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Abstract— In this paper, we propose “selected sequence-pair”
(SSP), a sequence-pair (seq-pair) with the limited number of sub-
sequences called adjacent crosses. Its features are: (1) The small-
est packing based on a given SSP can be obtained in O(n) time,
where n is the number of rectangles. (2) An arbitrary packing
can be represented by SSP. (3) The total representation number
of SSP of size n is not more than that of rectangular dissection of
the same size with n−

⌊√
4n−1

⌋
empty rooms (the necessary num-

ber of empty rooms to represent an arbitrary packing). To realize
these features of SSP, we propose an algorithm to enumerate all
adjacent crosses on a seq-pair in linear time of n+k (k is the num-
ber of adjacent crosses). Also we apply a conventional method to
convert a seq-pair without adjacent crosses to an equivalent Q-
sequence, representation of rectangular dissection, in O(n + k)

time. A move operation to obtain an adjacent solution efficiently
is proposed to perturb SSP for Simulated Annealing. From exper-
imental results, we confirmed the proposed method was carried
out in linear time and was more efficient than the conventional
method when SSP size got bigger.

I. INTRODUCTION

One of the major problems in VLSI layout design is in plac-
ing the rectangular modules as densely as possible. The merits
of sequence-pair (seq-pair) [1], a representation used in its so-
lution, are in that it can represent an arbitrary rectangle pack-
ing and each seq-pair always has its corresponding packing(s).
Since a seq-pair defines the relative positions of all pairs of
rectangles, it has wide applications. For instance, in pre-placed
modules [2], rectilinear polygon packing [3], boundary con-
straints [6] and conversion to an equivalent rectangular dissec-
tion from a packing [7]. In [1], a method to get the bottom
left corner packing (there is no block that can shift left and
down from its original position with other components fixed)
from a given seq-pair of n rectangles in O(n2) time was pro-
posed using horizontal/vertical constraint graphs. Later, an-
other method to get packing in O(n log n) time [4] was pro-
posed. Recently a study [5] showed that a packing can be ob-
tained in O(n log log n) time. However, since it takes more
than linear time, further improvement is required for the use in
practice.

When a given seq-pair of n rectangles includes k sub-
sequences called adjacent crosses, Murata et al. proposed a
method to convert such seq-pair to a rectangular dissection of
the same relative positions in O((n + k)2) time. They showed
the number of adjacent crosses (k) is corresponding to the
number of empty rooms in the rectangular dissection since an
adjacent cross corresponds to an empty room on one to one ba-
sis [7]. Recently our study [15, 16] showed a method to convert

a seq-pair to an equivalent rectangular dissection in O(n + k)
time giving the position of adjacent crosses and the inserting
order of dummy modules into such adjacent crosses.

Also, in [11], we proved that the necessary number of adja-
cent crosses for representing a packing of n rectangles was not
more than n−3, and we conjectured that the tight upper bound
of the number of such adjacent crosses is K(n)=n−⌊√

4n−1
⌋

[11]. Takashima et al. insisted on the justice of this conjecture
in [13].

Therefore Takashima et al. proposed a method to search an
optimal solution for a packing of n rectangles using rectangu-
lar dissection with K(n) empty rooms [13, 14]. In this method,
however, it is seldom that all of the given empty rooms are nec-
essary in the process of searching. Therefore it is considered
that there is still room for improvement to obtain an optimal
solution efficiently.

In this paper, we propose a new packing representation
named “selected sequence-pair” (SSP), a seq-pair where k is
not more than K(n). In order to decode SSP fastly, we propose
an algorithm to enumerate all adjacent crosses on a given seq-
pair in O(n + k) time and to obtain inserting order of dummy
modules into such adjacent crosses. We also apply the meth-
ods [15, 16] proposed by us which obtain a packing from a
seq-pair without adjacent crosses via a Q-sequence [10], rep-
resentation of a rectangular dissection, in O(n + k) time. By
combining the algorithm proposed here with the conventional
methods, we can obtain the bottom left corner packing based
on SSP in O(n) time.

The outstanding merits of SSP are as follows:
(1) The bottom left corner packing based on a given SSP can
be obtained in O(n) time. (Note that obtaining a packing of n
rectangles in the smaller time complexity than O(n) is theoret-
ically impossible.)
(2) An arbitrary packing can be represented by SSP.
(3) The total representation number of SSP of size n is not
more than that of rectangular dissection of the same size with
K(n) empty rooms (the necessary number of empty rooms for
representing an arbitrary packing).

Also, a move operation for obtaining adjacent solution ef-
ficiently is proposed to perturb SSP for Simulated Annealing.
From experimental results, we confirmed the proposed method
was carried out in linear time and was more efficient than the
conventional method when SSP size got bigger.

II. PREVIOUS WORKS

II.1. Sequence-Pair
A sequence-pair (seq-pair) is an ordered pair of Γ+ and Γ−,
where each of Γ+ and Γ− is a permutation of names of given n
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Fig. 1.: Example of oblique-grid and packing of seq-pair (abc; bac)

modules. For example, (Γ+; Γ−) = (a b c d ; b d a c) is a seq-
pair of module set {a, b, c, d}. If module x is the i’th in Γ+,
we denote Γ+(i) = x, as well as Γ−1

+ (x) = i. Similar notation
is also used for Γ−. To help intuitive understanding, we use a
notation such as

(Γ+; Γ−) = (·· a ··b ·· ; ·· a ··b ··)
by which we mean

Γ−1
+ (a) < Γ1

+(b) and Γ−1
− (a) < Γ−1

− (b).

For every module pair {a, b}, a is in the left of b (equiva-
lently, b is in the right of a) if

(Γ+; Γ−) = (·· a ··b ·· ; ·· a ··b ··).
Similarly, a is below b (equivalently, b is above a) if

(Γ+; Γ−) = (·· b ··a ·· ; ·· a ··b ··).
An HV-relation-set (HVRS) for a set of modules is a set of

horizontal (in the left / right of) or vertical (above / below) rela-
tions for all module pairs. For example, seq-pair (a b c ; c a b)
corresponds to HVRS {a is in the left of b, c is below a, c is be-
low b}. A seq-pair always corresponds to a realizable HVRS,
and there is a seq-pair whose HVRS can lead to an minimum
area placement.

The H/V constraints of a seq-pair can be intuitively under-
stood using the oblique-grid notation. It is an n × n grid
obliquely drawn on the plane so that the Γ+ is observed along
the sequence of the positive slopes from left to right and the
Γ− is observed similarly along the negative slopes. For exam-
ple, Fig.1(a) shows the oblique grid of seq-pair (a b c ; b a c). It
shows the H/V constraints: block c is in the right quarter view
range (between −45◦ and +45◦) of block a on the oblique
grid, then c should be placed in the right of a.

From one seq-pair, a bottom left corner packing can be ob-
tained in O(n log log n) time [5].

II.2. Rectangular Dissection
A rectangular dissection is a dissection of a rectangle into
a set of rectangles called rooms with exclusive assignments
of modules to rooms (no two modules share a single room.)
Examples are shown in Fig.2. Only T-intersections are used to
form the dissection except for the four corners of the outermost
bounding rectangle [18]. (Two T-intersections on a point may
look like a cross.) Each of the line segments and edges of the
bounding rectangle is called a seg. A room is occupied if a
module is assigned to the room, otherwise empty.

In this paper, as in the conventional floorplan or the topolog-
ical placement, we only focus on the topology between rooms

and segs in a rectangular dissection. Consequently, if the num-
ber of rooms are given, the variety of rectangular dissection
becomes finite [19].

HVRS of rectangular dissection is defined as follows. If
a vertical (horizontal) seg s adjoins the right of (below) the
room a and the left of (above) room b, we say “room a is left
of (above) room b via seg s.”

II.3. Adjacent Cross
In seq-pair S, when rectangles a, b, c, d are put in the order of

S=(· · ·a· · ·bc · · ·d· · · ; · · ·c· · ·ad · · ·b· · ·) or

S=(· · ·d· · ·bc · · ·a· · · ; · · ·b· · ·ad · · ·c· · ·) ,

we say “S has an adjacent cross” or “a, b, c, d make an adja-
cent cross” [7]. In S, b and c are adjacent in Γ+. Also, a and
d are adjacent in Γ−. We denote the adjacent cross as bc/ad
and call “ad” (“bc”) a Γ− (Γ+) adjacent pair. A rectangular
dissection whose HVRS is the same as that of a seq-pair of
n rectangles with adjacent crosses cannot be realized with n
rooms. We need to introduce as many empty rooms as adja-
cent crosses.

For example, the rectangular dissection satisfying HVRS of
a seq-pair (1 2 3 4 ; 2 4 1 3) is shown in Fig2.(a). It confirms
the necessity to introduce an empty room in the middle of four
rooms.

II.3.1 Inserting Operation of a Dummy Module into an
Adjacent Cross

To convert a seq-pair with adjacent crosses to a rectangular
dissection of the same HVRS, the first thing to do is inserting
dummy modules to a seq-pair to remove adjacent crosses [7].

Theorem 1 When a seq-pair has n rectangles and k adjacent
crosses, the minimum number of rooms in the rectangular dis-
section of the same HVRS as the seq-pair is n+k.

The insertion of dummy modules into seq-pair with adjacent
crosses can be realized as follows. Assume rectangles a, b, c,
d in seq-pair S make an adjacent cross ab/cd. Insert dummy
module x between a and b on Γ+ and between c and d on Γ−.
Then, a, b, c, d don’t make an adjacent cross.

II.4. Q-sequence
Q-sequence (Q-seq) proposed by Sakanushi et al. in [10] is a
method to represent a rectangular dissection of general struc-
ture with n rooms by letters of total length of 3n. Each room
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Fig. 2.: Examples of rectangular dissection



x in a Q-seq has necessarily its corresponding Rx and Bx. For
example, rectangular dissection of Fig. 2(b) is represented by
a Q-seq
“Q = R2R1B5B11B3B22R6R4R33B44R55B66.”

Q-seq is made from Q-state defined as follows [12].

Definition 1 (Q-state) In a rectangular dissection, when the
lower (right) end of a vertical (horizontal) seg s touches a hor-
izontal (vertical) seg at the bottom right corner of room x in
the shape of ‘⊥’ (‘
’), Q-state of room x has a room name
followed by Ry (By) corresponding to room y which is adja-
cent to the right (bottom) of seg s in the order from the bottom
(right).

For example, a rectangular dissection of Fig.2(b) has a ver-
tical and a horizontal seg touching in the shape of ‘⊥’ at the
bottom right corner of room 2 and, adjacent to the right of this
vertical line, room 6, 4 and 3 stand in a column from the bot-
tom. The Q-state of room 2 is “2R6R4R3.”

In Q-seq, “Ri” (“Bi”) before the leftmost room name shows
that room i is adjacent to the left seg (upper seg) of the bound-
ing rectangle. For example, the top “R2R1” in Q means room
2 and room 1 are adjacent to the left seg of the bounding rectan-
gle. Similarly “B5B1” means room 5 and room 1 are adjacent
to the upper seg of the bounding rectangle.

II.5. Algorithm for Converting Seq-pair without Adjacent
Crosses to Q-seq

For easy understanding, we rename each rectangle as Γ+ =
(1, 2, 3 · · ·n) (Γ− = (1, 2, 3 · · ·n)) without loss of general-
ity. In the following, we call this renamed seq-pair a Γ− (Γ+)
normalized seq-pair. For example, a Γ− (Γ+) normalized
seq-pair of (a b c d e f ; b f d c a e) is (1 2 3 4 5 6; 2 6 4 3 1 5)
((5 1 4 3 6 2; 1 2 3 4 5 6)).

In [15, 16], We proposed an algorithm for converting S ′,
a Γ− normalized seq-pair without adjacent crosses, to Q-seq.
This algorithm and decoding of Q-seq make it possible to con-
vert S ′ to a rectangular dissection in O(m) time when the size
of S ′ is m (conventionally it took O(m2) time [7]) and a pack-
ing can be obtained in O(m) time. In this algorithm, we obtain
the following four links (rs, rb, ls, lb) on Γ−(i) which is the
ith element from the left in the given seq-pair.

Definition 2 Among the rectangles whose numbers are
smaller than Γ−(i), rs(i) denotes the closest position to Γ−(i)
on the right of Γ−(i) and ls(i) denotes the closest position to
Γ−(i) on the left of Γ−(i).
Among the rectangles whose numbers are bigger than Γ−(i),
rb(i) denotes the closest position to Γ−(i) on the right of Γ−(i)
and lb(i) denotes the closest position to Γ−(i) on the left of
Γ−(i).

rs(i), rb(i), ls(i), lb(i) can be obtained for all rectangles in
O(m2) time easily when the number of rectangles is m. But,
Obtaining them in O(m) time is possible by the following so-
phisticated algorithm.

Algorithm Link rs
Input: Γ− of S′ with m rectangles
Output: rs link of Γ− of S′

Initialize the stack;
push 0 to the stack;
for (i = 1, 2, · · · , m){

while (Γ−(i) < Topmost element of the stack)
Pop the topmost element from the stack, and
set up an rs link from the topmost element toward Γ−(i)

(that is rs(Γ−1
− (pop())) = i) ;

push Γ−(i) to the stack;
} (Algorithm Link rs End)

We consider the time complexity of Link rs. A double loop
exists in Link rs and the inner loop always pops an element
each time from the stack. Besides, at the bottom of the stack,
zero exists which is never popped.

Obviously the number of times for the elements to be pushed
into the stack is exactly m+1, so this algorithm is carried out
in O(m) time. We can obtain rb, ls and lb links similarly.

S′ can be converted to Q-seq by the following algorithm
keeping HVRS of S ′.

Algorithm SeqPair–Qseq
Input: m rectangles, Γ− of S′

Output: Q-sequence
/* Make Link */

Make rs,rb,ls and lb link of Γ−;
/* rs chain */

Output R with subindex of the traced element name
by tracing rs link from the leftest element of Γ−
until no destination of rs link remains;

/* ls chain */
Output B with subindex of the traced element name
by tracing ls link from the rightest element of Γ−
until no destination of ls link remains;

/* Check adjacent relation between each room */
for (room = 1, 2, · · · ,m − 1){

output room; /*output room name*/
if (Γ−1

− (room)<Γ−1
− (room+1)){

/* rb-rs chain */
Output R with subindex of the traced element name
by tracing rb link once and rs link
from Γ−1

− (room) to Γ−1
− (room+1) }

else{
/* lb-ls chain */

Output B with subindex of the traced element name
by tracing lb link once and ls link
from Γ−1

− (room) to Γ−1
− (room+1) }

}
output m; /*output last room name*/

(Algorithm SeqPair–Qseq End)

2 6 4 3 1 51 2 3 4 5 6
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rb(3)
rb(5)rb(4)
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lb(3) lb(4)
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(b)ls link and lb link

Fig. 3.: Four links of S



III. SELECTED SEQUENCE-PAIR

When a seq-pair of n rectangles has adjacent crosses of K(n)=
n− ⌊√

4n−1
⌋

or less, we call it a selected sequence-pair
(SSP). Since an empty room in rectangular dissection corre-
sponds to an adjacent cross in seq-pair on one to one basis [7]
and it was proved that an arbitrary packing was represented by
a rectangular dissection with K(n) empty rooms or less [13],
the following theorem is obtained.

Theorem 2 An arbitrary packing of n rectangles can be de-
rived from a seq-pair (SSP) using not more than K(n) adjacent
crosses.

III.1. Algorithm to obtain packing from SSP
From an SSP which has k adjacent crosses and represents a
placement of n rectangles, we can obtain a packing in O(n)
time by the following procedure.

Procedure SSP Decoder
Step 1: Enumerate all adjacent crosses on a given SSP S by
algorithm Adjcross List (O(n+k) time).
Step 2: Based on the obtained position of adjacent crosses and
the order to insert dummy rectangles by Step 1, insert k dummy
rectangles to remove all adjacent crosses (O(n+k) time) [7].
Then the size of SSP S ′ without adjacent crosses is m=n+k.
Step 3: Convert S ′ to Q-seq Q by algorithm SeqPair–
Qseq (O(m) time) [15, 16].
Step 4: From Q, restore a rectangular dissection [9] and assign
rectangles to obtain the packing (O(m)time).

(Procedure SSP Decoder End)

Step 2, Step 3 and Step 4 are conventional methods and
later we will explain Step 1 and Step 2. Step 3 is mentioned
in section II.5. As for Step 4, refer to [9].

III.2. Step 1: Enumeration of All Adjacent Crosses
III.2.1 A Method to Enumerate All Adjacent Crosses
When a Γ− normalized seq-pair of n rectangles has k adjacent
crosses, it is possible to enumerate all adjacent crosses in O(n+
k) time by algorithm Adjcross List .

Algorithm Adjcross List
Prepare an empty double linked list where nodes must be

sorted in an ascending order of the number from the head of
the list and do the following steps for each rectangle i on Γ−
of a Γ− normalized seq-pair from the left. After completing
the search from the left on Γ−, do the same procedure from the
right.

Focus on rectangle i and
Step 1: Move the pointer to the position where i is to be in-
serted on a double linked list. When the pointer is in a position
and we call a rectangle to be inserted there m, if the pointer
moves toward smaller rectangle name than m and jumps over
another rectangle which we call p on the list, output p, m, i,
p+1 which make an adjacent cross p p+1/m i.
Step 2: If i+1 has not been focused yet but will be focused
later, insert i on the double linked list. If i−1 is found on the
double linked list, delete it.

(Algorithm Adjcross List End)
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Fig. 4.: Example of Adjcross List realization on seq-pair
(1 2 3 4 5 6;4 2 6 1 3 5). (a) Insert “4” on Γ− into the list as the search of “5” is
unfocused. (b) Insert “2” as the search of “3” is unfocused. (c) Don’t insert
“6” as “7” doesn’t exist. (d) To focus on “1,” “4” and “2” were jumped over
upward, so “4 5/6 1” and “2 3/6 1” make adjacent crosses. As the search of
“2” was done, don’t insert “1.” (e) Don’t insert “3” as the search of “4” was
done. Also delete “2.” (f) Finally don’t insert “5” as the search of “6” was
done. Also delete “4.”

Adjcross List is obtained by altering SeqPair–Qseq men-
tioned in Sec.II.5 like sweeping a plane in computational ge-
ometry to enumerate efficiently all adjacent crosses in parallel.

If a Γ− normalized seq-pair (1 2 3 4 5 6; 4 2 6 1 3 5) is in-
putted, two adjacent crosses “4 5/6 1” and “2 3/6 1” are found
(as shown in Fig.5(a)) by the operation shown in Fig.4. An-
other adjacent cross “3 4/2 6” is found by repeating the same
operation from the right to the left on Γ− of inputted seq-pair.

The following theorem comprises on Adjcross List.

Theorem 3 For an arbitrary seq-pair of size n with k adjacent
crosses, algorithm Adjcross List can enumerate all adjacent
crosses in O(n+k) time.

(Proof) Algorithm Adjcross List sweeps Γ− starting from
the left and then from the right and can find each of adjacent
crosses, if they exist, while sweeping the Γ− adjacent pair of
the adjacent cross.

When our focus moves from one element to the next one on
Γ−, the number of times that the pointer moves on the double
linked list exceeds by one the number of elements passed by
the pointer. When the pointer moves toward a smaller element
name, the total number of times that the pointer passes one ele-
ment is k in the whole Adjcross List since an adjacent cross is
found every time the pointer passes each element. The differ-
ence between moving toward larger element names and toward
smaller element names is one. Therefore the time complexity
is O(n+k).



III.2.2 Inserting Order of Dummy Module to Remove All
Adjacent Crosses

In case a plural number of adjacent crosses exist, in order to
remove them, we have to consider the order of dummy module
insertion. In the following, this order is explained using the
order of finding adjacent crosses by Adjcross List.

Assume that adjacent cross ab/cd is found before ab/ef in
the search of a Γ− normalized seq-pair from left to right on Γ−
by Adjcross List.

In this case, between adjacent elements a and b on Γ+, a
dummy module p to remove ab/cd must be inserted left to a
dummy module q to remove ab/ef . Accordingly, the order of
insertion becomes “a, p, q, b” on Γ+.

The order of insertion is similar when the search was carried
out on Γ− of a Γ− normalized seq-pair from right to left by
algorithm Adjcross List.

Next, assume that adjacent cross cd/st is found before
ef/st in the search on Γ− of a Γ− normalized seq-pair from
left to right by algorithm Adjcross List.

In this case, between adjacent elements s and t on Γ−, a
dummy module u to remove cd/st must be inserted left to a
dummy module v to remove ef/st. Accordingly, the order of
insertion becomes “s, u, v, t” on Γ−.

Also assume that adjacent cross cd/st is found before ef/st
in the search on Γ− of a Γ− normalized seq-pair from right to
left by algorithm Adjcross List.

In this case, between adjacent elements s and t on Γ−, a
dummy module u to remove cd/st must be inserted right to a
dummy module v to remove ef/st. Accordingly, the order of
insertion becomes “s, v, u, t” on Γ−.

In algorithm Adjcross List, adjacent crosses found by
searching Γ− from left to right and those found by searching
from right to left never hold adjacent elements (a, b and s, t
mentioned above) in common. For this reason, the inserting
operation can be carried out independently.

III.3. Step 2: Removal of all adjacent crosses by dummy
rectangle insertion

Based on the obtained position of adjacent crosses and the or-
der to insert dummy rectangles by Step 1, we must insert k
dummy rectangles to remove all adjacent crosses. It can be
carried out in O(n+k) time by converting seq-pair representa-
tion from array to list. Then the size of SSP S ′ which has no
adjacent crosses is m=n+k. For example, by inserting oper-
ation, a seq-pair (1 2 x 3 z 4 y 5 6; 4 2 z 6 y x 1 3 5) is obtained
from a seq-pair (1 2 3 4 5 6; 4 2 6 1 3 5) (Fig.5(b)).

IV. SOLUTION SPACE OF SSP FOR SIMULATED

ANNEALING SEARCH

Obtaining a packing by combining the search methods such as
Simulated Annealing and SSP, it is necessary to define a move
operation and to construct solution space. It is desirable for the
move operation to guarantee reachability from an arbitrary SSP
to another arbitrary SSP and to obtain random adjacent feasible
solution in linear time of the number of rectangles. Therefore,
in this paper we use the same operation as [8]: For a seq-pair
(Γ+; Γ−), one module (move-module) is moved in either Γ+ or
Γ−. This reachability was proved in [8] by expanding the proof
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Fig. 5.: The insertion order of dummy modules to remove adjacent crosses

that the solution space constructed only by a seq-pair without
adjacent crosses is reachable. The detailed proof is omitted
here.

When adjacent solutions contain infeasible solutions, tech-
niques to search the solution space by Simulated Annealing
may be specified as follows:
(1) Obtain an adjacent solution randomly until it becomes fea-
sible.
(2) Impose very large cost to infeasible solutions.

A defect of (1) is that it needs a lot of time to obtain one
feasible adjacent solution if the proportion of feasible solutions
in adjacent solutions is small. When (2) is used, there is no
guarantee that Simulated Annealing finds a feasible solution.

An alternative method was proposed in [8]:
(3) Enumerate all feasible solutions, and then select a feasible
solution randomly.

We adopt the way to enumerate feasible adjacent solutions
and pick up one of them at random. The procedure in detail is
shown below.
Step 1: In permutation Γ of either Γ+ or Γ−, determine one
move destination at random.
Step 2: In Γ, regard all elements except those at both sides of
move destination as the candidate of a move element. Then
measure the fluctuation of the number of adjacent crosses
which occurs when every move element is inserted into the
move destination.
Step 3: In checking the fluctuation at Step 2, if there is no
move element resulting in SSP, go back to Step 1.
Step 4: Among move elements resulting in SSP, choose one
element at random and insert it into the move destination.

In this procedure, there may be a case to go from Step 3
back to Step 1 and a frequent occurrence of this makes efficient
realization in linear time impossible. However, it is confirmed
by computational experiment that this hardly occurs.

The fluctuation of the number of adjacent crosses for all
move element candidates in step 2 can be obtained in O(n)
time by checking the following three cases. The following de-
scription is for the move operation on Γ− and the move opera-
tion for Γ+ is shown in parentheses.
(1) Adjacent crosses which disappear after the move operation.
(2) Adjacent crosses generated in the form of Γ− (Γ+) adjacent
pair one of which is a move element.



(3) Adjacent crosses generated in the form of Γ+ (Γ−) adjacent
pair one of which is a move element.

(1) is a case where one of the elements consisting of an ad-
jacent cross is a move element and by moving it, the adjacent
cross disappears. When one of the Γ− (Γ+) adjacent pair in an
adjacent cross is a move element and a substitute for the move
element exists, we don’t count such an adjacent cross as “de-
crease.”

(2) is carried out by the following algorithm where the input
is a Γ− (Γ+) normalized SSP. The move destination is between
� and r, and p shows a move element. Then the increase of
adjacent crosses is calculated.

for (c=0, p=max(�, r); p≤n−2; p++){
if(the move destination is between p and p+1.)

++c;
record the value of c as the increase of move element p+2

}
for (c=0, p=min(�, r); p>2; p−−){

if(the move destination is between p and p−1.)
++c;

record the value of c as the increase of move element p−2
}
Since (3) is too complicated, we don’t explain here.
As for the calculation of the fluctuation of the number of

adjacent crosses in three cases, refer to [17] which has detailed
explanation with some examples.

V. EXPERIMENTS AND RESULTS

V.1. The Number of SSP Representations
We compared the number of SSP representations with that of
Q-seq representations. In SSP, by the exhaustive search of a Γ−
normalized seq-pair of n rectangles, we obtain the number of
a Γ− normalized SSP and get the multiplied value of it by the
combinational number of n rectangle names (n!).

For example, if n=5, the number of Γ− normalized seq-pair
is 5! = 120. Since K(5) = 5−⌊√

4·5−1
⌋

= 1, the number of
adjacent crosses in SSP of size 5 is at most one. Among 120 Γ−
normalized seq-pairs, four have adjacent crosses of more than
one (these are not SSP). Therefore the number of representa-
tion of SSP of size 5 is (5!−4)×5!=13920.

As for Q-seq, we obtain the combinational number for the
total of n rooms and given K(n) empty rooms from the recur-
rence formula [9] and get the multiplied value of it by n+K(n)Pn

which is the variety of labeling n room names.
If n = 5, the combinational number of Q-seq of size 6 in-

cluding K(5) = 1 empty room is 422. This is multiplied by
6P5 = 6!/(6−5)! = 720 which is the variety of labeling five
rooms among six, and the resultant 303840 is the number of
representation of Q-seq with the number of modules 5.

The results are shown in Fig.6. It shows that the number of
SSP representation is smaller and more suitable for the optimal
solution search.

V.2. Experimental Comparison between the Proposed
Method and the Conventional method

As mentioned above, it was theoretically proved that the bot-
tom left corner packing based on an SSP (size n) can be
obtained in O(n) time by the proposed method. Since this
method is carried out via SSP of size n+k (k is the number of

adjacent crosses), the lower bound of time complexity is also
O(n). Here, we confirm by experiment that the time necessary
to carry out the proposed method is linear to n. The program
was implemented in C language and the experiment was made
on Pentium IV 1.6GHz.

We prepare an SSP which has adjacent crosses of K(n)−
n/100 or more as an initial SSP and, by increasing its size
from 22 to 215, generate SSP of the number of 105 to 107 by
the move operation mentioned in Section IV. Then we measure
the time taken for decoding and obtain an average time for each
SSP size.

To compare the difference of the time complexity, the re-
sults obtained by the conventional original decoding method
of seq-pair [1] and by Fast-SP method [5] in addition to the ex-
perimental results obtained by the proposed method are shown
in Fig.7. The time complexity of the original decoding method
is O(n2) and that of Fast-SP method is O(n log log n). Since
the results of Fast-SP method were obtained on Sun Ultra En-
terprise 3000 (200MHz) [5], we cannot compare simply with
the results of the proposed method. However, we can read
the difference of performance from the slope of the line in the
graph and see that the proposed method, the original method
and Fast-SP method each is in proportion to n0.998, n1.69 and
n1.13 which are calculated using the least square method. From
the results, we can confirm the proposed method is carried out
in linear time. The proposed method needs more time than the
conventional methods for decoding when n is small but needs
less time when n gets bigger.

We also implemented a packing method using the SSP based
on Simulated Annealing in C language. This experiment was
made on Pentium IV 1.6GHz without rotating rectangles using
ami33 and it took 106 sec. The experimental result is shown in
Fig.8.

VI. CONCLUSIONS

We proposed a “selected sequence pair” (SSP), a sequence-pair
where the number of sub-sequence called “adjacent cross” is
K(n)=n−⌊√

4n−1
⌋

or less.
The outstanding merits of SSP are shown below. (1) The

bottom left corner packing based on an SSP can be obtained
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in O(n) time. (2) An arbitrary packing can be represented by
SSP . (3) The total representation number of SSP of size n is
not more than that of rectangular dissection of the same size
with K(n) empty rooms

Also on SSP, in order to use a search method like Simulated
Annealing, we have proposed a move operation to obtain an
adjacent solution efficiently.

To realize these merits, we proposed the algorithm which
can enumerate all adjacent crosses on a sequence-pair in linear
time of the sum of the number of rectangles and the number
of adjacent crosses. Also we applied a theorem that an arbi-
trary packing of n rectangular modules can be represented by
a rectangular dissection with K(n) empty rooms or less and
a conventional method to convert a seq-pair without adjacent
crosses to an equivalent Q-sequence, representation of rectan-
gular dissection in O(n + k) time. A move operation to obtain
an adjacent solution efficiently was proposed to perturb SSP
for Simulated Annealing.

From experimental results, we confirmed the proposed
method was carried out in linear time and was more efficient
than the conventional method when SSP size got bigger.
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