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Abstract
We present in this paper a multilevel floorplanning/placement framework

based on the B*-tree representation, called MB*-tree, to handle the floorplan-
ning and packing for large-scale building modules. The MB*-tree adopts a
two-stage technique, clustering followed by declustering. The clustering stage
iteratively groups a set of modules based on a cost metric guided by area uti-
lization and module connectivity, and at the same time establishes the geomet-
ric relations for the newly clustered modules by constructing a corresponding
B*-tree for them. The declustering stage iteratively ungroups a set of the pre-
viously clustered modules (i.e., perform tree expansion) and then refines the
floorplanning/placement solution by using a simulated annealing scheme. In
particular, the MB*-tree preserves the geometric relations among modules dur-
ing declustering, which makes the MB*-tree an ideal data structure for the mul-
tilevel floorplanning/placement framework. Experimental results show that the
MB*-tree obtains significantly better silicon area and wirelength than previous
works. Further, unlike previous works, MB*-tree scales very well as the circuit
size increases.

Categories and Subject Descriptors: B. 7.2 [Integrated Circuits]: De-
sign Aids—Placement and Routing; J.6 [Computer Applications]: Computer-
Aided Engineering—Computer-Aided Design
General Terms: Algorithms, Design, Performance, Theory
Keywords: Floorplanning, Multilevel Framework, Lagrangian Relaxation

1 Introduction
Design complexities are growing at a breathtaking speed with the contin-

ued improvement of the nanometer IC technologies. On one hand, designs with
hundreds of million transistors are already in production, IP modules are widely
reused, and a large number of buffer blocks are used for delay optimization as
well as noise reduction in very deep-submicron interconnect-driven floorplan-
ning [1, 7, 11, 13, 21], which all drive the need of a tool to handle large-scale
building modules. On the other hand, the highly competitive IC market re-
quires faster design convergence, faster incremental design turnaround, and
better silicon area utilization. Efficient and effective design methodology and
tools capable of placing and optimizing large-scale modules are essential for
such large designs.

Many floorplan representations have been proposed [5, 9, 14, 15, 16, 18,
19, 20, 22] in the literature. However, traditional floorplanning/placement algo-
rithms do not scale well as the design size, complexity, and constraints increase,
mainly due to their inflexibility in handling non-slicing floorplans, and/or in-
trinsically non-hierarchical data structures (representations). The B*-tree, in
contrast, has been shown an efficient, effective, and flexible data structure for
non-slicing floorplans [5]. It is particularly suitable for representing a non-
slicing floorplan with large-scale modules and for creating or incrementally
updating a floorplan. What is more important, its binary-tree based structure
directly corresponds to the framework of a hierarchical, divide-and-conquer
scheme, and thus the properties inherited from the structure can substantially
facilitate the operations for multilevel large-scale building module floorplan-
ning/placement.

Based on the B*-tree representation, we present in this paper a multilevel
floorplanning/placement framework, called MB*-tree, to handle the floorplan-
ning and packing for large-scale building modules with high efficiency and
quality. MB*-tree is inspired by the success of the multilevel framework in
graph/circuit partitioning such as Chaco [10], hMetis [12], and ML [2], place-
ment such as MPL [4], and routing such as MRS [6], MR [17], and MARS [8].
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Unlike multilevel partitioners and placers, however, multilevel floorplanning
poses unique difficulties as the shapes of modules to be clustered together can
significantly affect the area utilization of a floorplan, and a floorplan design
within a cluster needs to be explored along with the global floorplan optimiza-
tion. The clustering approach also helps to directly address floorplan conges-
tion and timing issues, since different clustering algorithms can be developed
to localize inter-module communication and reduce critical path length.

The MB*-tree algorithm adopts a two-stage technique, clustering followed
by declustering. The clustering stage iteratively groups a set of modules (could
be basic modules and/or previously clustered modules) based on a cost metric
guided by area utilization and module connectivity, and at the same time estab-
lishes the geometric relations for the newly clustered modules by constructing a
corresponding B*-tree. The clustering procedure repeats until a single cluster
containing all modules is formed, denoted by a one-node B*-tree that book-
keeps the entire multilevel clustering information. For soft modules, we apply
Lagrangian relaxation during clustering to determine the module shapes. Then,
the declustering stage iteratively ungroups a set of the previously clustered
modules (i.e., expanding a node into a subtree according to the B*-tree topol-
ogy constructed at the clustering stage), and then apply simulated annealing to
refine the floorplanning/placement solution based on a cost metric defined by
area utilization and wirelength. The refinement shall lead to a “better” B*-tree
structure that guides the declustering at the next level. It is important to note
that we always keep only one B*-tree for processing at each iteration, and the
MB*-tree preserves the geometric relations among modules during decluster-
ing (i.e., the tree expansion), which makes the MB*-tree an ideal data structure
for the multilevel floorplanning/placement framework.

Experimental results show that the MB*-tree scales very well as the circuit
size increases while the famous previous works, sequence pair, O-tree, and
B*-tree alone, do not. For circuit sizes ranging from 49 to 9,800 modules
and from 408 to 81,600 nets, the MB*-tree consistently obtains high-quality
floorplans with dead spaces of less than 3.7% in empirically linear runtime,
while sequence pair, O-tree, and B*-tree can handle only up to 196, 196, and
1,960 modules in the same amount of runtime and result in the dead spaces of
as large as 13.00% (@ 196 modules), 9.86% (@ 196 modules), and 27.33% (@
1960 modules), respectively. We also performed experiments based on a large
industrial design with 189 modules and 9777 nets. The results show that our
MB*-tree algorithm obtained significantly better silicon area and wirelength
than previous works.

The remainder of this paper is organized as follows. Section 2 formulates
the module floorplanning/placement problem. Section 3 gives a brief overview
on the B*-tree representation. Section 4 presents our two-stage algorithm, clus-
tering followed by declustering. Section 5 presents our approach for handling
soft modules. Section 6 gives the experimental results.

2 Problem Formulation
Let M = fm1;m2; :::;mng be a set of n rectangular modules. Each

module mi 2 M is associated with a three tuple (hi; wi; ai), where hi, wi,
and ai denote the width, height, and aspect ratio of mi , respectively. The area
Ai ofmi is given by hiwi, and the aspect ratio ai ofmi is given by hi=wi, Let
ri;min and ri;max be the minimum and maximum aspect ratios, i.e., hi=wi 2
[ri;min; ri;max]. A placement (floorplan) P = f(xi; yi)jmi 2 Mg is an
assignment of rectangular modules mi’s with the coordinates of their bottom-
left corners being assigned to (xi; yi)’s so that no two modules overlap (and
hi=wi 2 [ri;min; ri;max];8i). We consider in this paper both hard and soft
modules. A hard module is not flexible in its shape but free to rotate. A soft
module is free to rotate and change its shape within the range [ri;min; ri;max].
The objective of placement/floorplanning is to minimize a specified cost metric
such as a combination of the area Atot and wirelength Wtot induced by the
assignment of mi’s, where Atot is measured by the final enclosing rectangle
of P and Wtot the summation of half the bounding box of pins for each net.

3 Review of the B*-tree Representation
Given a compacted placement P that can neither move down nor move

left (called an admissible placement [9]), we can represent it by a unique B*-
tree T [5]. (See Figure 1(b) for the B*-tree representing the placement of



Figure 1(a).) A B*-tree is an ordered binary tree (a restriction of O-tree with
faster and more flexible operations) whose root corresponds to the module on
the bottom-left corner. Using the depth-first search (DFS) procedure, the B*-
tree T for an admissible placement P can be constructed in a recursive fashion.
Starting from the root, we first recursively construct the left subtree and then the
right subtree. Let Ri denote the set of modules located on the right-hand side
and adjacent to mi . The left child of the node ni corresponds to the lowest
module in Ri that is unvisited. The right child of ni represents the lowest
module located above mi , with its x-coordinate equal to that of mi .
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Figure 1: An admissible placement and its corresponding B*-tree.

The B*-tree keeps the geometric relationship between two modules as fol-
lows. If node nj is the left child of node ni, module mj must be located on the
right-hand side ofmi , with xj = xi+wi. Besides, if node nj is the right child
of ni, module mj must be located above module mi , with the x-coordinate of
mj equal to that of mi; i.e., xj = xi. Also, since the root of T represents the
bottom-left module, the coordinate of the module is (xroot; yroot) = (0; 0).

Inheriting from the nice properties of ordered binary trees, the B*-tree is
simple, efficient, effective, and flexible for handling non-slicing floorplans. It
is particularly suitable for representing a non-slicing floorplan with various
types of modules and for creating or incrementally updating a floorplan. What
is more important, its binary-tree based structure directly corresponds to the
framework of a hierarchical scheme, which makes it a superior data structure
for multilevel large-scale building module floorplanning/placement.

4 The MB*-tree Algorithm
In this section, we shall present our MB*-tree algorithm for multilevel

large-scale building module floorplanning/placement. As mentioned earlier,
the algorithm adopts a two-stage approach, clustering followed by decluster-
ing, by using the B*-tree representation.

The clustering operation results in two types of modules, namely primitive
modules and cluster modules. A primitive module m is a module given as
an input (i.e., m 2 M ) while a cluster one is created by grouping two or
more primitive modules. Each cluster module is created by a clustering scheme
fmi;mjg, where mi (mj ) denotes a primitive or a cluster module.

In the following subsections, we detail the clustering and declustering al-
gorithms for hard modules.

4.1 Clustering
In this stage, we iteratively group a set of (primitive or cluster) modules

until a single cluster is formed (or until the number of cluster modules is smaller
than a threshold) based on a cost metric of area and connectivity. We shall first
consider the clustering metric.

The clustering metric is defined by the two criteria: area utilization (dead
space) and the connectivity density among modules.

� Dead space: The area utilization for clustering two modules mi and
mj can be measured by the resulting dead space sij , representing the
unused area after clustering mi andmj . Let stot denote the dead space
in the final floorplan P . We have stot = Atot�

P
mi2M

Ai, where

Ai denotes the area of module mi and Atot the area of the final en-
closing rectangle of P . Since

P
mi2M

Ai is a constant, minimizing

Atot is equivalent to minimizing the dead space stot.

� Connectivity density: Let the connectivity cij denote the number of
nets between two modules mi and mj . The connectivity denisty dij
between two (primitive or cluster) modules mi and mj is given by

dij = cij=(ni + nj); (1)

where ni (nj ) denotes the number of primitive modules in mi (mj ).
Often a bigger cluster implies a larger number of connections. The
connectivity density considers not only the connectivity but also the
sizes of clusters between two modules to avoid possible biases.

Obviously, the cost function of dead space is for area optimization while
that of connectivity density is for timing and wiring area optimization. There-
fore, the metric for clustering two (primitive or cluster) modules mi and mj ,

� : fmi;mjg ! <+ [ f0g, is then given by

�(fmi;mjg) = �ŝij +
�K

d̂ij
; (2)

where ŝij and K=d̂ij are respective normalized costs for sij and K=dij , �; �
and K are user-specified parameters/constants.

Based on �, we cluster a set of modules into one at each iteration by apply-
ing the aforementioned methods until a single cluster containing all primitive
modules is formed or the number of modules is smaller than a given threshold
(and thus can be easily handled by the classical program). During clustering,
we shall record how two modules mi and mj are clustered into a new cluster
module mk . If mi is placed left to (below) mj , then mi is horizontally (ver-
tically) related to mj , denoted by mi ! (")mj . If mi ! (")mj , then nj
is the left (right) child of ni in its corresponding B*-tree. The relation for each
pair of modules in a cluster is established and recorded in the corresponding
B*-subtree during clustering. It will be used for determining how to expand a
node into a corresponding B*-subtree during declustering.
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Figure 2: The relation of two modules and their clustering. (a) Two candi-
date modulesmi andmj . (b) The clustering and the corresponding B*-subtree
for the case where mi is horizontally related to mj . (c) The clustering and the
corresponding B*-subtree for the case where mi is vertically related to mj .

4.2 Declustering
We shall first introduce the metric used in simulated annealing for refining

floorplan/placement solutions. The declustering metric is defined by the two
creiteria: area utilization (dead space) and the wirelength among modules.

� Dead space: Same as that defined in Section 4.1.
� Wire length: The wirelength of a net is measured by half the bounding

box of all the pins of the net, or by the length of the center-to-center
interconnections between the modules if no pin positions are specified.
The wirelength for clustering two modules mi and mj , wij , is mea-
sured by the total wirelength interconnecting the two modules. The
total wirelength in the final floorplan P , wtot, is the summation of the
length of the wires interconnecting all modules.

Obviously, the cost function of dead space is for area optimization
while that of wirelength is for timing and wiring area optimization. There-
fore, the metric for refining a floorplan solution during declustering,  ij :
fmi;mjg ! <+ [ f0g, is then given by

 ij = ŝij + Æŵij ; (3)

where ŝij and ŵij are respective normalized costs for sij and wij , and  and
Æ are user-specified parameters.

Algorithm: Declustering(mk , mi, mj )
Input: mk—the cluster module;

mi, mj—two modules with mi right to or below mj ;
1 parent(ni) parent(nk);
2 if (nk = left(parent(nk)) then
3 left(parent(nk)) ni ;
4 else
5 right(parent(nk)) ni;
6 if (mi ! mj ) then
7 left(ni) nj ; parent(nj ) ni; right(nj) NIL;
8 right(ni) right(nk);
9 if (right(nk) 6= NIL) then
10 parent(right(nk)) ni;
11 left(nj ) left(nk);
12 if (left(nk) 6= NIL) then
13 parent(left(nk)) nj ;
14 if (mi " mj ) then
15 right(ni) nj ; parent(nj) ni;
16 right(nj) right(nk);
17 if (right(nk) 6= NIL) then
18 parent(right(nk)) nj ;
19 let na 2 fmi;mjg and a 6= b such that ha � hb;
20 left(na) left(nk);
21 if (left(nk) 6= NIL) then
22 parent(left(nk)) na ;
23 left(nb) NIL;

Figure 3: The declustering algorithm.
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Figure 4: (a) Given seven modules, mi’s, 1 � i � 7. (b) Cluster m5 , m6 ,
and m7 into m8 . (c) Cluster m1 , m2 , and m4 into m9 . (d) Cluster m3 , m8 ,
and m9 into m10 . (e) Decluster m10 to m3 , m8 , and m9 . (f) Perform Op2
for m8 . (g) Decluster m9 to m1 , m2 , and m4 . (h) Perform Op1 and Op2 for
m2 and m3 , respectively. (i) Decluster m8 to m5 , m6 , and m7 . (j) Perform
Op2 for m4 .

The declustering stage iteratively ungroups a set of previously clustered
modules (i.e., expand a node into a subtree according to the B*-tree constructed
at the clustering stage) and then refines the floorplan solution based on simu-
lated annealing.

Figure 3 shows the algorithm for declustering a cluster module mk into
two modules mi and mj that are clustered into mk at the clustering stage.
Without loss of generality, we make mi right to or below mj . In Algorithm
Declustering (see Figure 3), parent(ni), right(ni), and left(ni) denote the
parent, the right child, and the left child of node ni in a B*-tree, respectively.
Line 1 updates the parent of nk as that of ni . Lines 2-5 make ni a left (right)
child if nk is a left (right) child. Lines 6–13 deal with the case where mi is
horizontally related to mj . If mi ! mj , then nj is the left child of ni and
thus we update the corresponding links in Line 7. Lines 8–10 (11–13) update
the links associated the right (left) child of nk . Similarly, lines 14–23 cope
with the case where mi is vertically related to mj .

Theorem 1 Each declustering operation takes O(1) time, and the overall
declustering stage takes O(jM j) time, where jM j is the number of input prim-
itive modules.

4.3 Simulated Annealing
We proposed a simulated annealing based algorithm to refine the solution at

each level of declustering. We apply the following three operations to perturb
a multilevel B*-tree (a feasible solution) to another.

� Op1: Rotate a module.
� Op2: Move a module to another place.
� Op3: Swap two modules.

Op1 exchanges the width and height of a module. Op2 deletes a node of a
B*-tree and inserts it into another position. Op3 deletes two nodes and inserts
them into the corresponding positions in the B*-tree. Obviously, Op2 and Op3
need to perform the deletion and insertion operations on a B*-tree, which takes
O(h) time, where h is the height of the B*-tree..

The simulated annealing algorithm starts by a B*-tree produced during
declustering. Then it perturbs a B*-tree (a feasible solution) to another B*-
tree by Op1, Op2, and/or Op3 until a predefined “frozen” state is reached. At
last, we transform the resulting B*-tree to the corresponding final admissible
placement.

4.4 The Overall MB*-tree Algorithm
The MB*-tree algorithm integrates the aforementioned three algorithms.

We first perform clustering to reduce the problem size level by level and then
enter the declustering stage. In the declustering stage, we perform floorplan-
ning for the modules at each level using the simulated annealing based algo-
rithm B*-tree SA.

Figure 4 illustrates an execution of the MB*-tree algorithm. For explana-
tion, we cluster three modules each time in Figure 4. Figure 4(a) lists seven
modules to be packed, mi’s, 1 � i � 7. Figures 4(b)–(d) illustrate the execu-
tion of the clustering algorithm. Figures 4(b) shows the resulting configuration
after clustering m5 , m6 , and m7 into a new cluster module m8 (i.e., the clus-
tering scheme ofm8 is ffm5 ;m6g;m7g). Similarly, we cluster m1 ,m2 , and
m4 into m9 by using the clustering scheme ffm2 , m4g, m1g. Finally, we
clusterm3 ,m8 , andm9 intom10 by using the clustering scheme ffm3 ,m8g,
m9g. The clustering stage is thus done, and the declustering stage begins, in
which simulated annealing is applied to do the floorplanning. In Figure 4(e),
we first decluster m10 into m3;m8 , and m9 (i.e., expand the node n10 into
the B*-subtree illustrated in Figure 4(e)). We then move m8 to the top of m9

(perform Op2 for m8) during simulated annealing (see Figure 4(f)). As shown
in Figure 4(g), we further decluster m9 into m1;m2 , and m4 , and then rotate
m2 and move m3 on top of m2 (perform Op1 on m2 and Op2 on m3), result-
ing in the configuration shown in Figure 4(h). Finally, we decluster m8 shown
in Figure 4(i) to m5 , m6 , and m7 , and move m4 to the right of m3 (perform
Op2 for m4), which results in the optimum placement shown in Figure 4(j).

5 Handling Soft Modules
In this section, we present our approach for handling soft modules. We

first apply Lagrangian relaxation [23] to cluster soft modules at the cluster-
ing stage while keeping declustering the same as before. We then propose a
network-flow based algorithm for projecting Lagrange multipliers to satisfy
their optimality conditions.

5.1 Formulation
Let M = fm1;m2; :::;mng be a set of n primitive soft modules. Each

primitive soft module mi 2 M is associated with a three tuple (hi; wi; ai),
where hi, wi, and ai denote the width, height, and aspect ratio of mi , re-
spectively. The area Ai of mi is given by hiwi, and the aspect ratio ai of

mi is given by hi=wi 2 [ri;min; ri;max]. Let Li =
p
Ai=ri;min and

Ui =
p
Ai=ri;max denote the minimum and the maximum width of mi,

respectively. We have hi = Ai=wi and Li � wi � Ui.
A cluster module mc is composed of a set of primitive soft modules Mp.

mc can be reshaped via reshaping the modules in Mp without violating the
relations of the modules in Mp. We create two dummy modules ms and mt

and set xs = 0, ys = 0, ws = 0, and hs = 0. Then we construct a
horizontal and a vertical constraint subgraphs ofmc, denoted byGhc andGvc,
respectively. Ghc and Gvc are constructed as follows:

� For ms and mt, create two vertices vs and vt in both Ghc and Gvc.
� For each mp 2Mp, create a vertex vp in Ghc and Gvc.
� For each mp;mq 2 Mp, if mp is left to (below) mq , create an edge
e(p; q) from vp to vq in Ghc (Gvc).

� For each mp which is placed at the left boundary (bottom boundary),
create an edge e(vs; vp) from vs to vp in Ghc (Gvc).

� For each mp which is placed at the right boundary (top boundary),
create an edge e(vp; vt) from vp to vt in Ghc (Gvc).

If xp + wp � xq ;8e(p; q) 2 Ghc and yp +
Ap
wp

� yq;8e(p; q) 2 Gvc

are satisfied, the relations of the modules in Mp will not be violated. Figure 5
illustrates how to construct Ghi and Gvi and what corresponding constraints
must be satisfied. Figure 5(a) gives a cluster modules mc with the cluster
scheme ffm1 , m2g, m3g. Figure 5(b) shows the corresponding constraint
subgraphs Ghc and Gvc of mc. Figure 5(c) shows the constraints to ensure
that no relation of modules is violated. Thus, it impies that wc � xt, and
hc � yt.

At level i, Let Mi = fmi
1
;mi

2
; :::;mi

ni
g denote the set of cluster mod-

ules. For each mi
j 2 M i, (xij ; y

i
j) denote the coordinate of its bottom-left

corner, and hij and wij denote the height and width of mij , respectively. For

convenience, we additionally create two variables, xini+1 and yini+1, which
denote the estimated height and width of the chip at level i, respectively. Thus,
the estimated area of the chip at level i equals xini+1y

i
ni+1

. To estimate wire-
length, we adopt the quadratic of the length of the complete graph of pins in
a net, and take the center of a module as the location of a pin, if the pins are
not assigned during floorplanning. Let Ei denote the set of nets at level i. For
a net eij 2 Ei, eij can be represented as a set of the modules fmi

k
jeij has a

pin connecting to mi
k
g. Thus, the estimated wirelengh $i

j of a net eij 2 E
i is

defined by

$i
j =

X
mi
p;m

i
q2e

i
j

(((xip + wi
p=2)� (xiq + wi

q=2))
2



mc

m1

m2

m 3

(a)

cGh

(b)

cGv

v1

2v

3v

v1

2v
3v

(c)

+ <_ x3w2x 2

+ <_w1 x 31x

+ <_wx 3 3

<_ 1x0
<_ x 20

+ <_2y
1

y2A
w2

<_0
<_

2

0

y
y

3

+ <_A
w1

1y1

+ <_A
w1

1y1

y

y

x t

t

t

sv t
v

sv

t
v

Figure 5: (a) A cluster module mc with the cluster scheme ffm1 , m2g,
m3g. (b) mc’s corresponding constraint subgraphs Ghc and Gvc. (c) The
constraints to ensure that no relation of modules is violated.

+((yip + hip=2)� (yiq + hiq=2))
2): (4)

We use the cost function �0 to guide the clustering of soft modules:

�0(x; y) = �xini+1y
i
ni+1

+ �
X
ei
j
2Ei

$i
j ; (5)

where � and � are nonnegative user-defined parameters, and $ij denotes the

estimated wirelength of a net eij . In the formulation of clustering for soft mod-
ules, we have the constraints that all modules are not overlapped and must be
laid in the chip (i.e. xij+w

i
j � xini+1 and yij+h

i
j � yini+1). Therefore, we

can formulate the problem of clustering for soft modules, called CS, as follows:

Minimize �xini+1y
i
ni+1

+ �
P

ei
j
2Ei

$i
j

subject to xij + wi
j � xini+1; y

i
j + hij � yini+1; 81 � j � ni;

xp + wp � xq; 8e(p; q) 2 Ghj 81 � j � ni;

yp +
Ap

wp
� yq; 8e(p; q) 2 Gvj 81 � j � ni;

xtj � wi
j ; ytj � hij; 81 � j � ni

Li � wi � Ui; 81 � i � n;

where � and � are nonnegative user-defined parameters.

5.2 Lagrangian Relaxation
Then, the Lagrangian relaxation subproblem associated with the multiplier

~P= (~�, ~�, ~�, ~�, ~r, ~s), denoted by LRS=(~P), can be defined as follows:

Minimize �xini+1
yini+1

+ �
X
ei
j
2Ei

$i
j

+

niX
j=1

�j
�
x
i
j + w

i
j � x

i
ni+1

�
+

niX
j=1

�j
�
y
i
j + h

i
j � y

i
ni+1

�

+

niX
j=1

X
e(p;q)2Ghj

�jpq (xp + wp � xq)

+

niX
j=1

X
e(p;q)2Gvj

�jpq

�
yp +

Ap

wp
� yq

�

+

niX
j=1

rj
�
xtj � wi

j

�
+ sj
�
ytj � hij

�

subject to Li � wi � Ui; 81 � i � n:

Let Q(~P) denote the optimal value of LRS=(~P). The Lagrangian dual
problem LDP of CS can be defined as follows:

Maximize Q( ~P)

subject to ~P � 0:

Since CS can be transformed into a convex problem, we can apply Theorem
6.2.4 of [3]. This implies that if ~P is an optimal solution to LDP , the optimal
solution of LRS=(~P) will also optimize CS.

Consider the Lagrangian � of CS defined as follows:

� = �x
i
ni+1

y
i
ni+1

+ �
X
ei
j
2Ei

$
i
j +

niX
j=1

�j
�
x
i
j + w

i
j � x

i
ni+1

�

+

niX
j=1

�j
�
yij + hij � yini+1

�
+

niX
j=1

X
e(p;q)2Ghj

�jpq (xp + wp � xq)

+

niX
j=1

X
e(p;q)2Gvj

�jpq

�
yp +

Ap

wp
� yq

�
+

niX
j=1

rj
�
xtj � wi

j

�

+ sj
�
ytj � hij

�
+

nX
i=1

ui (Li � wi) +

nX
i=1

vi (wi � Ui) :

The Kuhn-Tucker conditions imply that the optimal solution of CS must be
at @�=@xp = 0, @�=@yp = 0, @�=@xini+1 = 0, and @�=@yini+1 = 0. Thus, we

only need to consider the multipliers ~P which satisfy these conditions. There-
fore, for 1 � p � n,

@�=@xp =

niX
j=1

0
@ X

e(p;q)2Ghj

�jpq �
X

e(q;p)2Ghj

�jqp

1
A = 0; (6)

@�=@yp =

niX
j=1

0
@ X

e(p;q)2Ghj

�jpq �
X

e(q;p)2Ghj

�jqp

1
A = 0; (7)

and

@�=@xini+1
= �yini+1

�
P

ni

j=1
�j = 0;

@�=@yini+1 = �xini+1 �
P

ni

j=1
�j = 0:

Thus, we have yini+1 = 1

�

Pni
j=1

�j , and xini+1 = 1

�

Pni
j=1

�j .

5.3 Solving LRS=(~P) and LDP
Let 
 denote the set of multipliers ~P satisfying Equations (6) and (7). We

now consider solving the Lagrangian relaxation subproblem LRS=(~P) for a
given ~P 2 
, i.e. computing the dimension and coordinate of each module.
First, we partially differentiate � with respect to wi to get an optimal value of
wi such that � is minimized.

@�=@wi = (vp � up) +

niX
j=1

0
@ X

q2outGhj
(vp)

�jpq

1
A

�

niX
j=1

0
@ X

q2outGvj
(vp)

�jpq
Ap

w2
p

1
A = 0:

Thus, we have

wp =

vuut
P

ni

j=1

P
q2outGvj

(vp)
�jpqAp

(vp � up) +
P

ni

j=1

P
q2outGhj

(vp)
�jpq

;

where outG(v) = fuje(v; u) 2 E(G)g. Recall that Lp � wp �
Up; 1 � p � n. Thus, the optimal w�p can be computed by w�p =

minfUp;max fLp; wpgg.
Since the dimension of each primitive module (wp and hp) has been deter-

mined, the dimension of each cluster module (wij and hij ) can be computed by
applying a longest path algorithm in Ghj and Gvj . Then, we consider partial
differentiation of � with respect to xij and yij , giving the optimality conditions
of CS. Therefore, for 1 � j � ni ,

@�=@xij = �

0
@ X

ei
k
�fmi

j
g

2
�
jeikj � 1

�
xij �

X
ei
k
�fmi

j
g

X
mi
l
2ei

k
nfmi

j
g

xil



+
X

ei
k
�fmi

j
g

X
mi
l
2ei

k
nfmi

j
g

�
w
i
j � w

i
l

�
1
A = 0 (8)

@�=@yij = �

0
@ X

ei
k
�fmi

j
g

2
�
jeikj � 1

�
yij �

X
ei
k
�fmi

j
g

X
mi
l
2ei

k
nfmi

j
g

yil

+
X

ei
k
�fmi

j
g

X
mi
l
2ei

k
nfmi

j
g

�
hij � hil

�
1
A = 0; (9)

where jei
k
j denotes the number of the pins of ei

k
.

In Equation (8), there are ni equations with ni variables. Thus, we can
apply the Gaussian elimination to solve these ni equations with ni variables to
get the optimal value of xij . In these ni equations, all coefficients of variables

depend only on the net information (i.e., ei
k

). Since the net information is
the same through the entire process, each variable can be solved by the same
process. Hence, we can record the process of solving each variable during the
first iteration (which takes cubic time), and then each subsequent computation
will take only quadratic time by applying the same process. Similarly, we can
compute the optimal value of yij .

Next, we use a subgradient optimization method to search for the optimal
~P . Let ~P be a multiplier at step k. We move ~P to a new multiplier ~P 0 based
on the subgradient direction:

�0j = [�j + �k(x
i
j + wi

j � xini+1
)]+

�0j = [�j + �k(y
i
j + hij � yini+1

)]+

�0jpq = [�jpq + �k(xp + wp � xq)]
+

�0jpq = [�jpq + �k(yp +
Ap

wp
� yq)]

+;

where [x]+ = max fx; 0g and �k is a step size such that limk!1 �k = 0

and
P

1

k=1
�k =1.

After updating ~P , we need to project ~P 0 to ~P� 2 
, and then solve the
Lagrangian relaxation subproblem LRS=( ~P�) by the above algorithm until
the solution converges.
5.4 Projecting Lagrange Multipiers

We present a network flow based algorithm to check whether ~P belongs to

 and to project ~P to ~P� 2 
, if ~P 62 
. Further, an increamental update
technique is employed to make the maximum flow computation more efficient.
For each cluster module mc, we first create two networks Nhc (for Ghc) and
Nvc (for Gvc) as follows:

� For each vi 2 V (Ghc) (V (Gvc)), create a vertex v0i in Nhc (Nvc),
and make v0s and v0t as the source and sink, respectively.

� For each e(p; q) 2 E(Ghc) (E(Gvc)), create a corresponding edge
e(p0; q0) with capacity �cpq (�cpq ) in Nhc (Nvc).

We apply the maximum flow computation on the networks to check
whether ~P belongs to 
. The maximum flow computation finds an augment-
ing path from v0s to v0t and then pushes flow on it until no argument path can
be found. Let cap(v; u) and flow(v; u) denote the capacity and flow on the
edge e(v; u). An edge e(v; u) is saturated if its capacity equals the flow (i.e.,
cap(v; u) = flow(v; u)).

Theorem 2 If all edges in the networks are saturated, ~P 2 
.

If ~P does not belong to 
, we project ~P to ~P� by restoring the flow
flow(p0; q0) of each edge e(p0; q0) in Nhc (Nvc) to �cpq (�cpq ) for each
mc.

Theorem 3 ~P� 2 
.

The projection process greatly affects the efficiency of the entire optimiza-
tion, since there may be O(n2) edges in the worst case. Thus, we employ an
incremental flow update technique to speed up the max-flow computation after
updating ~P and its corresponding capacity. Figure 6 gives an algorithm for
the incremental network update. Lines 1–2 check whether each edge e(p0; q0)
violates the capacity constraint (i.e., 0 � flow(p0; q0) � cap(p0; q0)). Lines
3–9 fix the overflow on e(p0; q0), if an edge e(p0; q0) violates its capacity con-
straint. Finally, Line 10 computes a maximum flow again.

Note that, for efficiency consideration, we may perform Lagrangian relax-
ation only at the higher levels of the multilevel framework (when the number of
modules become small enough for Lagrangian relaxation). To do so, however,
we still need to pass the information of the aspect ratio for each soft module
level by level.

Algorithm: IncreamentalUpate(N;s; t)
Input: N—the flow network; s—the source of N ; t—the sink of N ;
1 for each edge e(p0; q0) 2 E(N);
2 if flow(p0; q0) > cap(p0; q0) then
3 fover  flow(p0; q0)� cap(p0; q0);
4 while fover > 0 do
5 find a path p from s to t, passing through e(p0; q0), and

minfflow(u; v)je(u; v) 2 pg > 0.
6 freduced  minfminfflow(u; v)je(u; v) 2 pg; foverg;
7 for each edge e(u; v) 2 p
8 flow(u; v)  flow(u; v) � freduced;
9 fover  fover � freduced;
10 compute maximum flow on N ;

Figure 6: The increamental update algorithm.

6 Experimental Results
We implemented the MB*-tree algorithm for hard modules in the C++ lan-

guage on a 450 MHz SUN Ultra 60 workstation with 2 GB memory. The
package is available at http://cc.ee.ntu.edu.tw/�ywchang/research.html.

Columns 1, 2, 3, and 4 of Table 1 lists the names of the benchmark circuits,
the number of modules, the number of nets, and the total area of modules in
the circuits, respectively. ami49 is the largest MCNC benchmark circuit used
in the previous works [5, 9] for comparative study. To test the capability of
existing methods, we created ten synthetic circuits, named ex ami49 x, by
duplicating the modules and nets of ami49 by x times. The largest circuit
ex ami49 200 contains 9,800 modules and 81,600 nets.

Table 1 also shows the results for ex ami49 x by optimizing area alone
( = 1:0 and Æ = 0:0). Columns 5, 6, and 7 give the resulting area,
the dead space, and the runtime for our MB*-tree, respectively. The re-
maining columns list the results for the famous previous works, sequence
pair [18], O-tree [9], and B*-tree [5]. Note that the B*-tree package we
used here is the September 2000 version, B*-tree-v1.0, available also at
http://cc.ee.ntu.edu.tw/�ywchang/research.html. It runs 50X–100X faster and
achieves better area utilization than the B*-tree package reported in [5]. As
shown in the table, our MB*-tree algorithm obtained a dead space of only
2.78% for ami49 in only 0.4 min runtime while B*-tree-v1.0 reported a dead
space of 3.53% using 0.25 min runtime. Further, the experimental results for
larger circuits show that the MB*-tree scales very well as the circuit size in-
creases while the previous works, sequence pair, O-tree, and B*-tree, do not.
For circuit sizes ranging from 49 to 9,800 modules and from 408 to 81,600 nets,
the MB*-tree consistently obtains high-quality floorplans with dead spaces of
less than 3.72% in empirically linear runtime, while sequence pair, O-tree, and
B*-tree can handle only up to 196, 98, and 1,960 modules in the same amount
of time and result in dead spaces of as large as 13.00% (@ 196 modules),
12.29% (@ 98 modules), and 27.33% (@ 1960 modules), respectively. As
shown in Table 1, the resulting dead spaces for the MB*-tree is almost inde-
pendent of the circuit sizes, which proves the high scalability of the MB*-tree.
In contrast, the dead spaces for the non-hierarchical previous works all grow
dramatically as the circuit size increases. In particular, the empirical runtime
of the MB*-tree approaches linear in the circuit size while the other previous
works cannot handle large-scale designs. Figure 7 shows the layout for the
largest circuit ex ami49 200 obtained by MB*-tree in 256 min CPU time. It
has a dead space of only 3.44%. Note that this circuit is not feasible to the
previous works [5, 9, 18].

Table 2 shows the comparisons for area optimization alone ( = 1:0,
Æ = 0:0), wirelength optimization alone ( = 0:0, Æ = 1:0), and simulta-
neous area and wirelength optimization ( = 0:5, Æ = 0:5) among sequence
pair (SP), B*-tree, and MB*-tree based on the circuit industry (whose total
area = 658.04 mm2). The circuit industry is a 0.18 �m, 1 GHz industrial
design with 189 modules, 20 million gates, and 9,777 center-to-center inter-
connections. It is a large chip design and consists of three “tough” modules
with aspect ratios greater than 19 (and as large as 36). (Note that we do not
have the results for O-tree for this experiment because the data industry can-
not be fed into the O-tree package.) In each entry of the table, we list the
best/average values obtained in ten runs of simulated annealing, using a ran-
dom seed for each run. For the column “Time,” we report the runtime for
obtaining the best value and the average runtime of the ten runs. As shown in
the table, our MB*-tree algorithm obtained significantly better silicon area and
wirelength than sequence pair and B*-tree in all tests. For area optimization,
MB*-tree can obtain a dead space of only 2.11% while sequence pair (B*-tree)
results in a dead space of at least 28.1% (12.9%). For wirelength optimization,
MB*-tree can obtain a total wirelength of only 56631 mm while sequence pair
(B*-tree) requires a total wirelength of at least 81344 mm (113216 mm). For
simultaneous area and wirelength optimization, MB*-tree also obtains the best
area and wirelength. The results show the effectiveness of our MB*-tree algo-
rithm. For the runtimes, MB*-tree is larger than B*-tree and SP for wirelength
optimization. (For area optimization, MB*-tree runs faster than SP.) This is
reasonable because it took much longer to obtain significantly better results
and the multulevel process incurred some overhead. Nevertheless, as shown
in Table 1, both SP and B*-tree do not scale well to the instances with a large
number of modules (and thus their runtimes increase dramatically when the
number of modules grows into hundreds). The resulting layout of industry
for simultaneous area and wirelength optimization using MB*-tree is shown in



MB*-tree Sequence Pair [18] O-tree [9] B*-tree
Circuit # # Total Area Dead Time Area Dead Time Area Dead Time Area Dead Time

mod. nets area space space space space
(mm2) (mm2) (%) (min) (mm2) (%) (min) (mm2) (%) (min) (mm2) (%) (min)

ami49 49 408 35.445 36.46 2.78 0.4 38.89 8.87 6.9 36.77 3.61 10.5 36.74 3.53 0.3
ex ami49 2 98 816 70.890 72.72 2.51 2.5 80.27 11.69 45.5 80.82 12.29 70.6 73.11 3.03 1.3
ex ami49 4 196 1632 141.78 145.73 2.70 2.6 162.97 13.00 309.0 155.76 9.86 179.3 151.31 6.60 4.7

ex ami49 10 490 4080 354.45 364.14 2.66 5.4 NR NR NR NR NR NR 407.32 12.98 19.3
ex ami49 20 980 9160 708.90 730.95 3.02 15.6 NR NR NR NR NR NR 870.45 18.55 23.5
ex ami49 40 1960 16320 1417.8 1472.62 3.72 24.8 NR NR NR NR NR NR 1951.04 27.33 53.2
ex ami49 60 2940 24480 2126.7 2205.86 3.58 42.2 NR NR NR NR NR NR NR NR NR
ex ami49 80 3920 32640 2835.6 2943.72 3.67 57.0 NR NR NR NR NR NR NR NR NR
ex ami49 100 4900 40800 3544.5 3671.42 3.45 51.6 NR NR NR NR NR NR NR NR NR
ex ami49 150 7350 61200 5316.8 5505.34 3.42 142.2 NR NR NR NR NR NR NR NR NR
ex ami49 200 9800 81600 7089.0 7341.91 3.44 256.2 NR NR NR NR NR NR NR NR NR

Table 1: Comparisons for area, dead space, and runtime among MB*-tree, Sequence pair, O-tree, and B*-tree. NR: No result obtained within 5-hr CPU time
on SUN Sparc Ultra 60.

Area optimization Wirelength optimization Simultaneous area and wirelength optimization
Package ( = 1:0, Æ = 0:0) ( = 0:0, Æ = 1:0) ( = 0:5, Æ = 0:5)

Area Dead space Time Wirelength Time Area Dead space Wirelength Time
(mm2) (%) (min) (mm) (min) (mm2) (%) (mm) (min)

SP 914.5/988.0 28.1/33.2 46.8/35.31 113216/122609 31.3/37.3 1104.2/1182.5 40.4/44.3 136001/159340 46.4/37.3
B*-tree 755.7/876.6 12.9/24.7 0.2/0.1 81344/91169 12.6/9.1 834.7/982.8 21.2/32.5 104558/112200 14.4/9.11

MB*-tree 671.9/740.8 2.1/3.1 11.5/6.6 56631/61698 346.1/204.7 716.3/740.8 8.1/11.1 67786/67541 221.3/220.2
SP : MB*-tree 1.36/1.34 13.38/10.71 4.07/5.35 2.00/1.98 0.09/0.18 1.54/1.60 4.99/3.99 2.01/2.36 0.21/0.17

B*-tree : MB*-tree 1.13/1.18 6.14/7.97 0.02/0.02 1.44/1.48 0.04/0.05 1.17/1.33 2.62/2.93 1.54/1.66 0.07/0.04

Table 2: Comparisons for area optimization alone, wirelength optimization alone, and simultaneous area and wirelength optimization among sequence pair
(SP), B*-tree, and MB*-tree based on the circuit industry. In each entry, both the best/average values obtained in ten runs of simulated annealing are reported.
The last two rows give the ratios of the results (SP to MB*-tree and B*-tree to MB*-tree).

Figure 8.

Figure 7: ex ami49 200 layout (9,800 modules). Dead space = 3.44%.

7 Concluding Remarks
We have presented the MB*-tree based multilevel framework to handle the

floorplanning and packing for large-scale modules. Experimental results have
shown that the MB*-tree scales very well as the circuit size increases. The
capability of the MB*-tree shows its promise in handling large-scale designs
with complex constraints. We propose to explore the floorplanning/placement
problem with large-scale rectilinear and mixed sized modules/cells as well as
buffer-block planning for interconnect-driven floorplanning in the future.
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