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ABSTRACT
Many commercial processors now offer the possibility of ex-
tending their instruction set for a specific application—that
is, to introduce customised functional units. There is a need
to develop algorithms that decide automatically, from high-
level application code, which operations are to be carried out
in the customised extensions. A few algorithms exist but are
severely limited in the type of operation clusters they can
choose and hence reduce significantly the effectiveness of
specialisation. In this paper we introduce a more general al-
gorithm which selects maximal-speedup convex subgraphs of
the application dataflow graph under fundamental microar-
chitectural constraints, and which improves significantly on
the state of the art.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles

General Terms
Algorithms, Performance, Design

Keywords
Customisable processors, ASIPs, Instruction-set extensions,
Codesign

1. INTRODUCTION
In the last decade, research in design methodologies for

system-on-chip processors has been mainly revolving around
the synthesis of Application Specific Instruction-set Proces-
sors (ASIPs). This involved the automatic generation of
complete instruction sets for specific applications ([9], [16],
[10]). In that context, the goal is typically to design an in-
struction set which minimises some important metric (e.g.,
run time, program memory size, execution unit count).
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More recently, the attention has shifted toward extending
generic processors with units specialised for a given domain,
rather than designing completely custom processors. The
goal of such processor extensions is typically to optimise
performance in an application domain without incurring
the area and energy cost of top-notch superscalar or mul-
tithreaded processors. Many readily extensible processors
exist today both in academia (e.g., [4]) and industry (e.g.,
[8], [17], [7], [6]). The important motivation toward special-
isation of existing processors versus the design of complete
ASIPs is to avoid the complexity of a complete processor
and toolset development. Instead, an available and proven
processor design and its extensible toolset can be leveraged:
design efforts must focus exclusively on the special datapath.

We believe that it is fundamental to generate the re-
quired instruction-set extensions in a fully automated man-
ner. Specifically, the goal is to obtain them directly from
the high-level language description of the application.

In the following section, we discuss some previous work in
the domain; we anticipate our specific goals and contribu-
tion in Section 3. We formalise the problem which we try to
solve in Section 4. Section 5 introduces our algorithms. Re-
sults are described in the two following sections: in Section 6
we detail the experimental setup used and in Section 7 we
discuss the results. The paper concludes with some consid-
erations on future directions opened by this work.

2. RELATED WORK
Loosely stated, the problem of identifying instruction-set

extensions consists in detecting clusters of operations which,
when implemented as a single complex instruction, max-
imise some metric—typically performance. Such clusters
must invariably satisfy some constraint; for instance, they
must produce a single result or use not more than four in-
put values. We will formalise the identification and selection
problem that our algorithm solves in Section 4, but use this
generic formulation to discuss related work.

A recent example of synthesis of application-specific in-
structions can be found in [5]: the goal is to add special
single- and multiple-cycle instructions to a small set of prim-
itive instructions. The authors essentially concentrate on a
selection problem which targets a maximal reuse of com-
plex instructions and a minimal number of instructions se-
lected. The reuse goal is likely to favour the identification
of small clusters of primitive operations; hence, heuristically,
the authors prune the search space by explicitly limiting the
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Figure 1: Motivational example from the adpcmde-
code benchmark [13]. SEL represents a selector node
and results from applying an if-conversion pass to
the code.

complexity of the special instructions. Our philosophy is
different and we directly formulate as our goal to achieve a
maximal gain per special instruction.

In other works such as [11] or [2], the authors use ap-
proaches combining template matching (instruction selec-
tion, as it is called in compilers) and template generation
(identification, in our parlance) for ASIPs. The main speci-
ficity of the approach described in [11] is that clustering is
based on the frequency of node types successions—e.g., mul-
tiplications followed by additions—rather than of frequency
of execution of specific nodes. The emphasis on recurrent
patterns somehow relates this work to [5]: the authors ob-
serve that the number of operations per cluster is typically
small and conclude that simple pairs of operations appear
the best candidates. Their work does not account for con-
straints on the number of inputs and outputs of the clusters.
The work in [2] is very similar from the identification per-
spective, although the overall goal and architectural context
is rather different.

Work in reconfigurable computing is often more in line
with our goal (e.g., [14], [1], [12], [18]). Yet, identifica-
tion algorithms are relatively simple and almost invariably
target clusters producing a single result. Usually, clus-
ters or subgraphs are somehow grown from their output
nodes by adding predecessors until some constraints are vi-
olated. More formal approaches such as the one described
in [1] guarantee a decomposition in maximal single-output
subgraphs: unfortunately, the approach cannot be easily
extended to multiple output subgraphs and the property
of maximal size does not represent optimality under con-
straints on the number of inputs.

In [3], the identification problem is addressed in a manner

similar to ours in the context of hardware/software parti-
tioning. A simple clustering algorithm is used, called club-
bing, to enforce limits on the input and output counts (to
3 and 2 respectively, in the examples) and to ensure deter-
ministic functionality (see Section 4). Our algorithm is more
expensive but considers the complete design space. Section
7 shows the superiority of the algorithm presented here with
respect to [3] and to [1].

3. MOTIVATION AND CONTRIBUTIONS
Figure 1 shows the dataflow graph of the basic block most

frequently executed in a typical embedded processor bench-
mark. We use this simple but realistic example to motivate
our work. The first observation is that identification based
on recurrence of clusters would hardly find candidates of
more than 3–4 operations. Additionally, one should notice
that recurring clusters such as M0 have several inputs and
could be often prohibitive. In fact, choosing larger albeit
nonrecurrent clusters might ultimately reduce the number
of inputs and/or outputs: subgraph M1 satisfies even the
most stringent constraints of two operands and one result.
An inspection to the original code suggests that this sub-
graph represents an approximate 16 × 3-bit multiplication
and is therefore the most likely manual choice of a designer
even under severe area constraints. Availability of a fur-
ther input would include also the following accumulation
and saturation operations (subgraph M2 in Figure 1). For
different reasons, most existing algorithms would bail out
before identifying such large—but rather cheap—subgraphs.
Furthermore, if additional inputs and outputs are available,
one would like to implement both M2 and M3 as part of
the same instruction—thus exploiting the parallelism of the
two disconnected graphs. To our knowledge, our algorithm
is the only one described in literature capable of identifying
all the above mentioned instructions depending on the given
constraints.

More specifically, this work will improve the state-of-the-
art in three respects: Firstly, prior work was mostly limited
to instructions with a single output (with the exceptions
of two outputs in [3] and several outputs only in very spe-
cific cases in [18]). Our technique identifies custom instruc-
tions with any number of outputs up to a user-specified con-
straint. Note that current VLIW architectures like ST200
and TMS320 can commit 4 values per cycle and per cluster.

Secondly, only connected subgraphs can be identified by
previous techniques (apart again from an exception in [18],
where only very particular kinds of disconnected graphs can
be found). Instead, the present method can detect any kind
of disconnected graphs, which results in the possibility of
automatically identifying also SIMD-like instructions.

Lastly, many previous works lack a formal methodology
for identification and selection of candidates. Here identifi-
cation and selection are coupled and solved formally at once.

4. PROBLEM STATEMENT
We call G (V, E) the DAGs representing the dataflow of

each basic block; the nodes V represent primitive operations
and the edges E represent data dependencies. Each graph G
is associated to a graph G+

(
V ∪ V +, E ∪ E+

)
which con-

tains additional nodes V + and edges E+. The additional
nodes V + represent input and output variables of the basic
block. The additional edges E+ connect nodes V + to V ,
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Figure 2: A nonconvex, and thus illegal, subgraph.
Numbers refer to topological order explained in Sec-
tion 5.

and nodes V to V +.
A cut S is a subgraph of G: S ⊆ G. There are 2|V | possible

cuts, where |V | is the number of nodes in G. An arbitrary
function M (S) measures the merit of a cut S. It is the
objective function of the optimisation problem introduced
below and typically represents an estimation of the speedup
achievable by implementing S as a special instruction.

We call IN (S) the number of predecessor nodes of those
edges which enter the cut S from the rest of the graph G+.
They represent the number of input values used by the oper-
ations in S. Similarly, OUT(S) is the number of predecessor
nodes in S of edges exiting the cut S. They represent the
number of values produced by S and used by other opera-
tions, either in G or in other basic blocks.

Finally, we call the cut S convex if there exists no path
from a node u ∈ S to another node v ∈ S which involves a
node w /∈ S. Figure 2 shows an example of nonconvex cut.

Considering each basic block independently, the identifi-
cation problem can now be formally stated as follows:

Problem 1. Given a graph G+, find the cut S which
maximises M(S) under the following constraints:

1. IN (S) ≤ Nin,
2. OUT(S) ≤ Nout, and
3. S is convex.

The user-defined values Nin and Nout indicate the register-
file read and write ports, respectively, which can be used
by the special instruction. The convexity constraint is a
legality check on the cut S and is needed to ensure that a
feasible scheduling exists: as Figure 2 shows, if all inputs
of an instruction are supposed to be available at issue time
and all results are produced at the end of the instruction
execution, there is no possible schedule which can respect
the dependences of this graph once S is collapsed into a
single instruction.

Since we will allow several special instructions from all
basic blocks, we will need to find up to Ninstr cuts which,
together, give the maximum advantage. This problem, often
referred as selection, is often solved nonoptimally by repeat-
edly solving Problem 1 on all basic blocks and by simply
selecting the Ninstr best ones. Formally, the problem that
we want to solve is:

Problem 2. Given the graphs G+
i of all basic blocks, find

up to Ninstr cuts Sj which maximise
∑

j M(Sj) under the
same constraints of Problem 1 for each cut Sj.

5. IDENTIFICATION ALGORITHMS
We introduce algorithms to solve the above problems in

three steps: (1) find the optimal single cut in a single ba-
sic block, (2) find an optimal set of nonoverlapping cuts
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Figure 3: The search tree corresponding to the
graph shown in Figure 2.

in several basic blocks, and (3) find a near-optimal set of
nonoverlapping cuts in several basic blocks.

5.1 Single Cut Identification
Enumerating all possible cuts within a basic block exhaus-

tively is not computationally feasible. We describe here an
exact algorithm that explores the complete search space but
effectively detects and prunes infeasible regions during the
search. The algorithm starts with a topological sort on G.
Nodes of G are ordered such that if G contains an edge
(u, v) then u appears after v in the ordering. Figure 2 shows
a topologically sorted graph. The algorithm uses a recursive
search function based on this ordering to explore an abstract
search tree.

The search tree is a binary tree of nodes representing pos-
sible cuts. It is built from a root representing the empty cut
and each couple of 1- and 0-branches at level i represents
the addition or not of the node of G having topological or-
der i, to the cut represented by the parent node. Nodes of
the search tree immediately following a 0-branch represent
the same cut as their parent node, and can be ignored in
the search. Figure 3 shows the search tree for the example
of Figure 2, with some tree nodes labelled with their cut
values. The search proceeds as a preorder traversal of the
search tree. It can be shown that in some cases there is
no need to branch towards lower levels; therefore the search
space is pruned.

Suppose for instance that the output port constraint has
already been violated by the cut defined by a certain tree
node: adding nodes that appear later in the topological or-
dering cannot reduce the number of outputs of the cut. Sim-
ilarly, if the convexity constraint is violated at a certain tree
node, there is no way of regaining the feasibility by con-
sidering the insertion of nodes of G that appear later in the
topological ordering. Considering for instance Figure 2 after
inclusion of node 3, the only ways to regain convexity are to
either include node 2 or remove from the cut nodes 0 or 3:
due to the use of a topological ordering, both solutions are
impossible in a search step subsequent to insertion of node
3. As a consequence, when the output-port or the convex-
ity constraints are violated when reaching a certain search
tree node, the subtree rooted at that node can be eliminated
from the search space.

Figure 4 gives the algorithm in pseudo C notation. The
search tree is implemented implicitly, by use of the recur-
sive search() function. The parameter current choice

defines the direction of the branch, and the parameter
current index defines the index of the graph node and the
level of the tree on which the branch is taken. When the out-
put port check or the convexity check fails, or when a leaf
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identification() {
for (i = 0; i < NODES; i++) cut[i] = 0;
topological sort();
search(1, 0);
search(0, 0); }

search(current choice, current index) {
cut[current index] = current choice;
if (current choice == 1) {

if (!output port check()) return;
if (!convexity check()) return;
if (input port check()) {

calculate speedup();
update best solution(); } }

if ((current index + 1) == NODES) return;
current index = current index + 1;
search(1, current index);
search(0, current index); }

Figure 4: The identification algorithm.
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Figure 5: The execution trace of the algorithm for
the graph given in Figure 2 and Nout = 1.

is reached during the search, the algorithm backtracks. The
best solution is updated only if all constraints are satisfied
by the current cut.

Figure 5 shows the application of the algorithm to the
graph given in Figure 2 with Nout = 1. Only 5 cuts pass
both output port check and the convexity check, while 6
cuts are found to violate either output port constraint or
convexity constraint, resulting in elimination of 4 more cuts.
Among 16 possible cuts, only 11 are therefore considered.

The graph nodes contain O (1) entries in their adja-
cency lists on average, since the number of inputs for
a graph node is limited in every practical case. Com-
bined with a single node insertion per algorithm step, the
input port check, output port check, convexity check,
and calculate speedup functions can be implemented in
O (1) time using appropriate data structures. The overall

complexity of the algorithm is therefore O(2|V |). Although
still exponential, the algorithm reduces in practice the search
space very tangibly. Figure 6 shows the run time perfor-
mance of the algorithm using an output port constraint
of two on some basic blocks extracted from several bench-
marks. The actual performance is within polynomial bounds
in all practical cases considered, however an exponential ten-
dency is also visible. Constraint based subtree elimination
plays a key role in the algorithm performance: the tighter
the constraints are, the faster the algorithm is.

5.2 Optimal Selection Algorithm
The algorithm described in the previous section can be

easily adapted to identify multiple cuts from a single graph.
If M is the number of cuts to be identified within a basic
block, it suffices to build a similar search tree where every
node makes M + 1 branches instead of 2. Figure 7 shows a
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Figure 7: A search tree for two cuts.

fragment of a tree for M = 2. Nodes of the search tree now
represent M cuts: an n-branch at level i leads to inclusion
of the graph node with index i in the n-th cut.

Our optimal selection algorithm begins by applying the
single-cut identification algorithm on each basic block (M =
1). The first cut is chosen from the basic block which offers
the largest speed-up improvement. Then at each iteration,
the algorithm increments the value of M for the basic block
which was chosen by the previous iteration, does multiple-
cut identification on this basic block with the new value of
M , and calculates the improvement. Again, the new cut is
chosen from the basic block that gives the largest speed-up
improvement. The iterations continue until Ninstr cuts are
chosen. The algorithm can be proven to return optimal so-
lutions by applying the multiple-cut identification algorithm
at most Ninstr + Nbb − 1 times. Figure 8 illustrates the
algorithm with a simple example.

5.3 Iterative Selection Algorithm
Repeated calls to the multiple-cut identification algorithm

on large basic blocks may result in impracticable computa-
tional complexity. To avoid this, we also used a heuristic
approach consisting in iterative applications of the single-
cut identification algorithm to the same basic block. Pre-
viously identified cuts are merged into single graph nodes,
and are excluded from forthcoming identification steps. We
will compare the results of the two selection strategies.

6. EXPERIMENTAL SETUP
To measure the speedup achieved by our algorithms, we

assumed a particular function M (·) to express the merit of a
specific cut. M (S) represents an estimation of the speedup
achievable by executing the cut S as a single instruction in
a specialised datapath.

In software, we estimate the latency in the execution stage
of each instruction; in hardware, we evaluate the latency of
each operation by synthesising arithmetic and logic oper-
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Figure 8: Optimal selection of three cuts in three
basic blocks. Circles represent cuts—that is sub-
graphs, of the basic blocks. Dashed circles are best
candidates returned by five calls to the multiple-cut
identification algorithm of Section 5.2

ators on a common 0.18µm CMOS process and normalise
to the delay of a 32-bit multiply-accumulate. The accumu-
lated software values of a cut estimate its execution time
in a single-issue processor. The latency of a cut as a single
instruction is approximated by a number of cycles equal to
the ceiling of the sum of hardware latencies over the graph
critical path.

The difference between the software and hardware latency
is used to estimate the speedup. Although quite rough, this
model is also very fast to evaluate and hence adapted for use
in the inner loop of our identification algorithm, where by
no means one could use a computationally heavier model.

7. RESULTS
The described algorithms were implemented within the

MachSUIF framework [15] and tested on a subset of the
MediaBench [13] suite benchmarks. Application C-code is
compiled to MachSUIF intermediate representation and pre-
processed with a classic if-conversion pass.

In order to show the potentials of our algorithms with
respect to the state of the art, we have implemented two
identification algorithms which are denoted by Clubbing and
MaxMISO, and are published respectively in [3] and in [1].
The first is a greedy linear-complexity algorithm that can
detect n-input m-output graphs, where n and m are user
parameters. The second is a linear complexity algorithm
that identifies single-output and unbounded-input graphs.

Figure 9 shows the performance improvement of our al-
gorithms, called Optimal and Iterative (see Sections 5.2
and 5.3, respectively), when compared to Clubbing and
MaxMISO, for different benchmarks and for different input
and output constraints. The presented results are for up to
16 special instructions.

Four points should be noticed: Firstly, the difference be-
tween Optimal and Iterative is usually null and is in all cases
irrelevant; we will therefore retain the iterative selection al-
gorithm (note that the Optimal algorithm could not be run
on the adpcmdecode benchmark due to the size of the basic

Figure 9: Comparison of estimated speedup for Op-
timal, Iterative, Clubbing, and MaxMISO on three
MediaBench benchmarks, for some selected input
and output constraints.

blocks). Secondly, our algorithms generally outperforms the
others. Thirdly, in general for low input/output constraints
all algorithms have similar performances, but in the case of
higher (and yet still very reasonable) constraints Iterative
excels. Finally, a large performance improvement potential
lays in multiple output and generally disconnected graphs,
and the presented algorithms are the first ones to exploit it.

In the light of our motivation, which we expressed with
the help of Figure 1, it is useful to analyse the case of ad-
pcmdecode: (a) Clubbing is generally limited in the size of
the instructions identified. (b) MaxMISO finds the correct
solution (corresponding to M2 in the figure) with a con-
straint of more than two inputs. Yet, when given two input
ports, it cannot find M1 because M1 is part of the larger
3-input MaxMISO M2. (3) Iterative manages to increase
the speedup further when multiple outputs are available; in
such cases, it may choose at once disconnected subgraphs
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such as M2+M3. Iterative is the only algorithm that truly
adapts to the available microarchitectural constraints.

Of course, the worst-case complexity of our algorithms is
higher than that of Clubbing or MaxMISO, but the average
complexity is reduced, as Figure 6 shows. In fact, the overall
run times of Iterative were quite reasonable in our tests: in
all but extreme cases it took only some seconds; only in a
couple of cases with loose constraints, run times where in
the order of hours.

Finally, note that the area investment needed to imple-
ment the special datapaths for the given benchmarks and
for the largest chosen graphs was within the area of a cou-
ple of multiply accumulators.

8. CONCLUSIONS
This paper has presented algorithms for identifying clus-

ters of dataflow operations to be implemented as appli-
cation-specific instructions for existing System-on-Chip pro-
cessors. This task is essential to automate the specialisa-
tion of commercial processors. The algorithms take into
account microarchitectural constraints and enforces a legal-
ity property on the choice. This work is novel with respect
to three points: (1) It considers any register-file write port
constraint; it is therefore also able to select multiple-output
instructions. (2) It is the first to present algorithms to iden-
tify generic disconnected graphs. Quantitative results show
the importance of the above points. (3) It is the first to for-
malise identification and selection and solve them together
within the same formal framework.

The experiments show that the estimated speedup is
raised dramatically when compared with existing state of the
art algorithms. The presented algorithms efficiently prune
the design space, although still exponential in the worst
case. To process very large basic blocks, such as those ob-
tained by applying instruction-level parallelism techniques
(e.g., unrolling) to the original code, we plan to build heuris-
tic solutions around the presented identification algorithm.
Future work will also address directly the problem of in-
struction selection under area constraint. Finally, we are
planning to use a retargetable compiler to assess precise
speedup potentials—especially in VLIW processors where
our estimation model is not suitable.
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