
A Complexity Effective Communication Model for
Behavioral Modeling of Signal Processing Applications

Satya Kiran M.N.V., Jayram M.N.
∗

Dept. of Computer Science & Engg.
Indian Institute of Technology Delhi

New Delhi, India

skiran@cse.iitd.ernet.in

Pradeep Rao, S.K. Nandy
CAD Laboratory, SERC

Indian Institute of Science
Bangalore, India

{pradeep, nandy}@cadl.iisc.ernet.in

ABSTRACT
In this paper, we argue that the address space of memory regions
that participate in inter task communication is over-specified by
the traditional communication models used in behavioral model-
ing, resulting in sub-optimal implementations. We propose shared
messaging communication model and the associated channels for
efficient inter task communication of high bandwidth data streams
in behavioral models of signal processing applications. In shared
messaging model, tasks communicate data through special memory
regions whose address space is unspecified by the model without
introducing non determinism. Address space to these regions can
be assigned during mapping of application to specific architecture,
by exploring feasible alternatives. We present experimental results
to show that this flexibility reduces the complexity (e.g., commu-
nication latency, memory usage) of implementations significantly
(up to an order of magnitude).

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming

General Terms
Performance, Design, Languages

1. INTRODUCTION
The complexity and heterogeneity of modern signal processing

systems coupled with rapid advances in VLSI design and technol-
ogy offer a vast design space and render efficient system design as a
major challenge. Behavioral (or application) modeling is an impor-
tant phase in the recently proposed system design methodologies,
which advocate design reuse and orthogonalization of concerns to
manage the complexity the systems[1, 5]. Behavioral modeling

∗Jayram currently works with Philips Research, Eindhoven,
Netherlands. Email: jayram.nageswaran@philips.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

can be viewed as the process of capturing specifications of the sys-
tem to be designed with a chosen model of computation (MOC)[2].
One approach to behavioral modeling is to represent an application
as a network of communicating tasks/processes. Behavioral mod-
els enable reuse and serve as executable specifications. They are
also useful for system analysis, functional verification and design
space exploration. In order to enable exploration of the vast design
space, behavioral models (and their underlying MOC) should be
implementation independent, i.e., they should not restrict the archi-
tectures to which they can be mapped. It is important to note that
systems that are over-specified with respect to the designer’s in-
tent, result in sub-optimal implementations[2, 5]. In the rest of this
section, we show that i)the address space of memory regions that
participate in the communication between concurrent tasks of be-
havioral model, is over-specified by conventionally used message
passing and shared memory communication models, and ii)this
over-specification either imposes unnecessary restrictions on im-
plementation (shared memory model), or is unable to exploit the
advantages of architectural features (message passing model), and
both result in sub-optimal designs.

1.1 Motivation
In message passing communication model, each task operates on

its private address space and communicates with other tasks by ex-
plicitly exchanging messages using send and receive interface. A
message passing channel implements the send and receive inter-
face by buffering data and provides asynchronous communication
between processes. The following advantages of message passing
render variants of process networks with message passing channels
(e.g., Kahn process networks[3], Dataflow process networks[4]) as
important MOCs for the behavioral modeling: i)Message pass-
ing improves the modularity and reusability of behavioral models
by separating computation and communication, which helps reduce
the design time of new products and services[8]. ii)Message pass-
ing models can be mapped onto a wide variety of micro-architectures
and hence useful in exploring the vast design space of modern sys-
tems. iii)The explicit communication semantics of message pass-
ing allows static program analysis, which assists (formal) verifica-
tion[3] and enhances the performance by static partitioning and/or
scheduling[4]. iv)Tuning the buffer size of message passing chan-
nels offer different memory-performance tradeoffs[8]. v)With ad-
ditional restrictions on the behavior of tasks, message passing of-
fers deterministic and compositional task networks[3].

Message passing, however, requires data replication incase of
broadcast and incurs high communication overhead because of the
data copying between tasks and channel buffers, which causes re-
dundant communication and excess memory accesses. This has

25.4

412

a significant impact on memory capacity and performance, com-
munication latencies and power consumption, especially with high
bandwidth data streams. The problem is exacerbated with tasks
that perform in-place computation and shuffling of data (e.g., BBP
to PBB frame shuffling in the MPEG encoder), which are typical in
signal processing applications[6, 7]. In summary, message passing
model insists that no two tasks should have shared address space,
which result in sub-optimal designs when the micro-architecture
has an efficient shared address space between the communicating
tasks. This disadvantage with the message passing model can be
mitigated if the tasks use shared address space for communication,
as in the shared memory communication model.

Though shared memory communication model effectively elimi-
nates data replication and data copying on micro-architectures with
implicit inter task communication1 (e.g, multi-threaded uniproces-
sor, multi-tasking uniprocessor, small scale multiprocessor with
shared bus), it has its own issues: i)It is expensive to implement on
message passing micro-architectures due to the additional shared
memory emulation layer needed, either on hardware or in soft-
ware[9]. ii)The model provides implicit communication, which
hinders static program analysis and reusability. This also makes it
hard to reason about some of the critical properties such as safety
and liveness. In summary, shared memory communication model
insists that communicating tasks should have shared address space,
which result in sub-optimal designs on micro-architectures that do
not inherently provide a shared address space.

From the above discussion, it is apparent that: i)tasks can com-
municate data irrespective of their address space, ii)restricting the
address space to either shared or private is an over-specification that
results in sub-optimal designs, iii)the address space of memory
regions that participate in inter task communication should be flex-
ible, and iv)there is a need for a communication model that retains
the advantages of message passing, while addressing its disadvan-
tage with regard to communication overhead. We propose shared
messaging communication model to address these issues.

2. SHARED MESSAGING

2.1 Communication Model
Shared messaging communication model integrates message pass-

ing and shared memory communication paradigms. In this model
each task operates on its private address space as well as on spe-
cial memory regions, which must be used for inter task commu-
nication. Tasks communicate data in blocks of predefined size,
through tokens. A token can be viewed as a pointer (or a refer-
ence) to a memory region along with attributes such as size of the
region and privilege. A token can be associated with either read-
only (RO) or read-write (RW) privileges. The privilege associated
with the token indicates the valid accesses (read and/or write) that
the task holding this token can perform on the associated mem-
ory region. To access a memory region, the task must possess a
token pointing to that memory region. It is the responsibility of
the task (and hence programmer) to make sure that every access
to special memory region conforms to the privilege attribute of the
associated token and hence is a valid access. The tasks are not al-
lowed to copy tokens or modify its attributes. Tokens not only com-
municate data but also synchronize tasks, thus unify communica-
tion and synchronization as in the message passing model. Shared

1unlike shared memory architectures which provide shared mem-
ory communication primitives to the programmer irrespective of
the underlying micro-architecture

messaging model provides the get unused mem, send token rc2,
send token, receive token and usage over interface for tasks
to obtain memory regions and to transfer tokens between them.

2.2 Communication Channels
We propose two shared messaging channels, SMS and SMM 3,

which implement the shared messaging interface. These two vari-
ants are motivated by two distinct communication patterns (pipeline
communication and broadcast) that are typical in signal process-
ing applications and have an efficient implementation on micro-
architectures with implicit inter task communication. Shared mes-
saging channels are unidirectional and lossless communication chan-
nels with FIFO ordered token passing. The tokens that are sent
but not received are buffered in the token buffer to provide asyn-
chronous communication. An SMS channel has one sender, one
receiver and it maintains a token buffer. An SMM channel has
one sender, multiple receivers and it maintains a token buffer per
receiver. The token (but not the data) sent by the sender is repli-
cated and buffered in the token buffers of all receivers, i.e., an SMM
channel broadcasts the token to all its receivers thereby acheiving
data broadcast. Each receiver can receive tokens from its associated
token buffer only and hence, multiple receivers of the SMM chan-
nel do not introduce non-determinism as no two tasks are allowed
to read tokens from the same token buffer[4]. The size of token
buffer is limited for bounded shared messaging channels and is un-
limited for unbounded shared messaging channels. The limited size
of token buffers regulate the data rate of sender if it is faster than its
receivers and is required for bounded execution of task network[4].

In a task network with shared messaging communication, tasks
are interconnected by shared messaging channels and use the ac-
cess methods provided by the channel. We use pre-condition and
post-condition notation for terse representation of semantics of chan-
nel access methods (Table 1). Each method is associated with a pre-
condition and a post-condition to be satisfied. The post-condition
is guaranteed by the channel and it is the responsibility of the task
(and hence programmer) to make sure that the pre-condition is sat-
isfied before the invocation of a channel access method. Both pre-
condition and privilege violations can be detected by static (compile-
time) analysis on individual task. The conformance of the tasks to
pre-conditions and privileges of shared messaging model does not
allow implicit communication, though memory regions are shared
among tasks. From the pre-conditions and post-conditions speci-
fied in Table 1, one can infer that (1) a token received from a SMS
channel can be sent to another SMS channel, (2) a token received
from an SMM channel can be sent to one or more other SMM chan-
nels and (3) a token received from an SMS channel can be sent to
other SMM channels, but the converse is not true. These indicate
that data can be transferred from one shared messaging channel to
another without copying of data, unlike message passing channels.

2.3 A Simple Example
We illustrate the usage of channel access methods with a simple

example. Consider the modeling of a task network with broadcast
communication. To send a block of data to the receivers, the sender
should compose the data in memory regions provided by shared
messaging channels. In order to do so, the sender should first obtain
an unused memory region through a token using get unused mem.
The sender then composes the data in the memory region associ-
ated with the obtained token and sends the token to the channel us-

2rc indicates retain copy
3SMS is an acronym for shared messaging channel with single re-
ceiver and SMM is an acronym for shared messaging channel with
multiple receivers

413

Table 1: Semantics of access methods of SMS channel (upper half) and SMM channel (lower half). token handle is a data structure
that holds a token
Access method Pre-condition on to-

ken handle
Post-condition of to-
ken handle

Invoked
by

Operation

get unused mem
(token handle)

should not hold any to-
ken

holds a token with
RW privilege

sender blocks if an unused memory region is not available, else a token
pointing to an unused memory region is created

send token
(token handle)

should hold a token
with RW privilege

does not hold any to-
ken

sender blocks if the token buffer is full, else token is transferred from to-
ken handle to token buffer

receive token
(token handle)

should not hold any to-
ken

holds a token with
RW privilege

receiver blocks if the token buffer is empty, else earliest token from token
buffer is transferred to token handle

usage over
(token handle)

should hold a token
with RW privilege

does not hold any to-
ken

receiver token is destroyed and the associated memory region is marked
unused

get unused mem
(token handle)

should not hold any to-
ken

holds a token with
RW privilege

sender blocks if an unused memory region is not available, else a token
pointing to an unused memory region is created

send token
(token handle)

should hold a token
with RW/RO privilege

does not hold any to-
ken

sender blocks if any of the token buffers is full, else privilege of token is
changed to RO, replicated in all token buffers, and then destroyed

send token rc
(token handle)

should hold a token
with RW/RO privilege

holds the same token
but with RO privilege

sender blocks if any of the receiver buffers is full, else privilege of token
is changed to RO and replicated in all token buffers

receive token
(token handle)

should not hold any to-
ken

holds a token with
RO privilege

receiver blocks if the associated token buffer is empty, else earliest token
from its token buffer is transferred to token handle

usage over
(token handle)

should hold a token
with RO privilege

does not hold any to-
ken

sender/
receiver

token is destroyed and the associated memory region is marked
unused if no token pointing to that region exists

ing send token. send token rc is used in cases where the sender
needs to retain a copy of token for further use. Each receiver re-
ceives the pointer to the memory region sent by the sender using
receive token and then uses (reads) the data present in the mem-
ory region. The receiver is not allowed to modify the contents of
obtained memory region, as the receive token of the SMM chan-
nel only provides RO privilege. When the receiver/sender no longer
needs the data, it acknowledges to the channel with usage over.
This helps in marking unused memory regions4 so that they can
be used for other communication. It is to be noted that, unlike the
message passing model, shared messaging does not involve data
replication and redundant copying of data, as both the sender and
the receiver use the same memory region for reading and writing
when shared address space is assigned to the memory region. This
results in memory savings, reduced memory accesses and reduced
pressure on communication resources (quantifed in Section 3).

2.4 Implementation Issues and Advantages
Some of the advantages and issues in the implementation of shared

messaging model are qualitatively discussed here: A) Shared mes-
saging model inherits the advantages of message passing model
due to its explicit communication, FIFO ordered token passing and
blocking semantics of channel access methods. B) As shared mes-
saging does not allow implicit communication, the send token,
receive token, and send token rc methods (which directly par-
ticipate in the inter task communication) of shared messaging chan-
nels can be implemented with the send and receive methods of
message passing channels. This implies that shared messaging
channels are mutable to message passing channels. C) The address
space to memory regions that participate in inter task communi-
cation is assigned during mapping of the task network onto the
selected micro-architecture, by exploring feasible alternatives. In
message passing micro-architectures, memory regions are assigned
a private address space and the shared messaging channel is re-
placed by the message passing channel. Thus, unlike shared mem-
ory communication model, our shared messaging model does not

4A memory region is marked unused if there exists no token point-
ing to that region

require the use of expensive emulation layers. D) As shared mes-
saging model allows only explicit communication, it can be used in
most of the MOCs that use the message passing model while retain-
ing the properties and advantages of the corresponding MOC; e.g.,
(i) a network of monotonic processes[3] communicating through
unbounded shared messaging channels is still deterministic and
compositional, (ii) network of data flow actors[4] communicating
with unbounded shared messaging channels are still amenable to
static program analysis. E) Shared messaging model does not spec-
ify the memory organization and management[7], which allows the
designer to write models without being concerned about it. The
model support different memory management schemes at the chan-
nel level[6], processing element level, processing node level[7], or
a combination of these, with different memory-performance trade-
offs. The variety of memory management schemes supported by
the shared messaging model allows for a wider design space ex-
ploration. F) The receive token method indicates the memory
region (and its size) that may be used by the task (that invokes
the method) in near future. This information can be used to as-
sist both compiler supported and dynamic pre-fetching[9]. G) The
usage over method indicates that the memory region associated
with the token is no longer used by the task. This information can
be used for early invalidation of data cache. H) With shared mes-
saging model, the shared locations can be distinguished from those
that are not. This allows for an increased relaxation in the order-
ing of memory operations and better latency hiding techniques[9]
in shared memory multiprocessors.

3. EXPERIMENTAL RESULTS
In order to compare the communication latencies involved with

shared messaging and message passing communication, we de-
veloped a C++ runtime library which executes a task network on
a workstation as a single thread using the data driven execution
model[8]. We use the clock function of standard C library to mea-
sure the execution time. We define the communication latency as
the total time spent by all the tasks in executing the communica-
tion primitives, excluding the waiting time for communication re-
sources.

414

We have modeled the typical producer-consumer example, in
which the producer sends data chunks (each of size block size) to
the consumer, in message passing and shared messaging paradigms.
In order to compare the communication latencies, we set the com-
putation time of both producer and consumer to zero, while mea-
suring the communication latency for varying block sizes. Second
row of Table 2 shows the ratio of communication latency of pro-
ducer and consumer communicating with message passing channel
to communication latency of producer and consumer communicat-
ing with SMS channel (these numbers can be interpreted as fac-
tor of reduction in communication latency with the use of shared
messaging channels). We have repeated the above procedure for a
broadcast example, in which the sender broadcasts data chunks to
4 receivers. The third row of Table 2 corresponds to this example.
In this case SMM channel is used in shared messaging model.

From the Table 2 it can be observed that i)message passing
channels outperform shared messaging channels at lower block sizes
due to the overhead associated with obtaining memory regions and
token passing, ii)more overhead is associated with SMM chan-
nels (compared to SMS) as they need to keep track of tasks that
are operating on same memory region (this is not required incase
of SMS, as the semantics of SMS allows only one task to oper-
ate on a given memory region), iii)at higher block sizes shared
messaging channels outperform message passing channels as the
time saved due to the elimination of redundant data copying dom-
inates the overhead associated with them. It can be analyzed that
a) SMS channels do not affect the normalized memory (buffer)
requirement with channel level memory management, while other
schemes may result in improvements, b)SMM channels eliminate
data replication and hence reduce memory (buffer) requirements,
which is in proportion to the number of receivers, even with chan-
nel level memory management.

Our results indicate that for small block sizes, message pass-
ing channels perform better than shared messaging channels. As
shared messaging channels coexist with message passing channels,
we suggest that they be used appropriately to result in efficient be-
havioral models, i.e., one could use message passing channels for
small data transfers (typically control information) and shared mes-
saging channels for high bandwidth data transfers. As the com-
munication patterns analyzed do not account for the computation
time, the speedup factors presented should not be interpreted as the
speedup in the execution time of the entire application. The over-
all speedup depends on the ratio of computation to communication
within the application. We modeled the JPEG encoder to quantify
the overall speedup. The baseline JPEG encoder[10] application is
partitioned into tasks that perform in-place DCT, quantization and
Huffman encoding. Shared messaging model has shown an overall
execution speedup of 1.77 over the message passing model.

4. RELATED WORK
Synchronous message passing eliminate intermediate buffering

by directly copying the data from the sender’s private address space
to the receiver’s private address space. But, it reduces the effective
parallelism in the application and still involves some redundant data
transfers. To reduce the communication overhead associated with
message passing, the ARACHNE protocol[7] explicitly exchanges
pointers to shared memory regions. This protocol eliminates data
replication and redundant communication, but it is not clear if this
protocol is portable to message passing micro-architectures. It al-
lows different memory management schemes but they are not trans-
parent to the programmer, i.e., each scheme may require a modifi-
cation in the program. It is unclear whether this protocol is deter-
ministic.

Table 2: Normalized (to shared messaging) communication la-
tency of message passing for two communication patterns with
varying block size (shown in bytes)

1 10 100 1000
prod-cons (SMS) 0.634 2.670 24.677 247.110
broadcast (SMM) 0.316 1.358 11.630 112.262

The C-HEAP communication protocol[6] provides channels with
one or more receivers with claim/release/query space/data
interface. Though the protocol eliminates data replication and data
copying in some cases, it still suffers in case of in-place compu-
tation and shuffling. The C-HEAP protocol requires an in-order
release of the space claimed, whereas our model does not. Only
channel level buffer (or memory) management is allowed and the
schemes at other levels are not addressed. Also the protocol intro-
duces non-determinism due to the provision of query data/space.

5. CONCLUSIONS
This paper has motivated the need for memory regions with flex-

ible address space for inter task communication in implementation
independent behavioral modeling. We have proposed the shared
messaging communication model and its associated channels and
shown that shared messaging models could provide up to an order
of magnitude improvement in the communication latency over the
message passing model; this results in an overall execution speedup
of 1.77 for the baseline JPEG encoder. Shared messaging channels
do not introduce non-determinism, coexist with message passing
channels and their judicious use results in behavioral models that
reduce the complexity of implementations significantly. Though
the shared messaging model is implementation independent, it car-
ries the information that is required for efficient implementation on
a wide variety of architectures. Currently we are working on, the
formal underpinnings of the proposed model and its rigorous eval-
uation on various architectures and applications.

6. REFERENCES
[1] Kurt Keutzer et. al. System level design: Orthogonalization of

concerns and platform-based design. IEEE Tr. on CAD of ICs
and Systems, 19(12), December 2000.

[2] M. Sgori et. al. Formal models for embedded system design.
IEEE Design & Test of Computers, April 2000.

[3] G. Kahn. The semantics of a simple language for parallel
programming. In Proc. of the IFIP Congress 74, pages
471–175. North-Holland Publishing Co., 1974.

[4] E. A. Lee and T. M. Parks. Dataflow process networks. In
Proc. IEEE, pages 773–801, May 1995.

[5] E. A. de Kock et al. YAPI: Application modeling for signal
processing systems. In DAC, June 2000.

[6] Nieuwland et. al. C-HEAP: A heterogeneous multiprocessor
architecture template and scalable and flexible protocol for the
design of embedded signal processing systems. In Design
automation for Embedded Systems. Kluwer, 2002.

[7] K. G. W. Goossens. A protocol and memory manager for
on-chip communication. In ISCAS, 2001.

[8] Twan Basten et. al. Efficient execution of process networks. In
Communicating Process Architectures, 2001.

[9] Culler and Singh. Parallel Computer Architecture - A
Hardware/Software Approach. Morgan Kaufmann, 1999.

[10] W. Gregory. The jpeg still picture compression standard.
Communications of the ACM, 34(4):30–44, April 1991.

415

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

