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Abstract 
 
This paper presents an approach for the integration of 
reconfigurable hardware and computer applications 
based on the concept of ubiquitous computing. The goal is 
to allow a network of reconfigurable hardware modules 
to be transparently accessible by client applications. The 
communication between them is done at the API level, 
and a Jini-based infrastructure is used to provide an 
interface for the client applications to find available 
reconfigurable hardware modules over the network. A 
DES-based cryptography system was implemented as a 
case study.  

 
 

1   Introduction 
 
The concept of ubiquity, initially introduced within 

the computer systems world by Weiser in the early 1990s 
[1], comprehends the ability to exist everywhere at the 
same time. Weiser's interpretation of this concept 
advocated that computer systems should disappear into 
the background, requiring minimum - if any - attention 
overhead from its users. In this paper, we explore such 
concept to create a higher level of abstraction for the 
usage of reconfigurable hardware platforms. Our goal is, 
quoting Weiser, to allow reconfigurable hardware 
"disappear in [a] way [we are] freed to use them without 
thinking and so to focus beyond them on new goals". We 
are aware that it is an ambitious statement - as it was 
Weiser's goal when stated a decade ago - so we focus first 
on a few application scenarios, described in Section 3. 
The underlying approach, however, is general enough to 
be extended into other application domains. In Section 4, 
some implementation issues are covered, followed by a 
case study where we use a cryptography system to 
validate our approach on two of the proposed application 
scenarios. The paper is closed with the envisioned 
extensions for this work and with our conclusions on the 

benefits of applying the concept of ubiquity in the 
reconfigurable hardware arena.  

 
2   Ubiquitous reconfigurable computing 

 
The possibilities granted by the integration of 

reconfigurable hardware modules to computer systems are 
well known [2]. Applications domains range from 
consumer electronic devices which can be upgraded after 
deployment, to emulation platforms supporting the design 
and verification of electronic systems. Such integration, 
however, requires specific expertise from the designers 
and the integration procedure itself can be very time-
consuming. 

Our work aims to reduce the integration overhead of 
reconfigurable hardware modules and computer systems. 
We propose to reduce such overhead by raising the level 
of abstraction of the integration architecture, allowing the 
communication to be done via message passing, as 
proposed in the object-oriented paradigm. By using this 
approach, each reconfigurable hardware module can be 
seen by the rest of the system as an object1. Thus, it 
should be reconfigured and used through method calls. 
This can make a significant difference for the system 
designer, because he/she can abstract the internal details 
of the reconfigurable module - a typical result of the 
encapsulation feature of object-oriented systems - and can 
design the whole system communication at the API level. 
In such approach, all the subsystems depending on the 
reconfigurable hardware module can call a configuration 
method to set up the desired functionality, and then call 
methods to pass the data to be processed and receive the 
results. Figure 1 depicts such possibility. 

In order to cope with the demands of the current 
application scenarios - where the computation is 
performed by several interconnected appliances - we also 
have to support the integration of reconfigurable hardware 
                                                        
1 an entity with a well defined boundary and identity that encapsulates 
state and behavior [3] 
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modules into distributed computer systems. We can 
expect that each subsystem could be in a different 
location, connected to the others by a heterogeneous 
network. So, our approach should allow those subsystems 
to interact with any number of encapsulated 
reconfigurable hardware modules. The minimum 
infrastructure to do so comprehends distributed resource 
localization and remote method invocation. The first 
technique provides means for the distributed objects to 
locate other objects according to their needs, while the 
second one is responsible for the common dialect used by 
the objects to exchange messages once they have establish 
communication. Section 4 will cover those techniques in 
more detail. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
Figure 1.  Reconfigurable hardware 

encapsulation  
 

3   Application scenarios 
 
Many of the applications of reconfigurable hardware 

can benefit from the proposed approach. For instance, 
devices which were already deployed - such as an ad-hoc 
network of sensors - could be located and upgraded by 
method calls if they have encapsulated reconfigurable 
hardware supported by an infrastructure for localization 
and remote method invocation. Another application 
scenario would be the use of reconfigurable hardware 
modules as accelerators for specific computational tasks. 
For instance, a mobile device which needs to decode a 
stream of data and does not have the computational power 
to do so could use the resource localization feature to 
search for a reconfigurable hardware module which is 
able to decode the data stream. 

A third application could be found on the use of 
reconfigurable hardware as a prototyping platform. Let's 
imagine a system design specification done in the 

functional level. Once that specification fulfills the 
functional requirements, it should be submit to successive 
synthesis steps in order to be implemented as a physical 
entity. Reconfigurable platforms are being used as an 
intermediate stage within such process, allowing system 
designers to verify the correctness of their designs prior to 
the final implementation. Our approach could provide a 
simpler way to integrate the functional specification with 
the prototyping platform, in such a way that they can 
inter-operate. This would allow a mixture of simulation 
and emulation in the functional level, because one could 
synthesize and  implement part of the functional 
specification in the reconfigurable hardware and still be 
able to perform the functional simulation, as the rest of 
the specification would communicate with the prototype 
in the same way it did before with the functional 
description. 

Similarly to the prototyping platform scenario, a 
distributed IP core validation system could benefit from 
the proposed approach. In simulation systems such as 
those presented in [4,5], a designer access remotely an IP 
core so it can be simulated together with the rest of the  
design. Our approach could provide a layer between the 
IP core repository and the client, so the cores could be 
accessed seamlessly, without a previous connection to a 
predefined server. Another advantage would be the 
possibility of simulating an actual core implemented in a 
reconfigurable module, instead of the simulation models 
proposed in [4,5]. 

Finally, we can envision also the benefits of 
ubiquitous access to the application reported in [6], which 
uses FPGA boards as an educational resource for distance 
learning and on-the-job training.  

 
4   Implementation issues 

 
Several design decisions were taken in order to 

implement the proposed concepts. The first of them 
regarded the underlying network infrastructure over 
which the objects should communicate. As TCP/IP 
networks are nowadays the de facto standard for the 
intercommunication of computer systems, this was not 
much of a choice. By using TCP/IP as underlying 
infrastructure, the deployment of reconfigurable modules 
can be done over any Internet-like network. 

The following decision regarded the implementation 
of the infrastructure allowing ubiquitous access to the 
reconfigurable hardware modules. We consider a module 
to be ubiquitously accessible if a client application is able 
to use its reconfigurable hardware services no matter 
where it is located or which kind of reconfigurable 
devices it has. It is also desirable that the infrastructure 
allows the reconfigurable hardware module to be 
included, moved or and excluded dynamically within the 
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distributed system, aiming to more flexibility and fault 
tolerance.   

There are some middleware solutions which can fulfill 
those needs, such as CORBA [7], Jini [8] and UPnP [9]. 
All of them work over TCP/IP networks, and share the 
common architecture showed on Figure 2. In principle, 
any of them could be used to support our approach.  

Our implementation uses Jini, mainly because of the 
freely available development tools and because most of 
the facilities for service lookup, discovery and join are 
already implemented and freely available. Jini also 
includes a programming model - built over the Java 
language framework - covering leases, events and 
transactions. The remote method invocation infrastructure 
also rely on Java language features, specifically on the 
JavaRMI package. Such programming model uses local 
proxies to reference remote objects, so in the application 
domain all method calls seem to be local, reducing the 
overhead usually associated to dealing with remote 
subsystems. 

 
 
 
 
 
 
 
 
 
   

Figure 2.  Middleware architecture  
 
The procedure a client goes through in order to access 

the reconfigurable module is described in the UML  
sequence diagram in Figure 3. Initially, the client searches 
for a lookup service. If the network address of the lookup 
server is known, a direct connection is established. 
Otherwise, an UDP multicast request can be sent, which 
would be replied by the lookup servers reached by the 
request.  

 When the connection with the lookup server is 
established, the client should perform the service lookup. 
Such lookup is usually done based on a key which 
provides unique identification of the service. In our 
implementation, such key would identify the desired 
configuration for the reconfigurable module. By using 
Jini, we also have the possibility of using an object as a 
key, so a more sophisticated lookup can be done. It allows 
a scenario where the client is able to provide a specific 
configuration as a key. In such case,  the lookup server 
can use the attributes of this configuration (target device, 
logical capacity, etc.) to find an available reconfigurable 
module which matches the request. In Figure 3, however, 
the general case is depicted, when the configurations are 

all pre-stored in a configuration bank (in our 
implementation, a special Jini service called JavaSpaces 
[10]  is being used to store the configurations). 

By relying in such approach, the client can access a 
reconfigurable hardware module in a completely 
transparent way. Its location - as well as the location of 
the lookup server - are dynamically obtained during 
runtime and are transparent for the client developer. The 
internal functionality of the reconfigurable hardware 
module is also hidden, since the client access it through a 
proxy object. The interface of such proxy object - the API 
calls it support - are the only information the client 
requires in development time. 

In order to map the API calls into specific functions - 
which are usually particular for each type of 
reconfigurable hardware platform - we use a backend 
module in the host computer in which the reconfigurable 
hardware module is connected. Such backend is 
developed specifically for a single type of reconfigurable 
platform and handles the platform-dependent 
functionality - e.g. setting up for configuration, accessing 
memory modules, etc. Our implementation was done in a 
XESS XCV-800 Virtex Board, so we implemented a 
specific backend API for it,  encapsulating on it the 
functionality to program the FPGA and access the SRAM 
memory banks. 

 

Figure 3.  Accessing reconfigurable hardware  
 

Another problem which must be solved in the backend 
module is the data abstraction support. While in the 
object-oriented domain all the computation is based in 
complex data types, when it comes to hardware such data 
types should be processed at the bit level. In order to 
make the bit level computation invisible from the object-
oriented domain, we provide a data conversion interface 
API, which can be used with small updates in a wide 
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range of reconfigurable platforms. Such interface 
organize the data to be processed by the reconfigurable 
module in a bit array, including in such array the 
information about the data types. The array is uploaded to 
the reconfigurable module's memory, where the 
reconfigurable processor reads, it, processes it and write 
the results back so the backend can do the inverse 
operation and send the results back to the object domain 

In order to facilitate the development of hardware 
configurations supporting our approach, we provide a 
HDL description of a module which is able to read the 
data array assembled by the backend module and 
reconstruct it as data types which are tractable within the 
HDL domain. The inverse path is of course implemented, 
so that the results of the data processing done by the 
reconfigurable processor can be written into the memory 
in such a way the backend module can rebuild into data 
types.  

This type abstraction module should be built on top of 
the memory interface module (in our implementation we 
use the XESS memory interface developed by [11]). By 
using such module, the designers of the configurations for 
the reconfigurable processor can focus on its 
functionality, without particular care to the fact that the 
processor will be encapsulated and integrated into a 
distributed objects environment. Figure 4 depicts the 
layered architecture we provided to grant the complete 
separation between domains. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Abstraction layers to application 
development and hardware design 

  
5   Case study: cryptography system 

 
In order to validate the proposed approach, a 

cryptography system was implemented. It was designed 
over the proposed infrastructure, so the system could take 
advantage on reconfigurable hardware modules which 
were available in the network. 

The first experiment covered the application scenario 
where a developer can incrementally prototype the target 
system described in the functional level. The chosen 

example is a messaging system that sends and receives 
encrypted messages using the DES encryption algorithm. 
We implemented the whole system functionality using 
Java language, so that the potential users can evaluate if it 
fulfill their functional needs. In the next step, we started 
the incremental prototyping of the system by 
implementing some system modules in reconfigurable 
hardware. So, the DES encrypt and decrypt modules had 
to be converted to HDL in order to be synthesized and 
implemented in our FPGA prototyping board. We used an 
HDL core for the DES algorithm [12] in this 
implementation, but when such possibility is not available 
the conversion can be done with design automation tools 
such as Forge [13] or even by hand if the design isn't too 
complex. We used the type abstraction and the memory 
access interfaces depicted in Figure 4, so the HDL core 
could be integrated easily. 

After the configuration was generated, it was stored  
in the JavaSpaces repository. A Jini service federation 
was initialized, and a service for the FPGA board was 
registered on it. 

In the application side, we replaced the software 
objects which were performing the DES encrypting and 
decrypting by proxy objects with the same external 
interface. The rest of the application objects were not 
changed, because the API they used to communicate with 
the DES objects was kept. The internal implementation of 
the DES objects was changed into proxies, relying on our 
implementation of a Jini client, so they contact the FPGA 
service every time a DES encryption or decryption was 
requested by the application. The FPGA service 
downloads the configuration from the JavaSpaces, 
program the FPGA, receives the data from the proxy 
objects, maps it into the FPGA memory, starts the FPGA 
execution, reads the processed results and returns them to 
the proxy object. 

We successfully implemented such scenario, and the 
use of such prototyping strategy was found very 
convenient. It made possible the functional validation of 
the prototyped design block, as it was tested together with 
the rest of the functional description. The use of the 
proposed abstraction layers between the object domain 
and the hardware domain allowed a clear separation of 
concerns, making easier the development on each of the 
sides. 

After the experimentation of the proposed approach as 
a support for incremental prototyping, we decided to test 
its suitability on the support of distributed processing. We 
envisioned a scenario where a particular computational 
task could be used remotely by a device with small 
computational power, like a mobile phone or PDA. In 
such case, the device would not be interested on 
simulating the communication between parts of a system, 
but actually request a particular data processing task 
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which would be too costly for it to implement alone. In 
such cases, the ubiquitous nature of our approach would 
be critical, because the small device could be mobile - 
perhaps the processing reconfigurable units too - and a 
greater variety of tasks to be performed could be 
available. We used the same DES implementation 
described in the previous scenario, but this time its 
implementation could be seen by the application system 
as an ubiquitous reconfigurable co-processor. 

The implementation was successfully achieved, and 
the application used our infrastructure to request to the 
Jini service federation for a co-processor for 
computationally intensive tasks. As expected, the actual 
execution time of the DES algorithm in the FPGA 
implementation is much faster than the implementation is 
software, as shown in Table 1. The first two lines show 
the maximum data rates for the encryption and decryption 
in the application without the use of the reconfigurable 
co-processor. The third line shows the data rate obtained 
by the co-processor.  

However, such gain could not be delivered to the 
client applications. The overhead of the FPGA 
configuration and of the data transfer from the host 
computer to the reconfigurable hardware module were too 
big, hindering the major goal of providing a significant 
acceleration compared to the computation that would be 
done locally by the client device. Such overhead can be 
reduced if there is no need for frequent reconfiguration of 
the modules - e.g. when there are many reconfigurable 
hardware modules in the Jini federation so the client can 
query for a module already configured with the needed 
functionality.  

 
Processor Clock (MHz) Data rate (Mbits/s) 

Sun JVM over Intel 
Pentium MMX 

133 0.162 

Sun JVM over 
AMD Athlon XP-

1700 

1467 1.295 

Xilinx XCV-800 27.23 108.93 
 

Table 1. DES implemetation comparison 
 
The data transfer overhead can be also minimized, if 

the host computer and the reconfigurable hardware 
module are connected through a faster interface. In our 
prototype, the communication between the host computer 
and the FPGA board was done via a parallel interface, and 
the access to the SRAM banks was very slow. Much 
better results could be obtained by using a reconfigurable 
hardware module connected to the backend through a 
high speed bus, such as in the Pilchard platform [14]. 

The current implementation of the DES co-processor 
can be accessed over Internet. The lookup service listens 

to the port 4160 on the IP address 130.83.30.181. In the 
same machine, you can download using HTTP from the 
port 80 the source code to integrate a client into your 
application, as well as the API documentation for the DES 
proxy objects. If there are prototyping boards available, 
the lookup service will assign one to do DES encryption 
and decryption for your application. 

 
6   Conclusions and future work 

 
The integration of reconfigurable hardware into 

computer applications is not trivial, usually requiring 
from the designer a set of skills and expertise, including 
hardware design, communication between reconfigurable 
hardware and host computer and interface with software 
modules. In the case of a distributed application, more 
expertise is required in order to implement resource 
distribution and communication. 

This paper presented an approach for the integration 
of reconfigurable hardware and computer applications 
based on the concept of ubiquitous computing. Based on 
the presented approach, a set of reconfigurable hardware 
modules can be plugged in a network and be transparently 
accessed by client applications. The client applications 
must not have any information about the network location 
or the internal implementation of the reconfigurable 
modules. The connection between client and 
reconfigurable hardware is based in a lookup mechanism. 
The reconfigurable hardware is encapsulated by a service 
interface, and all the communication with the client is 
done in the API level, through method calls. 

We validated the proposed approach in two scenarios, 
one of them focusing on a system designer, which can use 
our approach as a support for incremental prototyping. 
For such scenario, we provide a library of code - both 
object-oriented software and HDL - to simplify the 
integration between the hardware domain and the 
distributed objects domain. In a second experiment, we 
used the infrastructure developed in the first scenario to 
implement a reconfigurable hardware co-processor 
service. Such application scenario was also successfully 
prototyped, but implementation-related limitations 
reduced the benefits expected from the proposed 
approach. So, further steps on this work should start by 
using faster interfaces for the communication between 
reconfigurable hardware and host computer, so that the 
performance gain shown in Table 1 could be actually 
delivered to the client application. 

Further steps on the research can also be envisioned. 
One of the issues we intend to improve is on the 
supported API for the integration of reconfigurable 
hardware modules. Currently, there is a single API which 
should be implemented by all the modules. While this 
keeps it simple for the client application developer, it 



reduces the potential of providing more specific services, 
assigning each of them to a different API call. We expect 
that the use of reflection mechanisms [15] could grant 
such possibility without sacrificing the simplicity for the 
developer. By using reflection, the simple interface can 
still be used, but mechanisms to issue requests during 
runtime for more detailed services would be available. 

Another improvement that could increase the 
applicability of the proposed approach is the support of 
hardware originated method calls. In the current 
approach, all the data dependencies should be solved in 
advance by the backend, in order to start the computation 
in the reconfigurable hardware model. In the future, we 
intend to improve the communication between the 
reconfigurable module and the backend in such a way that 
the backend could call methods from other objects in the 
Jini federation under request of the reconfigurable 
hardware every time it faces an unresolved data 
dependency during its execution. 
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