
Routing-Aware Scan Chain Ordering
�

Puneet Gupta
�
, Andrew B. Kahng†† and Stefanus Mantik †

� ECE Department, University of California at San Diego
†† ECE and CSE Departments, University of California at San Diego

† Cadence Design Systems, Inc., San Jose, CA, USA�
puneet@ucsd.edu, abk@ucsd.edu and smantik@cadence.com �

Abstract

Scan chain insertion can have a large impact on routability, wire-
length and timing of the design. We present a routing-driven
methodology for scan chain ordering with minimum wirelength ob-
jective. A routing-based approach to scan chain ordering, while
potentially more accurate, can result in TSP (Traveling Salesman
Problem) instances which are asymmetric and highly non-metric;
this may require a careful choice of solvers. We evaluate our new
methodology on recent industry place-and-route blocks with 1200
to 5000 scan cells. We show substantial wirelength reductions for
the routing-based flow, versus the traditional placement-based flow:
in a number of our test cases, over 86% of scan routing overhead is
saved. Even though our experiments are so far timing-oblivious, the
routing-based flow does also improve evaluated timing, and practi-
cal timing-driven extensions appear feasible.

1 Introduction and Motivation

In VLSI design for testability, a scan chain is commonly used to
connect the shift registers that store the input and output vectors
during the testing phase of manufacturing. Registers in the scan
chain are connected as a single path, with ends of the path connected
to a primary input (PI) pad and a primary output (PO) pad. Test
input values are shifted into the registers through the PI pad; then, a
test is performed and the test output values are shifted out through
the PO pad. Figure 1 depicts a simple example of a scan chain.

SI Q SIQ SI Q
O

PI

I

POFF1 FF2 FF3

Figure 1: Example of a scan chain with three scan registers FF1,
FF2, and FF3. In each sequential cell, SI and Q denote the scan-
in pin and scan-out pin. PI is the primary input pad and PO is the
primary output pad.

�
Research at UCSD was supported by a grant from the MARCO Gigascale Silicon

Research Center.

Q
SI

QSI
SI Q

A B C

w x

y
z

Figure 2: An example showing the highly asymmetric and non-
metric nature of the ATSP when doing incremental scan-insertion.

One of the primary objectives in design-for-testability is to mini-
mize the impact of test circuitry on chip performance and cost. Thus,
it is essential to minimize the wirelength of a scan chain: this in-
creases wirability and/or reduces the chip area while at the same
time increasing signal speed by reducing capacitive loading effects
on nets that share register pins with the scan chain.

Previous placement based scan chain ordering approaches com-
pute the cost of stitching one flip-flop to another as either cell-to-cell
Manhattan distance [9], [19], [1] or pin-to-pin Manhattan distance
[3], [16]. The former metric gives a symmetric TSP while the lat-
ter gives rise to an almost symmetric TSP [3]. The fundamental
assumption in all current work on layout-driven scan chain order-
ing is that the wirelength overhead due to scan-insertion is equal to
the Manhattan distance between the scan-in and scan-out pins of the
flip-flops. However, this assumption is incorrect: the scan connec-
tion need only reach the output net, not the output pin.

In this work, we propose a (trial) routing based flow for scan
chain ordering that uses the incremental routing cost (connecting to
existing or anticipated routing, rather than to the output pin) as the
cost measure for a scan connection. This is in contrast to existing
placement-based methods which use simply the Manhattan distance
from the flip-flop output pin to scan-in pin of the other flip-flop as
the cost measure. Under our formulation, the resulting Asymmet-
ric Traveling Salesman Problem (ATSP) may be highly non-metric.
We give an efficient method to calculate the costs of the ATSP in-
stance, based on a trial routing of non-scan nets. Our work con-
siders the possibility of using both Q and Q̄ pins of the flip-flop to

1

make any given scan connection, and it also extends to timing- and
noise-driven scan chain ordering (in a more detailed routing driven
context).

In Figure 2, the existing routes are shown by solid lines while
potential scan connection routes are shown by dotted lines. We la-
bel the possible scan connection routes by their respective lengths,
w � x � y and z. Note that:

� the cost of connecting the Q output of FF A to the SI pin of FF
B (denote this by AB) is given by the length of the routing seg-
ment w, which is much less than the total Manhattan distance
between the corresponding pins. Thus, a placement based cost
metric will inaccurately estimate the cost of making this scan
connection.

� This formulation of the TSP can be highly asymmetric. For
instance, in Figure 2 BA

���
y ��� AB

���
w � .

� We can also have non-metric TSP instances (i.e., the triangle
inequality may not hold). In Figure 2, AB

���
w �
	 BC

���
x ���

AC
���

z � .
The scan chain order generated using routing information should
always be at least as good as the placement-based order, as it can
more accurately reflect the wirelength costs of scan stitching.

In the remainder of this paper, we discuss our scan chain order-
ing approach. Section 2 discusses related previous work. Section
3 describes our routing-based scan ordering approach. Experiments
are described in Section 4 with final conclusions in Section 5.

2 Previous Work

In this section, we survey previous work in two relevant areas:

� Layout-based scan chain ordering approaches,

� ATSP heuristics and solvers.

2.1 Layout-Based Scan Ordering

Several previous works have dealt with the problem of scan chain or-
dering based on layout information. The scan orderings were essen-
tially placement-based. The scan chain ordering problem is trans-
formed to a symmetric or asymmetric TSP. Feuer and Koo [7] wrote
perhaps the first published work showing how TSP heuristics can
be applied to scan chain optimization. They translate a given scan
chain instance into a symmetric TSP instance, allowing symmetric
TSP heuristics to be used without modification. However, the trans-
lation weakens the effectiveness of TSP heuristics because it creates
highly irregular vertex distances. In essence, the instance loses its
underlying geometry and becomes harder to optimize. [9], [19] and
[1] treat the problem as a symmetric TSP and use a simple nearest-
neighbor heuristic which is based on the assumption that the trian-
gle inequality holds. However, scan chain instances can be highly
asymmetric and may not even remain metric. [3] and [16] modify
2-opt and 3-opt TSP heuristics to take into account the asymmet-
ric nature of the scan chain problem. [18] orders the scan chain after
global routing, but uses channel congestion as the edge cost measure
which makes it applicable only in the channel routing context.

2.2 TSP Solvers

An excellent although slightly dated overview of the traveling sales-
man literature is contained in the 1985 book of Lawler et al. [17].
Later studies include a very comprehensive empirical comparison
of symmetric TSP heuristics by Johnson [11]. Since Johnson’s
study, works by Bentley [2] and Reinelt [22] have suggested ways
to reduce the running times of the more successful heuristics, while
Martin et al. [20] have given an extension to earlier heuristics that
improves the quality of the returned tour while increasing running
times. The literature for asymmetric TSP is less extensive than for
symmetric TSP, and includes a heuristic by Kanellakis and Papadim-
itriou [15] which modifies the Lin-Kernighan (LK) symmetric TSP
heuristic. More recent studies by Miller and Pekny [21] and Zhang
[23] have applied branch-and-bound to obtain optimal solutions to
asymmetric TSP. Although branch-and-bound has exponential time
complexity in the worst case, these two studies have shown that it
can be efficient for a number of large ATSP instances.

[10] reviews the use of large-step Markov chain (LSMC) meth-
ods which alternately apply (i) a (greedy) local optimization pro-
cedure Descent, followed by (ii) a “kick move” which perturbs the
current local minimum solution in order to obtain a starting solution
for the next Descent application. Local search (i.e., Descent) proce-
dures used in implementations include LK as well as k-opt methods.
[20] used both LK and a fast implementation of 3-opt; [11] used
LK only. Kick move perturbation of the current local minimum
tour is typically achieved using a k -change, with k not necessar-
ily equal to k. Both [20] and [11] use random “double-bridge” 4-
change kick moves. According to [20], the double-bridge kick move
is chosen for its ability to produce large-scale changes in the cur-
rent tour without destroying the solution quality via too large a ran-
dom perturbation. The “large-step Markov chain” (LSMC) heuris-
tic of [20] and the “iterated LK” heuristic of [11] are believed to
be the best-performing iterated descent variants (and, indeed, the
best-performing of all heuristics for obtaining near-optimal solu-
tions [12]). [3] introduced restricted 2-opt and 3-opt moves to pre-
serve directionality for solving an ATSP; their ScanOpt, an imple-
mentation of the LSMC heuristic with restricted moves for ATSP, is
available at [4]. Finally, results of the Eighth DIMACS Implementa-
tion Challenge [6] for TSP are available in [13]. The method of [8]
is shown to give the best tours if running time is not a constraint.

As suggested in Figure 2, asymmetry of the TSP will go up
with use of any routing-based distance measure, while metricity de-
creases. We would like to assess the impact of the routing-based
TSP distance metric on the nature of the resultant TSP instances.
To this end, we adopt the asymmetry and metricity measures pre-
sented in [13]. The asymmetry measure is used to measure the ex-
tent to which the distance matrix d departs from symmetry, while
the metricity measure is used to measure the extent to which the
distances violate the triangle inequality.1

1For Asymmetry Measure, we use the ratio of average value of � d � vi � v j ��� d � v j � vi � �
to average value of � d � vi � v j ��� d � v j � vi � � where d � vi � v j � denotes the distance of ver-
tex v j from vertex vi. This quantity is 0 for symmetric matrices and has a maxi-
mum value of 1. For Metricity Measure, we first compute for each pair of distinct
vertices vi � v j , d � � vi � v j ��� min � d � vi � v j ��� min � d � vi � vk ��� d � vk � v j ����� : 1 � k � N where
N is the total number of vertices. The metric is the average over all pairs vi � v j of� d � vi � v j ��� d � � vi � v j ����� d � vi � v j � . The instance obeys the triangle inequality iff we get a
value of 0. For non-negative distances, the above quantity has a maximum value of 1.
We call this measure non-metricity since it increases with decreasing metricity. These
measures are given in [13].

2

dist(Q,SI) = b

Q

FF1
SI

FF2

b

a

dist(Q,SI) = a

Q

Figure 3: Pin-to-Net distance measurement for routing-driven scan
ordering.

3 Routing-Aware Scan Chain Ordering

In this section, we describe our routing-aware approach to scan
chain ordering with minimum wirelength. We consider a purely
wirelength-driven approach. A timing-aware extension which takes
into account timing slacks at all relevant sinks as well as available
buffer locations will be sketched, as a future extension, at the end of
this paper.

The cost of stitching one flip-flop after another is determined
by the estimate of minimum wirelength required to make the con-
nection. This is obtained by finding the minimum Manhattan dis-
tance from the routed net driven by the scan-out pin (Q or Q̄) to the
next scan-in pin (SI). Let dist

�
Q � SI � � resp � � dist

�
Q̄ � SI � � denote the

length of the best possible Manhattan route for adding the SI pin
of flip-flop ffin (e.g., FF2) to the fanout tree of the Q

�
Q̄ � output of

flip-flop ffout (e.g., FF1). Then, we compute the cost of placing scan
flip-flop ffout immediately before ffin as min

�
dist

�
Q � SI ��� dist

�
Q̄ � SI � �

(see Figure 3). dist
�
Q � SI � (similarly for dist

�
Q̄ � SI �) is calculated as

follows: dist
�
Q � SI � � mink

�
Manhattan distance

�
segmentk � f fin

�

SI � � where segmentk , k
�

1 � 2 ������� , are all routed segments on the
fanout tree of the Q output of ffout . For each pair of ffout and ffin we
calculate the scan cost to obtain a cost matrix that will be used by the
ATSP solver. Once we obtain the tour from the ATSP solver, we up-
date the netlist and reroute the design from scratch, i.e., the routing
starts from an unrouted instance. Note that our flow is not an ECO
flow.2 [14] demonstrates that incremental routing can achieve lower
solution quality than from-scratch routing, and that the magnitude
of change in the instance can strongly affect the resulting quality of
result. Thus, we use the from-scratch routing for better solution de-
spite of the high CPU cost. Our flow is basically the same as the
traditional scan reordering flow but is driven by global routing or
even trial detailed routing; our contribution lies in showing its prac-
ticality as well as its surprisingly large reductions in scan overhead.

4 Experiments and Results

In this section we describe our simulation setup and the experimen-
tal test cases used. We are interested in understanding the implica-
tions of routing-based scan ordering on choice of TSP solver, and on
potential layout quality improvement. The layout quality measures

2ECO (Engineering Change Order) is an incremental type of flow that uses a pre-
routed design as the input. In such a flow, the router will update the routing while trying
to preserve the previous solution as much as possible.

are

� total wirelength,

� number of routing violations,

� total router runtime,

� total wirelength due to scan routing,

� number of timing violations (paths with negative slack) and

� worst slack.

We use Cadence Silicon Ensemble v5.3.125 (SE) and Cadence
QPlace v5.1.68 as the physical design tool to perform the industry
placement-based scan chain ordering. In addition, we use Cadence
WRoute v2.2.31 as the routing tool. We have developed basic util-
ities for extracting the industry tool’s scan ordering from a routed
DEF (the order is not otherwise available in the output DEF), for
generating pin-to-pin distances from the placed DEF, for generating
minimum pin-to-net distances from the routed DEF, and for plug-
ging a solver-generated scan order into DEF for routing.

4.1 Flows

The basic elements of the flows are given below.

1. Initial QPlace: The design is placed with QPlace to
generate a placed DEF netlist. There are two placement varia-
tions that we can generate:

A. Non-Timing Driven (NTD): When the timing li-
brary is not supplied, QPlace will optimize the place-
ment based on wirelength (and possibly congestion).

B. Timing Driven (TD): By supplying the timing li-
brary and timing constraints, QPlace will try to optimize
the timing (i.e., minimizing the incidence of negative
slacks).

2. Placement-based Scan Order

A. SE: SE is used to attach scan to the placed netlist. The
scan order is implicitly generated by SE using, as we
understand, a greedy heuristic followed by iterative (hill-
climbing) improvement.

B. QP-Scan: QPlace is used to attach scan to the placed
netlist. As we understand, the QP scan ordering is more
recent (dating from approximately early 2000) and gives
superior results to the SE scan ordering; it uses a k-opt
type of iterative improvement.

C. Our (ScanOpt, LKH): We extract scan flip-flop lo-
cations from the placed DEF. We compute pairwise pin-
to-pin distances to construct the TSP cost matrix. The
ATSP solver (ScanOpt, LKH) is then used to obtain a
scan chain order. This order is incorporated into the
placed netlist by adding the scan-in pin to the existing
net of the scan-out pin and by adding a new net for the
scan-out pin that does not have any previous connection
(the scan-out scan-in pair follows the order specified by
the ATSP solver).

3

3. WRoute: The placed netlist is routed using WRoute. Simi-
larly to the variations in placement, there are also two varia-
tions in the routing.

A. Non-Timing Driven Routing

B. Timing Driven Routing

4. Routing-based Scan Order

A. SE: SE is used to attach scan to the routed netlist.

B. QP-Scan: QPlace is used to attach scan to the routed
netlist.

C. Our (ScanOpt, LKH): We extract fanout routing
trees of all the scan flip-flops from the routed netlist. The
ATSP cost matrix is computed from the minimum pin-
to-tree distances. The ATSP solver then computes the
routing-based scan order.

The above-mentioned steps are used to construct the following
scan chain insertion flows.

� Flow Ia: 1A,3A. Baseline NTD total wirelength with no scan
nets.

� Flow Ib: 1B,3B. Baseline TD total wirelength and timing with
no scan nets.

� Flow IIa: 1A, 2A, 3A. NTD placement-based SE flow.

� Flow IIb: 1B, 2A, 3B. TD placement-based SE flow.

� Flow IIIa: 1A, 2B, 3A. NTD placement-based QP-Scan flow.

� Flow IIIb: 1B, 2B, 3B. TD placement-based QP-Scan flow.

� Flow IVa: 1A, 2C, 3A. Our NTD placement-based flow. This
directly compares with Flow IIa and Flow IIIa, i.e., industry vs.
our placement-based scan ordering solvers. The comparison
is clouded by the possibility that the industry tool’s edge costs
and objective function may be different from ours.

� Flow IVb: 1B, 2C, 3B. Our TD placement-based flow. Simi-
larly, this directly compares with Flow IIb and Flow IIIb.

� Flow Va: 1A, 3A, 4A, 3A. NTD routing-based SE flow.

� Flow Vb: 1B, 3B, 4A, 3B. TD routing-based SE flow.

� Flow VIa: 1A, 3A, 4B, 3A. NTD routing-based QP-Scan flow.

� Flow VIb: 1B, 3B, 4B, 3B. TD routing-based QP-Scan flow.

� Flow VIIa: 1A, 3A, 4C, 3A. Our NTD routing-based flow. This
directly compares with Flow Va and Flow VIa, i.e., industry vs.
our routing-based scan ordering solvers. Again, the compari-
son is clouded by possible differences in costing and objective
function. Flow VIIa also compares to Flow IVa to assess the
impact of routing-based ordering vis-a-vis placement based or-
dering.

� Flow VIIb: 1B, 3B, 4C, 3B. Our TD routing-based flow. Simi-
larly, this directly compares with Flow Vb and Flow VIb.

We extracted scan chain orders from the industry tool’s flow.
Scan chain orders generated by SE in Flow IIa(b) and Flow Va(b) are
identical. Similarly, scan chain orders generated by QPlace in Flow
IIIa(b) and Flow VIa(b) are identical. We interpret this as the ab-
sence of any routing-based ordering in both SE and QPlace. There-
fore, Flows Va, Vb, VIa, and VIb become redundant and we do not
report results for them. In total, there are ten distinct results for each
test case, corresponding to Flows Ia, Ib, IIa, IIb, IIIa, IIIb, IVa, IVb,
VIIa, and VIIb.

4.2 ATSP Solver Comparison

As our results heavily depend on the quality of the TSP tour, we
compare two ATSP solvers ScanOpt [4] and LKH-1.2 [8]. LKH-1.2
is reported to be one of the best ATSP solvers currently available
[13]. LKH converts an ATSP instance to a symmetric TSP instance
by doubling the number of cities. This can cause huge runtimes for
large ATSP instances. We use ScanOpt as our TSP solver as its run-
ning time is reasonable even for very large TSP instances (more than
10000 cities). A comparison of ScanOpt and LKH for the smallest

Tour Cost (µm) Running Time (sec.)
Test Case ScanOpt LKH ScanOpt LKH
A (pin-to-pin) 21609 20632 1441 5670
A (pin-to-net) 9297 7511 2149 2717

Table 1: A comparison of ATSP solvers.

of our test cases (i.e., A with 1226 cities) is given in Table 1. With
two different measures (tour cost and CPU time), on test case A,
ScanOpt is more favorable with respect to running time while LKH
may give a better tour with some extra runtimes.3

4.3 Test Cases

We consider three test case obtained from industry sources. Each
of the test cases was obtained in LEF/DEF format and then modi-
fied to merge its multiple scan chains into one scan chain. We then
generated alternate placements for each test case by (1) relaxing the
site map by 20% and (2) randomly swapping some scan flip-flop
locations.4 Main parameters of the test cases are given in Table 2.
Aswap denotes the test case with placement of A altered by randomly
swapping the placements of scan flip-flops. Aexpand denotes the test
case obtained by increasing the site map of A. The asymmetry
and non-metricity values for the corresponding TSP instances are
shown in Table 3. Note that non-metricity values increase markedly
(i.e., metricity decreases) with the new pin-to-net distance measure.
This supports the need to use an ATSP solver in our scan ordering
approach.

4.4 Results

Table 4 shows the total wirelength after detailed routing for the base-
line Flow I and scan overhead for each of the remaining four flows

3For practical reasons, we use ScanOpt for our experiments.
4The number of swaps differed for each design to ensure routability. For test case A,

B and C, 30 swaps, 50 swaps and 50 swaps respectively were done. From this, it can be
seen that the initial placed instances are already fairly tight in terms of routability.

4

Test # Scan # Scan Die Area # Metal
Case # Cells FFs Chains mm2 Layers

A/Aswap 6390 1226 2 0.526 4
Aexpand 6390 1226 2 0.632 4
B/Bswap 40350 1975 1 6.875 4
Bexpand 40350 1975 1 8.373 4
C/Cswap 34235 4550 10 3.846 4
Cexpand 34235 4550 10 5.611 4

Table 2: Characteristics of the test cases.

Non-TD Asymmetry/Non-Metricity
Instance Cell-to-Cell Pin-to-Pin Pin-to-Net
A 0/0 0.0122/0.0975 0.1199/0.6356
Aswap 0/0 0.0122/0.0975 0.1308/0.6959
Aexpand 0/0 0.0105/0.1079 0.1287/0.6447
B 0/0 0.0122/0.2044 0.0254/0.3628
Bswap 0/0 0.0122/0.2044 0.0424/0.6322
Bexpand 0/0 0.0108/0.1898 0.0218/0.3787
C 0/0 0.0039/0.1695 0.0484/0.5978
Cswap 0/0 0.0039/0.1695 0.0555/0.7140
Cexpand 0/0 0.0037/0.2228 0.0568/0.5932
TD Cell-to-Cell Pin-to-Pin Pin-to-Net
A 0/0 0.0121/0.0904 0.1187/0.6549
Aswap 0/0 0.0121/0.0904 0.1295/0.7134
Aexpand 0/0 0.0111/0.1025 0.1316/0.6733
B 0/0 0.0121/0.2537 0.0276/0.4297
Bswap 0/0 0.0121/0.2537 0.0491/0.6426
Bexpand 0/0 0.0111/0.1523 0.0284/0.3440
C 0/0 0.0039/0.2185 0.0598/0.6098
Cswap 0/0 0.0039/0.2185 0.0683/0.7238
Cexpand 0/0 0.0037/0.2228 0.0568/0.5932

Table 3: Asymmetry and (Non-)Metricity measures for the test
cases.

explained in the Section 4.1. Scan overhead is computed as the dif-
ference between baseline wirelength and post-scan-insertion wire-
length. The routing in all the cases is wirelength-driven rather than
timing-driven. We also retain the same placement for all the flows
(including the no-scan case) to have a better comparison. CPU time
of all the routing runs are shown in Table 5 (CPU times are normal-
ized to a 143Mhz SUN Ultra-1). CPU time for Flow VIIa and VIIb
are the sum of the initial routing time (before scan-insertion) and
the final routing time (after the scan-insertion). Table 6 shows the
effect on timing violations and slacks. We use setup violations for
the timing measurements.

Table 4 clearly shows that both Flow VIIa and VIIb produce bet-
ter wirelength than Flow IVa and Flow IVb respectively. This gives
an unbiased comparison of the placement-based ordering and the
routing-based ordering. Flows VIIa and VIIb also have better wire-
length than the industry flows, Flow IIa, IIb, IIIa, and IIIb. The re-
duction in wirelength ranges from 20.5% to 85.7%. This shows that
by exploiting extra information we can indeed achieve better solu-
tion. Furthermore, QP-Scan (Flow IIIa(b)) clearly has better TSP
solver than SE (Flow IIa(b)) while our ATSP solver (Flow IVa(b))
is as good as QP-Scan. There are three cases where Flow VIIa(b)

Test Total WL Scan Overhead(µm)
Case (µm)
(NTD) Flow Ia Flow IIa Flow IIIa Flow IVa Flow VIIa
A 901377 38464 20550 16595 6230
Aswap 947229 31727 � 20590 14383 9128 �
Aexpand 925623 49390 30596 23520 14229
B 4145339 146316 73356 63483 54527
Bswap 4554848 144622 75967 65385 49690
Bexpand 4687923 155366 76370 72976 60731
C 8467723 334200 164384 131491 85724
Cswap 9078337 327720 166846 148106 98552
Cexpand 8957890 416030 205973 180373 127850
(TD) Flow Ib Flow IIb Flow IIIb Flow IVb Flow VIIb
A 864765 42280 � 21502 � 21939 6540 �
Aswap 925899 � 39202 � 17241 � 14457 � 6798 �
Aexpand 950629 51421 34091 28433 14138
B 4004035 148707 72811 67369 55353
Bswap 4510690 147672 73268 65375 49268
Bexpand 4296941 157460 80282 76911 63329
C 8250811 338108 152479 135496 79540
Cswap 8987769 352032 177312 136687 83495
Cexpand 8957890 293708 116033 86851 41974

Table 4: Post-detailed routing wirelength and scan overhead for var-
ious scan chain insertion flows (� indicates that the routing com-
pleted with violations).

completes the routing with violations; however, with these cases, the
industry flow has violations as well.

In the timing domain (Table 6), although our current flow does
not consider slacks in the cost matrix calculation, we see a reduction
in the number of timing violations. In addition, the magnitudes of
the timing violations (i.e., negative slacks) are not worse than the
industry flows in some cases.

5 Conclusions

In this paper, we have presented a new approach for routing-based
scan chain ordering. Our main conclusions are as follows.

� A substantial reduction in wirelength impact of scan is
achieved by the routing-based flow, as compared with the tra-
ditional placement-based flow. The magnitude of this reduc-
tion ranges from 20.5% to 85.7% on industry test cases.

� Although our current experiments are timing-oblivious, the
routing-based flow reduces the number of timing violations
while the magnitudes of the timing violations do not degrade
significantly from the industry flow.

While we have clearly demonstrated the positive impact of trial-
routing based scan ordering, even better industry flows appear pos-
sible. For example, as we noted above, the effectiveness of our ap-
proach may be limited by the capabilities of particular industry rout-
ing tools, e.g., with respect to quality of incremental optimization or
ability to follow virtual-pin based constraints. As another example,
in congested layouts, a congestion-aware ordering capability may be
required (based on both routing and congestion map information).

The focus of our ongoing and future work is on extensions to true
timing-driven scan ordering. Adding scan connections can cause ad-

5

Test Case Flow Ia Flow IIa Flow IIIa Flow IVa Flow VIIa
A 881 718 1271 915 1455
Aswap 733 3562 2975 2555 3265
Aexpand 326 1317 366 343 666
B 1035 1058 1050 1058 2091
Bswap 1076 1087 1082 1086 2155
Bexpand 1137 1153 1141 1145 2281
C 4028 4513 4189 4157 8156
Cswap 8549 6922 6271 6180 14539
Cexpand 2570 2904 2731 2680 5232
Test Case Flow Ib Flow IIb Flow IIIb Flow IVb Flow VIIb
A 1927 4681 2821 2708 4713
Aswap 3641 9315 6440 5653 8461
Aexpand 701 684 651 645 1334
B 2582 2403 2396 2388 4976
Bswap 2449 2501 2493 2512 4918
Bexpand 2432 2488 2468 2480 4905
C 3639 5907 5586 5514 9132
Cswap 6977 9456 7939 7813 14448
Cexpand 2557 6106 5930 5930 8387

Table 5: Total router CPU times (in seconds) for various scan chain
insertion flows normalized to SUN Ultra-1 at 143MHz. CPU time
for Flow VIIa and VIIb are the sum of the initial routing time (before
scan-insertion) and the final routing time.

Min Slack (ns)/# Timing Violations
Test Case Flow IIb Flow IIIb Flow IVb Flow VIIb
A 5.31/624 5.24/602 5.34/586 5.50/578
Aswap 7.62/764 7.57/722 7.17/719 7.50/744
Aexpand 5.78/817 6.02/817 5.92/777 6.26/781
B 5.26/4 5.25/4 5.26/4 5.26/4
Bswap 5.27/5 5.27/5 5.27/5 5.27/5
Bexpand 5.23/4 5.23/4 5.23/4 5.23/4
C 15.26/6121 15.63/5954 15.17/5816 14.99/5725
Cswap 24.58/6521 24.38/6418 23.10/6170 24.32/5973
Cexpand 25.69/7328 26.38/7398 26.46/7458 24.60/7320

Table 6: Timing results for the TD scan-insertion flows.

ditional timing violations. We are developing a (detailed) routing-
based scan ordering flow that can compute the route with the least
wirelength impact that attaches the SI pin of ffin to the output of ffout ,
so as to maximize timing slack with respect to timing constraints on
any of the sinks of the fanout tree of ffout . An enabling observation
is that the optimum attachment point on any given segment of the
fanout tree of ffout can, under the Elmore delay model, be found as
the solution to a simple analytic equation. (Even brute-force search
over all tree segments for the best attachment point is computation-
ally inexpensive, and speedups are possible.) The optimum attach-
ment point can also be efficiently found under the assumption that
buffering of the connection (to meet timing constraints) is a degree
of freedom for the scan ordering step. The regime where only a
limited number of buffer sites are available (and, are competed for
by different potential scan connections) offers interesting challenges
within the ATSP framework. Finally, another interesting and practi-
cal extension of this work would be scan chain ordering with mul-
tiple scan chains. The case where the flip-flops in each scan chain
is known gives a trivial extension (each chain is ordered indepen-

dently). A more interesting problem is to simultaneously partition
the scan flip-flops into multiple balanced scan chains.

References

[1] S. Barbagello, M.L. Bodoni, D. Medina, F. Corno, P. Prinetto and M.S. Reorda,
“scan-insertion Criteria for Low Design Impact”, Proc. VLSI Test Symposium,
1996, pp. 26-31.

[2] J.J. Bentley, “Fast Algorithms for Geometric Traveling Problems”, ORSA Journal
of Computing, 4(4) (1992), pp. 387-410.

[3] K.D. Boese, A.B. Kahng and R.S. Tsay, “Scan Chain Optimization: Heuristic and
Optimal Solutions”, Internal Report, UCLA CS Dept., October 1994. Download-
able from http://www.gigascale.org/bookshelf/Slots/ScanOpt/

[4] GSRC Bookshelf, “Scan Chain Optimization”,
http://www.gigascale.org/bookshelf/Slots/ScanOpt/

[5] C.S. Chen and T.T. Hwang, “Layout Driven Selection and Chaining of Partial
Scan Flip-Flops”, Journal of Electronic Testing: Theory and Applications 13
(1998), pp. 19-27.

[6] “Eighth DIMACS Implementation Challenge”,
http://www.research.att.com/ dsj/chtsp/, 2002.

[7] M. Feuer and C. C. Koo, “Method for Rechaining Shift Register Latches Which
Contain More Than One Physical Book”, IBM Technical Disclosure Bulletin 25
(9) (1983), pp. 4818-4820.

[8] K. Helsgaun, “An Effective Implementation of the Lin-Kernighan Traveling
Salesman Heuristic”, European Journal of Operations Research 12 (2000), pp.
106-130. The code is available at http://www.dat.ruc.dk/ keld/research/LKH/.

[9] M. Hirech, J. Beausang and X. Gu, “A New Approach to Scan Chain Reordering
Using Physical Design Information”, Proc. International Test Conference, 1998,
pp. 348-355.

[10] I. Hong, A.B. Kahng and B.R. Moon, “Improved Large-Step Markov Chain Vari-
ants for the Symmetric TSP”, Journal of Heuristics 3(1) (1997), pp. 63-81.

[11] D.S. Johnson, “Local Optimization and the Traveling Salesman Problem”, Proc.
17th Intl. Colloquium on Automata, Languages and Programming, 1990, pp. 446-
460.

[12] D.S. Johnson and L.A. McGeoch, “The Traveling Salesman Problem: A Case
Study in Local Optimization”, In E.H.L. Aarts and J.K. Lenstra, editors, Local
Search Algorithms, Wiley and Sons, New York, 1997.

[13] D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo, W. Zhang and A Zverovitch,
“Experimental Analysis of Heuristics for the ATSP”, To appear in The Traveling
Salesman and its Variations, Kluwer Academic Publishers, 2002.

[14] A. B. Kahng and S. Mantik, “On Mismatches Between Incremental Optimizers
and Instance Perturbations in Physical Design Tools”, Proc. IEEE/ACM Intl. Con-
ference on Computer-Aided Design, November 2000, pp. 17-21.

[15] P.C. Kanellakis and C.H. Papadimitriou, ”Local Search for the Asymmetric Trav-
eling Salesman Problem”, Operations Research Letters 11 (1992), pp. 219-224.

[16] S. Kobayashi, M. Edahiro and M. Kubo, “A VLSI Scan-Chain Optimization Algo-
rithm for Multiple Scan-Paths”, IEICE Trans. Fundamentals E82-A(11) (1999),
pp. 2499-2504.

[17] E.L. Lawler, J.K. Lenstra, A. Rinnooy-Kan and D. Shmoys, The Traveling Sales-
man Problem: A Guided Tour of Combinatorial Optimization, Wiley, 1985.

[18] K.-H. Lin, C.-S. Chen and T.T. Hwang, “Layout Driven Chaining of Scan Flip-
flops”, IEE Proc., Computers and Digital Techniques 143(6) (1996), pp. 421-425.

[19] S. Makar, “A Layout Based Approach for Ordering Scan Chain Flip-Flops”, Proc.
International Test Conference, 1998, pp. 341-347.

[20] O. Martin, S.W. Otto and E.W. Felten, “Large-step Markov Chains for the Trav-
eling Salesman Problem”, Complex Systems 5(3) (1991), pp. 299-326.

[21] D.L. Miller and J.F. Pekny, “Exact Solution of Large Asymmetric Traveling Sales-
man Problems”, Science 251, 15 February 1991. pp. 754-761.

[22] G. Reinelt, “Fast Heuristics for Large Geometric Traveling Salesman Problems”,
ORSA Journal on Computing, 4(2) (1992), pp. 206-217.

[23] W. Zhang, “On the Expected Complexity of the Traveling Salesman Problem un-
der Subtour Elimination”, UCLA CS Dept. Tech. Report CSD-920022, 1992.

6

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

