
Using Satisfiability in Application-Dependent Testing of
FPGA Interconnects

 Mehdi Baradaran Tahoori
Center for Reliable Computing

Stanford University
mtahoori@crc.stanford.edu

ABSTRACT
In this paper, a new technique for testing the interconnects of an
arbitrary design mapped into an FPGA is presented. In this technique,
only the configuration of logic blocks used in the design is changed.
The test vector and configuration generation problem is systematically
converted to a satisfiability (SAT) problem, and state of the art SAT-
solvers are exploited for test configuration generation. Experimental
results on various benchmark circuits show that only two test
configurations are required to test for all bridging faults, achieving
100% fault coverage, with respect to the fault list.
Categories and Subject Descriptors
B.8.1 [Reliability, Testing, and Fault-Tolerance]

General Terms
Reliability, Verification.

Keywords
Field-Programmable Gate Array, Interconnect.

1. INTRODUCTION
SRAM-based field programmable gate arrays (FPGAs) are two-

dimensional arrays of logic blocks and programmable switch
matrices, surrounded by programmable input/output blocks on the
periphery. FPGAs are widely used in many applications such as
networking and adaptive computing, due to their reprogrammability,
reduced design cycle and time-to-market compared to conventional
ASIC design flow.

More than 80% of the transistors in an FPGA are used in the
interconnect network. Also, more than eight metal layers are used for
the wiring channels in the interconnect network. Hence, FPGAs are
vulnerable to bridging faults in the interconnects. Test generation for
bridging faults is more complicated than traditional testing for stuck-
at faults. Note that stuck-at model in the interconnects can be modeled
as bridging to power rails.

Testability issues are not considered in the design flow using
FPGAs, as FPGA users typically rely on manufacturing test of
FPGAs. There are no scan chains, BIST circuitry, or test points in
typical FPGA-based designs. Hence, these designs are not fully
testable using conventional ASIC ATPG tools.

On the other hand, some FPGA chips that do not pass
manufacturing test may still be usable for some specific designs. In
this case, the defects are located in some areas of the chip which are
not used by a particular design. By testing the resources of an FPGA
with respect to a specific design to be implemented on it, some faulty
chips can be sold to customers. These FPGAs, which are good only
for particular designs and do not have general programmability of
typical FPGAs, are called application-specific FPGAs (ASFPGAs).

ASFPGAs are profitable for relatively large volume designs which
have been completely finalized, i.e. the final placed and routed
version is fixed.

Based on these mentioned facts, FPGA vendors can benefit from
application-dependent testing of FPGAs, which tests only the FPGA
resources used on a particular design, in order to increase the yield
and make money from those chips that are previously marked as
rejected parts. This strategy has been adopted by Xilinx [Xilinx 02].

Application-dependent testing of FPGAs is described in [Das 99].
In this technique, every CLB used in the mapped design is
reconfigured as transparent logic followed by flip-flips in order to
construct scan chains. Also, fanout branches of a net are tested in
different test configurations, i.e. dependent logic cones are tested in
different configuration, resulting in a few number of test
configurations. Due to complexity of configuration generation
algorithm, it cannot be applied to large designs.

In this paper, a new testing technique for application-dependent
testing of bridging faults in FPGA interconnects is presented. We
consider both wired-OR and wire-AND bridging fault models [Chess
98] [Storey 98]. In the presented method, only the logic blocks of the
FPGA used by the mapped design are reprogrammed to implement
some special type of logic functions. Hence, no extra placement and
routing are necessary for test configuration generation. The test
configuration generation problem is systematically converted into a
satisfiability (SAT) problem, and state-of-the-art SAT-solvers are
exploited to solve this problem.

The logic implemented in the logic blocks can be tested using
well-known techniques for testing logic blocks [Stroud 96][Renovell
00]. Hence, it is not covered in this paper.

The rest of this paper is organized as follows. In Sec.2, the notion
of single-term functions and testability of logic networks are
presented. In Sec. 3, testing techniques for bridging faults are
presented. In Sec. 4, the systematic approach to convert the
configuration generation problem into a SAT problem, along with
generalization to arbitrary fault list, is presented. In Sec. 5, the
experimental results are presented. Finally Sec. 6 concludes the paper.

2. TESTABILITY OF LOGIC FUNCTIONS
In this section, some specific logic functions are introduced to be

implemented in the logic blocks of mapped designs.
Consider a logic function with m inputs. Each of the 2m input

combinations corresponds to a term in the truth table of the function.
A single-term function is a logic function which has only one minterm
or only one maxterm. In other words, the truth table for a single-term
function, F, has only one row with F = 1, or only one row with F = 0.
The input corresponding to this specific minterm or maxterm is called
the activating input. An example of a single-term function is shown in
Fig. 7.1, where the activating input is applied. This function has only
one minterm, A′BC′D′. Note that A/1 (A stuck-at-1 fault) is
detectable under the applied input pattern, as the faulty output is 0,
which is unequal to fault-free output, 1. Similarly, B/0, C/1, and D/1
are also detectable. Consider the bridging fault between A and B
(denoted by ABFB). In the case of wired-and (WAND) model, both
inputs become 0, and the effective input is ABCD = 0000, and faulty

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or redistribute to lists, require prior specific
permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

678

39.4

output is F(0000) = 0. Otherwise, in the case of wired-or (WOR),
both inputs become 1 and faulty output is F(1100) = 0. In both cases,
the bridging fault is detectable. Similarly, BBFC and BBFD are also
detectable.

A fault on a node is sensitized if the applied test vector sets that
node a logic value opposite to the fault value. The following theorem
generalizes the above example and explains the conditions for
detectability of faults in single-term functions.

D

C
B

A

F

F = A′BC′D′

&

0

0

1

0

1

Figure 1 A single-term function with activating input pattern

Theorem 1. For a single-term function F, if the applied input
vector is the activating input V, all sensitized stuck-at and bridging
faults are detectable.

Proof. Consider a fault f (stuck-at or bridging fault) such that it is
sensitized, i.e. if f is n/v, n is set to v′ by applying V, and if f is aBFb, a
and b have different values in V. In order to detect f, it is only
sufficient to propagate the fault to the output. Since the fault is
already sensitized, the fault term, the term corresponding to the faulty
inputs, Cf, is different from the original term, CV. Because the original
term is the activating term, the value of the fault term must be
different from the value of original term, CV ≠ Cf, as F is single-term.
Hence, the fault-free output is different from the faulty output and the
fault is detectable.

Theorem 2. Consider a network of single-term functions N, and
the input pattern V, such that the inputs of every block is the
activating input of that block. Then, all the activated faults are
detectable. In other word, for every net n with value Vn, n stuck-at Vn′
is detectable, and for each pair of nets, ni and nj, with Vni ≠ Vnj, the
bridging fault between ni and nj is detectable.

Proof. In this general case, the propagation path from the fault
site to the primary output (PO) may consist more than one block.
Consider a propagation path from the fault site to a PO. Based on
Theorem 1, the fault effect appears on the output of the first block in
the path, as a fault in the input of the second block in the path. Based
on an induction on the length of the path, the fault reaches to the PO.
Hence, the fault can be detected.

Figure 2 shows an example of a network of single-term functions.
All the activated faults are detectable.

Note that if the network is sequential, i.e. some single-term
functions are followed by flip-flops, the above theorem is still
applicable. In this case, the preset value of the flip-flop must be equal

the value of the net connected to its D input, as defined in the
conditions of Theorem 2. For example, if F5 is followed by a flip-flop
in Fig. 2, the preset value of that flip-flop must be 0, the value of the
output of F5. In this case, the required number of test clock cycles is
equal to the maximum sequential depth of the network, the maximum
number of flip-flops on a path from a PI to a PO. The test vector must
remain unchanged during all these test clock cycles.

Theorem2 gives a sufficient condition for detection of all
activated faults in a logic network of single-term functions. The
following theorem expresses the necessary condition for this
detectability.

Theorem 3. Consider an arbitrary network of (combinational)
logic functions, N, and a given test vector V. If for every net n with
value Vn, n stuck-at Vn′ is detectable, then all the functions in the
network must be single-term functions whose inputs are the activating
inputs.

Proof. Consider an arbitrary function F in the network N. Let say
the inputs of F under the primary input vector V is v. In the presence
of any multiple (including single) stuck-at faults in the input pins of
F, the actual input values seen by F change from v to a faulty value v′.
Since all the possible stuck-at faults must be detectable, all
combinations of input values other than v can occur as faulty inputs of
F. So, if F has m inputs, v′ can take all 2m – 1 possible combinations
other than v. The necessary condition to detect each fault in the inputs
of F is to propagate it to the output of F. Hence F(v′) ≠ F(v) for all 2m
– 1 possible values for v′. This implies that F is single-term and v is
the activating input. Since we chose F as an arbitrary function in N,
this property must hold for all the functions in N, so the proof is
complete.

3. TESTING FOR BRIDGING FAULTS
3.1 Fault List

It is not appropriate to consider bridging faults between all
possible pairs of nets in the design. First, the size of the fault list
becomes intractable. Second, bridging faults between some pairs of
nets are improbable due to physical neighborhood obtained from
layout information. Inductive fault analysis (IFA) techniques are
proposed to extract the fault list from the physical layout information
[Ferguson 88]. These techniques are very time consuming for a
medium to large size designs.

The presented technique supports both internally generated fault
list for bridging fault, or any user-specified fault lists. All the nets in
the design are partition into some groups. All the nets in the same
group are tested for all possible pair-wise bridging faults. A group of
m nets has m(m-1)/2 bridging faults. The bridging fault between two
nets in different groups is not included in the fault list.

In the internally generated fault list, all the inputs of a look-up
table (LUT) are considered in the same group. Hence, the number of
the groups is equal to the number of LUTs used for the design. As a
result, the size of the fault list is a constant factor of the number of
logic blocks used in the design. Note that this fault list exploits
physical neighborhood, since the nets in different blocks have less
probability of bridging faults than those in the same block.

3.2 Test Configurations
For the FPGA with n-input LUTs, log2n test configurations with

single-term functions are sufficient to cover all bridging faults with
respect to the fault list described in Sec. 3.1. The activating inputs are
columns of binary numbers using log2n bits for n-input LUTs (so-
called Walsh codes).

Consider the binary representation of mth input of the LUT using
log2n bits. Each bit position corresponds to one of the log2n test
configurations, as follows. If the ith bit position is 1 for the mth input,

Figure 2 A logic network of single-term functions

a′+b a′.b′ a+b′

a′.b′ a+b′ a.b′

a′+b′ a′.b′

0
0

0

1
1

1 0

0

0

1

1

0

1

1

0

0

1

a′+b′

a

b

F1

F2

F3

F4

F5

F6

F7

F8

F9

679

it means that the mth bit of the activating input is 1 in the ith
configuration, otherwise 0.

The configuration of the LUT is determined by its activating input
and the value of the output for that input (single-term function).
Figure 3 shows an example for a 4-input LUT, with the activating
inputs and single-term functions. Also, the bridging faults detected by
each configuration are shown. For example, input C is coded by 10,
using two bits (log24). The corresponding bit of the activating input is
1 in the first configuration and 0 in the second configuration.

D
C
B
A

F

1
1
0
0

F (F′) = A′ B′CD

{(ABFC),(ABFD),(BBFC),(BBFD)}

D
C
B
A

F

1
0
1
0

F (F′) = A′ BC′D

{(ABFB),(ABFD),(BBFC),(CBFD)}
Figure 3 Two configurations for a 4-input LUT

Theorem 4. The above technique detects all bridging faults
among all pairs of nets in the inputs of an n-input LUT, in log2n
configurations.

Proof. Consider two arbitrary inputs of the LUT, ith and jth inputs.
Let i<m> be the value of mth bit of i. Since i and j are two different
inputs, i ≠ j, they have different binary representations. This means
than there should be at least one bit position p, in which i<p> ≠ j<p>.
This implies that in the pth configuration, the ith and jth bits of the
activating input have different values. Hence, the bridging fault
between these two inputs is activated in the pth test configuration.
Based on Theorem 2, the bridging fault between these two inputs is
detected.

4. SATISFIABILITY FORMULATION
4.1 Configuration for The Entire FPGA

The previous section presented the configuration generation
technique for only one LUT. In this section, an algorithmic approach
is presented to generate the test configurations for the entire FPGA.

Due to fanouts, the desired activating inputs for the LUTs cannot
be realized for all LUTs in the design. An example is shown in Fig. 4,
in which appropriate activating inputs are assigned for LUT1 and
LUT2. Since the stem and fanout branches have the same logic value,
the desired activating input, 0011, cannot be realized at the inputs of
LUT3. Therefore, backtrack should be performed and the assignments
of the inputs of LUT1 and LUT2 must be changed in order to obtain a
feasible assignment for inputs of LUT3. The problem of configuration
generation for the entire FPGA using the presented approach is NP-
Complete in general.

1
1
0
0

1
1
0
0

0
0
0
0

LUT 1

LUT 2

LUT 3

Figure 4 A portion of a design implemented on an FPGA.
In the presented approach, all the nets in the design are partitioned

into two groups, plus and minus, such that for every LUT L with n
inputs to be partitioned, n/2 of the inputs are assigned into plus group,
and the other n/2 inputs are assigned to minus group. This process is

called dichotomization. The fanout branches and stem of the same net
must be assigned to the same group.

By assigning 0 (1) to all the nets in the plus group and 1 (0) to all
the nets in the minus group, the desired activating inputs for all the
LUTs will be obtained. Based on the logic value of the activating
input and the output of the LUTs, the configuration of the LUT and
the preset value of the flip-flops are determined. The logic values of
the nets corresponding to primary inputs are the test vectors.

For the next test configuration, we set n = n/2, and the same
dichotomizing algorithm is performed for each of the groups obtained
in the previous configuration. This process recursively continues for
all the log2n test configurations.

4.2 SAT Formulation for Grouping Problem
We present a technique to convert the configuration generation

problem into a satisfiability problem by constructing a Boolean
function F. A solution to F=1 can be converted to the desired test
vectors and configurations.

Consider the symmetric logic function Sn
k(x1, x2, …, xn), where

Sn
k = 1 if and only if exactly k inputs of Sn

k are 1. For example, S3
1=

x1x2′x3′+ x1′x2x3′+ x1′x2′x3. Sn
k can be recursively defined as follows

(Π is the logical AND function):
Consider the set of the nets in the design that must be

dichotomized. Let M be the number of LUT inputs that participate in
this grouping algorithm. M = N/2i-1 at ith configuration for N-input
LUTs. We assign one variable per each net. All the fanout stem and
branches of the same net share the same variable. For each LUT l, let

l
M

ll xxx ,,, …21
be the M inputs of l which have to be dichotomized. Let

),,,(/
l
M

llM
Ml xxxSF …212= .

The solution for Fl = 1 is an equal-size dichotomization of those
M inputs of l, a sub-solution to the problem for only one LUT.

The function that is the SAT formulization for the entire FPGA is:

∏=
l LUT each for

lFF .

In the variable assignment that satisfies F, every variable whose
with logic value 0 is put in the minus group, otherwise is assigned to
the plus group. An example is shown in Fig. 5. All the nets are
assigned with unique variables. For the first configuration, 4

2S must be
used for all LUTs, since M = 4. The SAT function for the first
configuration is as follows:

),,,().,,,().,,,().,,,(81094
4
210497

4
28765

4
24321

4
2 xxxxSxxxxSxxxxSxxxxS=F

where:
)])()()((

))()()([(),,,(

432431421321

4324314213214321
4
2

xxxxxxxxxxxx
xxxxxxxxxxxxxxxxS

++++++++

++++++++=

L2

L1

L4

L3
x1
x2

x3

x4

x5
x6

x7

x8

x1
x9

x4

x10

x4
x9
x10

x8















<<+

=

=

=

−−
−

=

=

∏

∏

nk xxSxxxSx

k x

nk x

xxS

n
n
kn

n
k

n

i
i

n

i
i

n
n
k

0

0

2
1

12
1
11

1

1

1

,),,(.),,(.

,

,

),,(

……

…

680

Figure 5 An example design implemented with four LUTs
One variable assignment that satisfies F is:

<x1,x2,x3,x4,x5,x6,x7,x8,x9,x10>=<0,0,1,1, 0,1,1,0,0,1>. It implies that
plus group = {x3,x4,x6,x7,x10} and minus group = {x1,x2,x5,x8,x9}.

For the second configuration, each of the above groups must be
partitioned. Hence, there are two SAT functions on two disjoint sets
of different variables. These functions are as follows:

),().,().,().,(98
2
191

2
185

2
121

2
1 xxSxxSxxSxxS=1F

),().,().,().,(104
2
1104

2
176

2
143

2
1 xxSxxSxxSxxS=2F

where))((),(212121
2
1 xxxxxxS ++= .

One variable assignment that satisfies F1 is: <x1,x2,x5,x8,x9> =
<1,0,0,1,0>. Therefore the groups are {x2,x5,x9} and {x1 ,x8}.
Similarly, a variable assignment that satisfies F2 is: <x3,x4,x6,x7,x10> =
<0,1,0,1,0> and the groups are {x3,x6,x10} and {x4, x7}. The results
interpreted in terms of the activating inputs and LUT configurations
for two test configurations are shown in Fig. 6.

0
0
1

0
0
1
1

F2

F1

F4

F3

1

0

0

1

0

0
1

1 1

F1 = ABC′D′

1

0

F2 = A′+B+C+D′

F3 = ABC′D′

F4 = A′BC′D

1
0
0

1
0
0
1

F2

F1

F4

F3

1

1

1

0

0

0
0

1 1

F1 = A′+B+C+D′

0

0

F2 = A+B+C′+D′

F3 = AB′CD′

F4 = AB′C′D

Configuration 1 Configuration 2
Figure 6 Two configuration for 4-input LUTs

4.3 Generalization to Arbitrary Fault List
The formulation and the technique presented in the previous

section can be generalized to any arbitrary user-specified bridging
fault list. Typically the nets in the design are partitioned into k groups,
P1,…,Pk, such that the bridging fault between two nets, ni and nj, is
included in the fault list if and only if ni and nj belong to the same
group.

The SAT formulation (of the first test configuration) for this
problem is similar to that presented in Sec. 4.2. Formally, the SAT
formulation for each group Pi is:

),...,(||
||
/|| i

i

i P
P
P xxS 12 .

where |Pi| is the size of Pi.
Since this condition must be satisfied for all the k groups, the

overall SAT function is the logical AND of the above function for all
the groups. For the other test configurations, the SAT formulation is
similar to the approach presented in Sec. 4.2: recursively partitioning
the groups, until the size of each group becomes one in the last
configuration. As a result, the total number of required test
configurations, N, is given by the following formulae:

 ||logmax i

k

i
PN 21=

=
.

Hence, the total number of test configuration is dominated by the
size of the largest fault group.

5. EXPERIMENTAL RESULTS
In order to implement this technique, some FPGA benchmarks are

used, which are mapped (placed) designs to a generic switch-based
FPGA architecture [Alexander 96]. The SAT-solver used for the
implementation is zChaff [Zhang 01]. Table 1 shows the results of
test configuration generation method using this SAT-solver for these

benchmark designs. The execution time column corresponds to the
time spent by the SAT-solver to satisfy the clauses in seconds. As can
be seen in this table, for all the benchmark designs, the clauses are
satisfiable in less than a second. As a result, the optimum number of
test configurations, two, is achievable for all designs. This shows that
this technique can be easily used for large designs.

6. SUMMARY
In this paper, a new technique for testing the interconnects of an

arbitrary design mapped into an FPGA is presented. Only the
configuration of the logic blocks used in the design is changed in
order to implement special single-term functions. Formal proofs are
provided for 100% bridging fault coverage of the presented technique.
SAT formulations are presented for automatic test vector and
configuration generation for the entire FPGA. Experimental results on
various benchmark designs show that only two test configurations are
required to cover all (multiple) bridging faults, achieving 100% fault
coverage.

Table 1 SAT formulation results for benchmark circuits

Circuit CLBs Nets Clauses SAT Exec.Time Configs
Term1 90 88 720 √ 0.01 2

9symml 110 79 880 √ 0.02 2
Appex7 120 115 960 √ 0.02 2

busc 156 151 1248 √ 0.02 2
Exm2 168 205 1344 √ 0.02 2
Alu2 195 153 1560 √ 0.02 2
2large 196 186 1568 √ 0.02 2
Vda 272 225 2176 √ 0.04 2
Dma 288 213 2304 √ 0.04 2
Alu4 323 255 2584 √ 0.02 2
K2 440 404 3520 √ 0.06 2

Bnre 462 352 3696 √ 0.04 2
Dfsm 506 420 4048 √ 0.04 2
Z03 702 608 5616 √ 0.06 2

ACKNOWLEDGMENT
The author would like to thank Professor Edward J. McCluskey

for his contributions to this work and supervision of this project.

REFERENCES
[Alexander 96] Alexander, M. J., and Robins, G., New Performance-Driven

FPGA Routing Algorithms, IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, pp. 1505-1517, 1996.

[Altera 02] The Programmable Logic Data Book 2002, Altera Inc., 2002.
[Chess 98] B. Chess, T. Larrabee, Logic testing of bridging faults in CMOS

integrated circuits, IEEE Trans. Computer, vol.47, pp. 338-345, Mar.
1998.

[Das 99] D. Das, N. A. Touba, A Low Cost Approach for Detecting, Locating,
and Avoiding Interconnect Faults in FPGA-Based Reconfigurable Systems,
Proc. Int’l Conf. On VLSI Design, 1999.

[Ferguson 88] F.J. Ferguson, J.P. Shen, A CMOS fault extractor for inductive
fault analysis, IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, Vol. 7 Issue: 11 , pp. 1181-1194, Nov. 1988.

[Renovell 00] M. Renovell, Y. Zorian, Different Experiments in Test
Generation for XILINX FPGAs, Proc. Int’l Test Conf., 2000.

[Storey 98] T. Storey, W. Maly, CMOS bridging fault detection, Proc. Int’l
Test Conf., pp.842- 851, 1990.

[Stroud 96] C. Stroud, S. Konala, C. Ping, M. Abramovici, Built-in self-test of
logic blocks in FPGAs (Finally, a free lunch: BIST without overhead!),
Proc. VLSI Test Symp., pp. 387 –392, 1996.

[Xilinx 02] The Programmable Logic Data Book 2002, Xilinx Inc., 2002.
[Zhang 01] L. Zhang, C. Madigan, M. Moskewicz, S. Malik, Efficient Conflict

Driven Learning in a Boolean Satisfiability Solver, Proc. ICCAD, 2001.

681

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

