DES objects was kept. The internal implementation of
the DES objects was changed into proxies, relying on our
implementation of a Jini client, so they contact the FPGA
service every time a DES encryption or decryption was
requested by the application. The FPGA service
downloads the configuration from the JavaSpaces,
program the FPGA, receives the data from the proxy
objects, maps it into the FPGA memory, starts the FPGA
execution, reads the processed results and returns them to
the proxy object.

We successfully implemented such scenario, and the
use of such prototyping strategy was found very
convenient. It made possible the functional validation of
the prototyped design block, as it was tested together with
the rest of the functional description. The use of the
proposed abstraction layers between the object domain
and the hardware domain allowed a clear separation of
concerns, making easier the development on each of the
sides.

After the experimentation of the proposed approach as
a support for incremental prototyping, we decided to test
its suitability on the support of distributed processing. We
envisioned a scenario where a particular computational
task could be used remotely by a device with small
computational power, like a mobile phone or PDA. In
such case, the device would not be interested on
simulating the communication between parts of a system,
but actually request a particular data processing task

ba
ck

en
d

int

float

int[]

10101110101
01110101010
10101010101
00101010101
01001010101
01010010010
10100111001
01010101001

m
em

or
y

ha
rd

w
ar

e
de

si
gn

m
em

or
y

in
te

rf
ac

e
ty

pe
 a

bs
tr

ac
tio

n

st
d_

lo
gi

c_
ve

ct
or

bi
t_

ve
ct

or

object domain hardware domain

which would be too costly for it to implement alone. In
such cases, the ubiquitous nature of our approach would
be critical, because the small device could be mobile -
perhaps the processing reconfigurable units too - and a
greater variety of tasks to be performed could be
available. We used the same DES implementation
described in the previous scenario, but this time its
implementation could be seen by the application system
as an ubiquitous reconfigurable co-processor.

The implementation was successfully achieved, and
the application used our infrastructure to request to the
Jini service federation for a co-processor for
computationally intensive tasks. As expected, the actual
execution time of the DES algorithm in the FPGA
implementation is much faster than the implementation is
software, as shown in Table 1. The first two lines show
the maximum data rates for the encryption and decryption
in the application without the use of the reconfigurable
co-processor. The third line shows the data rate obtained
by the co-processor.

However, such gain could not be delivered to the
client applications. The overhead of the FPGA
configuration and of the data transfer from the host
computer to the reconfigurable hardware module were too
big, hindering the major goal of providing a significant
acceleration compared to the computation that would be
done locally by the client device. Such overhead can be
reduced if there is no need for frequent reconfiguration of
the modules - e.g. when there are many reconfigurable
hardware modules in the Jini federation so the client can
query for a module already configured with the needed
functionality.

Processor Clock (MHz) Data rate (Mbits/s)

Sun JVM over Intel
Pentium MMX

133 0.162

Sun JVM over
AMD Athlon XP-

1700

1467 1.295

Xilinx XCV-800 27.23 108.93

Table 1. DES implemetation comparison

The data transfer overhead can be also minimized, if

the host computer and the reconfigurable hardware
module are connected through a faster interface. In our
prototype, the communication between the host computer
and the FPGA board was done via a parallel interface, and
the access to the SRAM banks was very slow. Much
better results could be obtained by using a reconfigurable
hardware module connected to the backend through a
high speed bus, such as in the Pilchard platform [14].

The current implementation of the DES co-processor
can be accessed over Internet. The lookup service listens

to the port 4160 on the IP address 130.83.30.181. In the
same machine, you can download using HTTP from the
port 80 the source code to integrate a client into your
application, as well as the API documentation for the DES
proxy objects. If there are prototyping boards available,
the lookup service will assign one to do DES encryption
and decryption for your application.

6 Conclusions and future work

The integration of reconfigurable hardware into

computer applications is not trivial, usually requiring
from the designer a set of skills and expertise, including
hardware design, communication between reconfigurable
hardware and host computer and interface with software
modules. In the case of a distributed application, more
expertise is required in order to implement resource
distribution and communication.

This paper presented an approach for the integration
of reconfigurable hardware and computer applications
based on the concept of ubiquitous computing. Based on
the presented approach, a set of reconfigurable hardware
modules can be plugged in a network and be transparently
accessed by client applications. The client applications
must not have any information about the network location
or the internal implementation of the reconfigurable
modules. The connection between client and
reconfigurable hardware is based in a lookup mechanism.
The reconfigurable hardware is encapsulated by a service
interface, and all the communication with the client is
done in the API level, through method calls.

We validated the proposed approach in two scenarios,
one of them focusing on a system designer, which can use
our approach as a support for incremental prototyping.
For such scenario, we provide a library of code - both
object-oriented software and HDL - to simplify the
integration between the hardware domain and the
distributed objects domain. In a second experiment, we
used the infrastructure developed in the first scenario to
implement a reconfigurable hardware co-processor
service. Such application scenario was also successfully
prototyped, but implementation-related limitations
reduced the benefits expected from the proposed
approach. So, further steps on this work should start by
using faster interfaces for the communication between
reconfigurable hardware and host computer, so that the
performance gain shown in Table 1 could be actually
delivered to the client application.

Further steps on the research can also be envisioned.
One of the issues we intend to improve is on the
supported API for the integration of reconfigurable
hardware modules. Currently, there is a single API which
should be implemented by all the modules. While this
keeps it simple for the client application developer, it

reduces the potential of providing more specific services,
assigning each of them to a different API call. We expect
that the use of reflection mechanisms [15] could grant
such possibility without sacrificing the simplicity for the
developer. By using reflection, the simple interface can
still be used, but mechanisms to issue requests during
runtime for more detailed services would be available.

Another improvement that could increase the
applicability of the proposed approach is the support of
hardware originated method calls. In the current
approach, all the data dependencies should be solved in
advance by the backend, in order to start the computation
in the reconfigurable hardware model. In the future, we
intend to improve the communication between the
reconfigurable module and the backend in such a way that
the backend could call methods from other objects in the
Jini federation under request of the reconfigurable
hardware every time it faces an unresolved data
dependency during its execution.

Acknowledgements

The authors wish to acknowledge and thank Dipl.-Ing.

Alberto Garcia Ortiz and M.S.E.E. Abdulfattah Obeid for
their valuable suggestions.

References

[1] M. Weiser. The Computer for the 21st Century.
Scientific American, September 1991. Reprinted in IEEE
Pervasive Computing, 1 (1), p. 18-25, 2002.
[2] K. Compton, S. Hauck. Reconfigurable Computing: A
Survey of Systems and Software. ACM Computing Surveys, 34
(2), pp. 171–210, 2002.
[3] J. Rumbaugh, I. Jacobson, G. Booch. The Unified
Modeling Language Reference Manual. Reading: Addison-
Wesley, 1998. 360 p.

[4] M. Dalpasso, A. Bogliolo and L. Benini. Specification
and Validation of Distributed IP-based Designs with JavaCAD.
Proceedings of Design Automation and Test in Europe,
Munich, 1999. p. 684-688.
[5] M. J. Wirthlin and B. McMurtrey. IP Delivery for
FPGAs Using Applets and JHDL. Proceedings of the 40th
IEEE/ACM Design Automation Conference, New Orleans,
2002. p. 2-7.
[6] J. Becker, U. Mayer, M. Glesner, L. S. Indrusiak, R.
Reis. Providing Flexible Internet-Infrastructure for FPGA-Based
CAD Courses. Proceedings of the European Workshop on
Microelectronics Education (EWME), Aix en Provence, France,
2000.
[7] Object Management Group. Common Object Request
Broker Architecture (CORBA). v. 3.0. 2002.
http://www.omg.org
[8] K. Arnold, A. Wollrath, B. O'Sullivan, R. Scheifler, J.
Waldo. The Jini specification. Reading: Addison-Wesley, 1999.
[9] Microsoft Corporation. Universal Plug and Play
Device Architecture. v. 1.0. 2000.
http://www.upnp.org/download/UPnPDA10_20000613.htm
[10] E. Freeman, S. Hupfer, K. Arnold. JavaSpaces:
principles, patterns, and pratice. Java Series. Reading: Addison
Wesley, 1999.
[11] P. Sutton et. al. VHDL Interfaces and Example
Designs for the XSV board.
http://www.itee.uq.edu.au/~peters/xsvboard/
[12] The Free-IP Project. Free-DES. http://www.free-
ip.com/DES
[13] D. Davis et. al. Forge-J: High Performance Hardware
from Java. http://www.xilinx.com/forge/
[14] P.H.W. Leong et al. Pilchard - A Reconfigurable
Computing Platform with Memory Slot Interface. Proceedings
of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2001.
[15] Sun Microsystems Inc. JavaTM Core Reflection - API
and Specification, 1997. http://java.sun.com

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

