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ABSTRACT 
In this paper, a new technique for testing the interconnects of an 
arbitrary design mapped into an FPGA is presented. In this technique, 
only the configuration of logic blocks used in the design is changed. 
The test vector and configuration generation problem is systematically 
converted to a satisfiability (SAT) problem, and state of the art SAT-
solvers are exploited for test configuration generation. Experimental 
results on various benchmark circuits show that only two test 
configurations are required to test for all bridging faults, achieving 
100% fault coverage, with respect to the fault list. 
Categories and Subject Descriptors 
B.8.1 [Reliability, Testing, and Fault-Tolerance] 

General Terms 
Reliability, Verification. 

Keywords 
Field-Programmable Gate Array, Interconnect. 

1. INTRODUCTION 
SRAM-based field programmable gate arrays (FPGAs) are two-

dimensional arrays of logic blocks and programmable switch 
matrices, surrounded by programmable input/output blocks on the 
periphery. FPGAs are widely used in many applications such as 
networking and adaptive computing, due to their reprogrammability, 
reduced design cycle and time-to-market compared to conventional 
ASIC design flow. 

More than 80% of the transistors in an FPGA are used in the 
interconnect network. Also, more than eight metal layers are used for 
the wiring channels in the interconnect network. Hence, FPGAs are 
vulnerable to bridging faults in the interconnects. Test generation for 
bridging faults is more complicated than traditional testing for stuck-
at faults. Note that stuck-at model in the interconnects can be modeled 
as bridging to power rails. 

Testability issues are not considered in the design flow using 
FPGAs, as FPGA users typically rely on manufacturing test of 
FPGAs. There are no scan chains, BIST circuitry, or test points in 
typical FPGA-based designs. Hence, these designs are not fully 
testable using conventional ASIC ATPG tools. 

On the other hand, some FPGA chips that do not pass 
manufacturing test may still be usable for some specific designs. In 
this case, the defects are located in some areas of the chip which are 
not used by a particular design. By testing the resources of an FPGA 
with respect to a specific design to be implemented on it, some faulty 
chips can be sold to customers. These FPGAs, which are good only 
for particular designs and do not have general programmability of 
typical FPGAs, are called application-specific FPGAs (ASFPGAs). 

ASFPGAs are profitable for relatively large volume designs which 
have been completely finalized, i.e. the final placed and routed 
version is fixed. 

Based on these mentioned facts, FPGA vendors can benefit from 
application-dependent testing of FPGAs, which tests only the FPGA 
resources used on a particular design, in order to increase the yield 
and make money from those chips that are previously marked as 
rejected parts. This strategy has been adopted by Xilinx [Xilinx 02]. 

Application-dependent testing of FPGAs is described in [Das 99]. 
In this technique, every CLB used in the mapped design is 
reconfigured as transparent logic followed by flip-flips in order to 
construct scan chains. Also, fanout branches of a net are tested in 
different test configurations, i.e. dependent logic cones are tested in 
different configuration, resulting in a few number of test 
configurations. Due to complexity of configuration generation 
algorithm, it cannot be applied to large designs. 

In this paper, a new testing technique for application-dependent 
testing of bridging faults in FPGA interconnects is presented. We 
consider both wired-OR and wire-AND bridging fault models [Chess 
98] [Storey 98]. In the presented method, only the logic blocks of the 
FPGA used by the mapped design are reprogrammed to implement 
some special type of logic functions. Hence, no extra placement and 
routing are necessary for test configuration generation. The test 
configuration generation problem is systematically converted into a 
satisfiability (SAT) problem, and state-of-the-art SAT-solvers are 
exploited to solve this problem.  

The logic implemented in the logic blocks can be tested using 
well-known techniques for testing logic blocks [Stroud 96][Renovell 
00]. Hence, it is not covered in this paper. 

The rest of this paper is organized as follows. In Sec.2, the notion 
of single-term functions and testability of logic networks are 
presented. In Sec. 3, testing techniques for bridging faults are 
presented. In Sec. 4, the systematic approach to convert the 
configuration generation problem into a SAT problem, along with 
generalization to arbitrary fault list, is presented. In Sec. 5, the 
experimental results are presented. Finally Sec. 6 concludes the paper. 

2. TESTABILITY OF LOGIC FUNCTIONS 
In this section, some specific logic functions are introduced to be 

implemented in the logic blocks of mapped designs. 
Consider a logic function with m inputs. Each of the 2m input 

combinations corresponds to a term in the truth table of the function. 
A single-term function is a logic function which has only one minterm 
or only one maxterm. In other words, the truth table for a single-term 
function, F, has only one row with F = 1, or only one row with F = 0. 
The input corresponding to this specific minterm or maxterm is called 
the activating input. An example of a single-term function is shown in 
Fig. 7.1, where the activating input is applied. This function has only 
one minterm, A′BC′D′. Note that A/1 (A stuck-at-1 fault) is 
detectable under the applied input pattern, as the faulty output is 0, 
which is unequal to fault-free output, 1. Similarly, B/0, C/1, and D/1 
are also detectable. Consider the bridging fault between A and B 
(denoted by ABFB). In the case of wired-and (WAND) model, both 
inputs become 0, and the effective input is ABCD = 0000, and faulty 
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output is F(0000) = 0. Otherwise, in the case of wired-or (WOR), 
both inputs become 1 and faulty output is F(1100) = 0. In both cases, 
the bridging fault is detectable. Similarly, BBFC and BBFD are also 
detectable. 

A fault on a node is sensitized if the applied test vector sets that 
node a logic value opposite to the fault value. The following theorem 
generalizes the above example and explains the conditions for 
detectability of faults in single-term functions. 
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Figure 1 A single-term function with activating input pattern 

Theorem 1. For a single-term function F, if the applied input 
vector is the activating input V, all sensitized stuck-at and bridging 
faults are detectable. 

Proof. Consider a fault f (stuck-at or bridging fault) such that it is 
sensitized, i.e. if f is n/v, n is set to v′ by applying V, and if f is aBFb, a 
and b have different values in V. In order to detect f, it is only 
sufficient to propagate the fault to the output. Since the fault is 
already sensitized, the fault term, the term corresponding to the faulty 
inputs, Cf, is different from the original term, CV. Because the original 
term is the activating term, the value of the fault term must be 
different from the value of original term, CV ≠ Cf, as F is single-term. 
Hence, the fault-free output is different from the faulty output and the 
fault is detectable. 

Theorem 2. Consider a network of single-term functions N, and 
the input pattern V, such that the inputs of every block is the 
activating input of that block. Then, all the activated faults are 
detectable. In other word, for every net n with value Vn, n stuck-at Vn′ 
is detectable, and for each pair of nets, ni and nj, with Vni ≠ Vnj, the 
bridging fault between ni and nj is detectable. 

Proof. In this general case, the propagation path from the fault 
site to the primary output (PO) may consist more than one block. 
Consider a propagation path from the fault site to a PO. Based on 
Theorem 1, the fault effect appears on the output of the first block in 
the path, as a fault in the input of the second block in the path. Based 
on an induction on the length of the path, the fault reaches to the PO. 
Hence, the fault can be detected. 

Figure 2 shows an example of a network of single-term functions. 
All the activated faults are detectable. 

Note that if the network is sequential, i.e. some single-term 
functions are followed by flip-flops, the above theorem is still 
applicable. In this case, the preset value of the flip-flop must be equal 

the value of the net connected to its D input, as defined in the 
conditions of Theorem 2. For example, if F5 is followed by a flip-flop 
in Fig. 2, the preset value of that flip-flop must be 0, the value of the 
output of F5. In this case, the required number of test clock cycles is 
equal to the maximum sequential depth of the network, the maximum 
number of flip-flops on a path from a PI to a PO. The test vector must 
remain unchanged during all these test clock cycles. 

Theorem2 gives a sufficient condition for detection of all 
activated faults in a logic network of single-term functions. The 
following theorem expresses the necessary condition for this 
detectability. 

Theorem 3. Consider an arbitrary network of (combinational) 
logic functions, N, and a given test vector V. If for every net n with 
value Vn, n stuck-at Vn′ is detectable, then all the functions in the 
network must be single-term functions whose inputs are the activating 
inputs. 

Proof. Consider an arbitrary function F in the network N. Let say 
the inputs of F under the primary input vector V is v. In the presence 
of any multiple (including single) stuck-at faults in the input pins of 
F, the actual input values seen by F change from v to a faulty value v′. 
Since all the possible stuck-at faults must be detectable, all 
combinations of input values other than v can occur as faulty inputs of 
F. So, if F has m inputs, v′ can take all 2m – 1 possible combinations 
other than v. The necessary condition to detect each fault in the inputs 
of F is to propagate it to the output of F. Hence F(v′) ≠ F(v) for all 2m 
– 1 possible values for v′. This implies that F is single-term and v is 
the activating input. Since we chose F as an arbitrary function in N, 
this property must hold for all the functions in N, so the proof is 
complete. 

3. TESTING FOR BRIDGING FAULTS 
3.1 Fault List 

It is not appropriate to consider bridging faults between all 
possible pairs of nets in the design. First, the size of the fault list 
becomes intractable. Second, bridging faults between some pairs of 
nets are improbable due to physical neighborhood obtained from 
layout information. Inductive fault analysis (IFA) techniques are 
proposed to extract the fault list from the physical layout information 
[Ferguson 88]. These techniques are very time consuming for a 
medium to large size designs. 

The presented technique supports both internally generated fault 
list for bridging fault, or any user-specified fault lists. All the nets in 
the design are partition into some groups. All the nets in the same 
group are tested for all possible pair-wise bridging faults. A group of 
m nets has m(m-1)/2 bridging faults. The bridging fault between two 
nets in different groups is not included in the fault list. 

In the internally generated fault list, all the inputs of a look-up 
table (LUT) are considered in the same group. Hence, the number of 
the groups is equal to the number of LUTs used for the design. As a 
result, the size of the fault list is a constant factor of the number of 
logic blocks used in the design. Note that this fault list exploits 
physical neighborhood, since the nets in different blocks have less 
probability of bridging faults than those in the same block. 

3.2 Test Configurations 
For the FPGA with n-input LUTs, log2n test configurations with 

single-term functions are sufficient to cover all bridging faults with 
respect to the fault list described in Sec. 3.1. The activating inputs are 
columns of binary numbers using log2n bits for n-input LUTs (so-
called Walsh codes).  

Consider the binary representation of mth input of the LUT using 
log2n bits. Each bit position corresponds to one of the log2n test 
configurations, as follows. If the ith bit position is 1 for the mth input, 

Figure 2 A logic network of single-term functions 
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it means that the mth bit of the activating input is 1 in the ith 
configuration, otherwise 0. 

The configuration of the LUT is determined by its activating input 
and the value of the output for that input (single-term function). 
Figure 3 shows an example for a 4-input LUT, with the activating 
inputs and single-term functions. Also, the bridging faults detected by 
each configuration are shown. For example, input C is coded by 10, 
using two bits (log24). The corresponding bit of the activating input is 
1 in the first configuration and 0 in the second configuration. 
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Figure 3 Two configurations for a 4-input LUT  

Theorem 4. The above technique detects all bridging faults 
among all pairs of nets in the inputs of an n-input LUT, in log2n 
configurations. 

Proof. Consider two arbitrary inputs of the LUT, ith and jth inputs. 
Let i<m> be the value of mth bit of i. Since i and j are two different 
inputs, i ≠ j, they have different binary representations. This means 
than there should be at least one bit position p, in which i<p> ≠ j<p>. 
This implies that in the pth configuration, the ith and jth  bits of the 
activating input have different values. Hence, the bridging fault 
between these two inputs is activated in the pth test configuration. 
Based on Theorem 2, the bridging fault between these two inputs is 
detected. 

4. SATISFIABILITY FORMULATION 
4.1 Configuration for The Entire FPGA 

The previous section presented the configuration generation 
technique for only one LUT. In this section, an algorithmic approach 
is presented to generate the test configurations for the entire FPGA. 

Due to fanouts, the desired activating inputs for the LUTs cannot 
be realized for all LUTs in the design. An example is shown in Fig. 4, 
in which appropriate activating inputs are assigned for LUT1 and 
LUT2. Since the stem and fanout branches have the same logic value, 
the desired activating input, 0011, cannot be realized at the inputs of 
LUT3. Therefore, backtrack should be performed and the assignments 
of the inputs of LUT1 and LUT2 must be changed in order to obtain a 
feasible assignment for inputs of LUT3. The problem of configuration 
generation for the entire FPGA using the presented approach is NP-
Complete in general. 
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Figure 4 A portion of a design implemented on an FPGA. 
In the presented approach, all the nets in the design are partitioned 

into two groups, plus and minus, such that for every LUT L with n 
inputs to be partitioned, n/2 of the inputs are assigned into plus group, 
and the other n/2 inputs are assigned to minus group. This process is 

called dichotomization. The fanout branches and stem of the same net 
must be assigned to the same group.  

By assigning 0 (1) to all the nets in the plus group and 1 (0) to all 
the nets in the minus group, the desired activating inputs for all the 
LUTs will be obtained. Based on the logic value of the activating 
input and the output of the LUTs, the configuration of the LUT and 
the preset value of the flip-flops are determined. The logic values of 
the nets corresponding to primary inputs are the test vectors.  

For the next test configuration, we set n = n/2, and the same 
dichotomizing algorithm is performed for each of the groups obtained 
in the previous configuration. This process recursively continues for 
all the log2n test configurations. 

4.2 SAT Formulation for Grouping Problem 
We present a technique to convert the configuration generation 

problem into a satisfiability problem by constructing a Boolean 
function F. A solution to F=1 can be converted to the desired test 
vectors and configurations.  

Consider the symmetric logic function Sn
k( x1, x2, …, xn), where 

Sn
k = 1 if and only if exactly k inputs of Sn

k are 1. For example, S3
1= 

x1x2′x3′+ x1′x2x3′+ x1′x2′x3. Sn
k can be recursively defined as follows 

(Π is the logical AND function): 
Consider the set of the nets in the design that must be 

dichotomized. Let M be the number of LUT inputs that participate in 
this grouping algorithm. M = N/2i-1 at ith configuration for N-input 
LUTs. We assign one variable per each net. All the fanout stem and 
branches of the same net share the same variable. For each LUT l, let 

l
M

ll xxx ,,, …21
be the M inputs of l which have to be dichotomized. Let 

),,,(/
l
M

llM
Ml xxxSF …212= .  

The solution for Fl = 1 is an equal-size dichotomization of those 
M inputs of l, a sub-solution to the problem for only one LUT.  

The function that is the SAT formulization for the entire FPGA is:  

∏=
l LUT each for

lFF . 

In the variable assignment that satisfies F, every variable whose 
with logic value 0 is put in the minus group, otherwise is assigned to 
the plus group. An example is shown in Fig. 5. All the nets are 
assigned with unique variables. For the first configuration, 4

2S must be 
used for all LUTs, since M = 4. The SAT function for the first 
configuration is as follows: 

),,,().,,,().,,,().,,,( 81094
4
210497

4
28765

4
24321

4
2 xxxxSxxxxSxxxxSxxxxS=F  

where:
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Figure 5 An example design implemented with four LUTs 
One variable assignment that satisfies F is: 

<x1,x2,x3,x4,x5,x6,x7,x8,x9,x10>=<0,0,1,1, 0,1,1,0,0,1>. It implies that 
plus group = {x3,x4,x6,x7,x10} and minus group = {x1,x2,x5,x8,x9}. 

For the second configuration, each of the above groups must be 
partitioned. Hence, there are two SAT functions on two disjoint sets 
of different variables. These functions are as follows: 

),().,().,().,( 98
2
191

2
185

2
121

2
1 xxSxxSxxSxxS=1F  

),().,().,().,( 104
2
1104

2
176

2
143

2
1 xxSxxSxxSxxS=2F  

where ))((),( 212121
2
1 xxxxxxS ++= . 

One variable assignment that satisfies F1 is: <x1,x2,x5,x8,x9> = 
<1,0,0,1,0>. Therefore the groups are {x2,x5,x9} and {x1 ,x8}. 
Similarly, a variable assignment that satisfies F2 is: <x3,x4,x6,x7,x10> = 
<0,1,0,1,0> and the groups are {x3,x6,x10} and {x4, x7}. The results 
interpreted in terms of the activating inputs and LUT configurations 
for two test configurations are shown in Fig. 6. 
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Figure 6 Two configuration for 4-input LUTs  

4.3 Generalization to Arbitrary Fault List 
The formulation and the technique presented in the previous 

section can be generalized to any arbitrary user-specified bridging 
fault list. Typically the nets in the design are partitioned into k groups, 
P1,…,Pk, such that the bridging fault between two nets, ni and nj, is 
included in the fault list if and only if ni and nj belong to the same 
group.  

The SAT formulation (of the first test configuration) for this 
problem is similar to that presented in Sec. 4.2. Formally, the SAT 
formulation for each group Pi is: 

),...,( ||
||
/|| i

i

i P
P
P xxS 12 . 

where |Pi| is the size of Pi. 
Since this condition must be satisfied for all the k groups, the 

overall SAT function is the logical AND of the above function for all 
the groups. For the other test configurations, the SAT formulation is 
similar to the approach presented in Sec. 4.2: recursively partitioning 
the groups, until the size of each group becomes one in the last 
configuration. As a result, the total number of required test 
configurations, N, is given by the following formulae:  

 ||logmax i

k

i
PN 21=

=
. 

Hence, the total number of test configuration is dominated by the 
size of the largest fault group.  

5. EXPERIMENTAL RESULTS 
In order to implement this technique, some FPGA benchmarks are 

used, which are mapped (placed) designs to a generic switch-based 
FPGA architecture [Alexander 96]. The SAT-solver used for the 
implementation is zChaff [Zhang 01]. Table 1 shows the results of 
test configuration generation method using this SAT-solver for these 

benchmark designs. The execution time column corresponds to the 
time spent by the SAT-solver to satisfy the clauses in seconds. As can 
be seen in this table, for all the benchmark designs, the clauses are 
satisfiable in less than a second. As a result, the optimum number of 
test configurations, two, is achievable for all designs. This shows that 
this technique can be easily used for large designs. 

6. SUMMARY 
In this paper, a new technique for testing the interconnects of an 

arbitrary design mapped into an FPGA is presented. Only the 
configuration of the logic blocks used in the design is changed in 
order to implement special single-term functions. Formal proofs are 
provided for 100% bridging fault coverage of the presented technique. 
SAT formulations are presented for automatic test vector and 
configuration generation for the entire FPGA. Experimental results on 
various benchmark designs show that only two test configurations are 
required to cover all (multiple) bridging faults, achieving 100% fault 
coverage. 

Table 1  SAT formulation results for benchmark circuits 

Circuit CLBs Nets Clauses SAT Exec.Time Configs 
Term1 90 88 720 √ 0.01 2 

9symml 110 79 880 √ 0.02 2 
Appex7 120 115 960 √ 0.02 2 

busc 156 151 1248 √ 0.02 2 
Exm2 168 205 1344 √ 0.02 2 
Alu2 195 153 1560 √ 0.02 2 
2large 196 186 1568 √ 0.02 2 
Vda 272 225 2176 √ 0.04 2 
Dma 288 213 2304 √ 0.04 2 
Alu4 323 255 2584 √ 0.02 2 
K2 440 404 3520 √ 0.06 2 

Bnre 462 352 3696 √ 0.04 2 
Dfsm 506 420 4048 √ 0.04 2 
Z03 702 608 5616 √ 0.06 2 
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