
Gate-Level Simulation of Quantum Circuits

George F. Viamontes, Manoj Rajagopalan,
Igor L. Markov and John P. Hayes

The University of Michigan, Advanced Computer Architecture Laboratory
Ann Arbor, MI 48109-2122, USA

fgviamont,rmanoj,imarkov,jhayesg@eecs.umich.edu

Abstract— Simulating quantum computation on a classical
computer is a difficult problem. The matrices representing quan-
tum gates, and vectors modeling qubit states grow exponentially
with an increase in the number of qubits. However, by using
a new data structure called the Quantum Information Decision
Diagram (QuIDD) that exploits the structure of quantum opera-
tors, many of these matrices and vectors can be represented in a
form that grows polynomially. Using QuIDDs, we implemented
a general-purpose quantum computing simulator in C++ called
QuIDDPro and tested it on Grover’s algorithm. Our QuIDD tech-
nique asymptotically outperforms other known simulation tech-
niques.

I. I NTRODUCTION

In modern computers (referred to as ’classical’ to distin-
guish them from their quantum counterparts) binary informa-
tion is stored in a bit that is physically a voltage signal in a
solid-state electronic circuit. Mathematically, a bit is repre-
sented as a Boolean value or variable. In the quantum do-
main, binary information is stored in a quantum state such as
the polarization (horizontal/vertical) of a photon or the spin
(up/down) of an electron or atomic nucleus. Unlike a classi-
cal bit, a quantum bit orqubit can exist in a superposition of
its classical binary states that is disturbed, or in most cases,
destroyed by any external stimulus (typically in a measure-
ment operation). In Dirac notation, the quantum states cor-
responding to the classical logic zero and one are denoted as
j0i andj1i, respectively [4]. However, unlike a classical bit, a
qubit can store zero and one simultaneously, using values rep-
resented by 2-element vectors of the form,αj0i+βj1i where
α and β are complex numbers andjαj2 + jβj2 = 1. A fun-
damental postulate of quantum mechanics dictates that these
individual state vectors can be combined, via the tensor prod-
uct, with other state vectors [4]. These tensored qubit states
provide a kind of massive parallelism since superposition al-
lows ann-qubit statejΨi = ∑2n

�1
i=0 ci jbi;n�1bi;n�2; : : : ;bi;0i to

store 2n binary numbers simultaneously. Here eachci is a com-
plex number such that∑2n

�1
i=0 jci j2 = 1, andbi;n�1bi;n�2; : : : ;bi;0

is the binary expansion ofi. For n = 2, we havejΨi =
c0j00i+c1j01i+c2j10i+c3j11i.

Richard Feynman observed in the early 1980s that simu-

lating quantum processes on classical hardware seems to re-
quire super-polynomial (in the number of qubits) memory and
time. Consequently, Feynman proposedquantum computing,
a means of computation involving quantum mechanical states
which can in principle simulate quantum processes much more
efficiently [3]. Such computation can be represented on a clas-
sical computer as a series of matrix and vector operations [4].
Given n qubits, the data is a vector, orstatevector, with 2n

complex numbers. Operations on these qubits can be simu-
lated through matrix-vector multiplications by square unitary
matrices, also calledoperatorswith 22n complex numbers. At
a circuit level, qubits are analogous to bits, and operator matri-
ces are analogous to logic gates. Given ann-qubit andk-qubit
state vector or operator, ann+k-qubit state vector or operator
can be constructed via the tensor (Kronecker) product. In this
work we assume only a minimal knowledge of quantum com-
puting and abstract computational problems in terms of linear
algebra.

Since both the state vectors and operators grow exponen-
tially in n qubits, it is computationally difficult for classical
computers to simulate these systems. Such simulation, how-
ever, can be extremely useful to physicists who want to sim-
ulate quantum errors in their quantum computer designs and
to computer scientists who want to devise new quantum algo-
rithms. Equally interesting would be to use classical simula-
tion to explore thelimitationsof quantum computing. Classi-
cal computers after all do not have to deal with quantum errors
and, as we demonstrate, can simulate some instances of quan-
tum computation in polynomial time and memory. The pur-
pose of this paper is to demonstrate a novel approach to more
efficient simulation of quantum computing based on well-
known graph techniques from classical CAD. The next section
describes previous attempts at better classical simulation, fol-
lowed by Section III which presents our approach. Lastly, we
offer experimental verification of our techniques in Section IV
and conclude with final remarks in Section V.

II. PREVIOUS WORK

Traditional array-based representations are often insensitive
to the actual values stored, and even sparse matrix storage of-
fers little improvement for quantum operators with no zero ma-

trix elements (e.g. Hadamard operators). Gottesman [9] identi-
fied a number of special-case quantum circuits for which tailor-
made simulation techniques require only polynomial memory
and runtime. However, he noted that these “restricted types
of quantum circuits fall short of the full power of quantum
computation.” Thus, in cases of major interest, such as Shor’s
and Grover’s algorithms, quantum simulation is still performed
with straightforward linear-algebraic tools and requires astro-
nomic resources.

A number of “programming environments” for quantum
computing were proposed recently that are mostly front-ends
to quantum circuit simulators. Their back-ends typically use
linear algebra methods to multiply matrices and require super-
polynomial computational resources in the number of qubits.
The potential benefits of efficient linear-algebraic operations
on compressed arguments are immense.

Our approach uses graph-based techniques from classical
CAD to improve asymptotic time and memory complexity of
quantum simulations by exploiting the structure of quantum
operators. Although abstract worst-case complexity is still ex-
ponential, our approach achieves very substantial performance
gains in many important cases.

Other advanced simulation techniques, e.g., MATLAB’s
“packed” representation, include data compression, but often
must decompress the operands of matrix-vector multiplication.
A notable exception is Greve’s simulation [7] of Shor’s algo-
rithm that usesBinary Decision Diagrams(BDDs) [2]. Prob-
ability amplitudes of individual qubits are modeled by single
decision nodes. This only captures superpositions where ev-
ery participating qubit is rotated by�45 degrees fromj0i to-
wardsj1i. Another BDD-based technique was recently pro-
posed by Al-Rabadi et al. [8] which can perform multi-valued
quantum logic. The drawback of this technique is that it too is
incapable of capturing all types of quantum computation and
instead emphasizes synthesis of quantum circuits rather than
computational simulation. Further, there are no documented
implementations or theoretical performance measures of Al-
Rabadi et al.’s technique, making experimentation with this
model difficult.

Though Greve’s and Al-Rabadi et al.’s BDD representations
cannot simulate the computation of arbitrary quantum circuits,
the idea of modeling quantum states with a BDD-like struc-
ture is appealing and motivates our approach. However, un-
like these previous models, our approachis capable of simulat-
ing arbitrary quantum circuits while offering performance im-
provements as demonstrated by our C++ implementation and
experimental results described in Section IV.

III. QUIDD THEORY

TheQuantum Information Decision Diagram(QuIDD) was
born out of the observation that vectors and matrices which
arise in quantum computing exhibit a lot of structure. More
complex operators obtained from the tensor product of sim-
pler matrices continue to exhibit these common substructures
which BDDs can capture. BDDs and operations for manipu-

lating them were originally developed by Lee [1] and extended
to Reduced Ordered BDDs (ROBDDs) by Bryant [2] to han-
dle large Boolean functions efficiently. An ROBDD is adi-
rected acyclic graph(DAG) with up to two outgoing edges per
node, labeledthen and else. Algorithms that perform oper-
ations on ROBDDs are typically recursive traversals. While
not improving worst-case asymptotics, in practice ROBDDs
achieve exponential space compression and runtime improve-
ments by exploiting various types of structure found in practi-
cal applications.

Beyond the domain of digital logic design, ROBDD variants
have been adopted in many contexts. Multi-Terminal Binary
Decision Diagrams (MTBDDs) [5] and Algebraic Decision Di-
agrams (ADDs) [6] with their integrated linear-algebraic oper-
ations are particularly relevant to the task of simulating quan-
tum systems. Both MTBDDs and ADDs compress explicit
representations of matrices and vectors, with the amount of
compression achieved being proportional to the frequency of
repeated values in a given matrix or vector.

We have developed a further refinement, the QuIDD, to
compress complex-valued matrices and vectors and operate on
them in compressed form. The differences between QuIDDs
and ADDs/MTBDDs are four-fold:

1. QuIDD terminals are restricted to the set of complex num-
bers

2. To facilitate efficient operations on the terminals, such as
multiplication by a scalar, QuIDD terminals represent in-
dices which index into a separate array of complex num-
bers containing the terminal values. This eliminates the
need for anApply1operation that must traverse the entire
graph before performing operations on the terminals (see
Subsection III.C and Fig. 1)

3. The variable ordering of QuIDDs interleaves row and col-
umn variables, which favors compression of block pat-
terns (see Subsection III.B)

4. Bahar et al. note that ADDs can be padded with 0’s to
represent arbitrarily sized matrices [6]; no such padding
is necessary in the quantum domain where all vectors and
matrices have sizes that are a power of 2 (see Subsection
III.B)

Although these optimizations may enhance ADD/MTBDD
performance in other applications, we find that they are partic-
ularly useful in the quantum domain. A major contribution of
this work is the observation that ADD/MTBDD-based struc-
tures with the properties listed above greatly enhance perfor-
mance of quantum computational simulation. Our C++ imple-
mentation, QuIDDPro, is based on the CUDD package [13]
and uses ADDs with these properties, though in principle it
can also use MTBDDs. Space and time complexities of our
simulations ofn-qubit systems range fromO(1) to O(2n), but
the worst case is not typical.

1I1I

0I 0I

1I 1I

0 1 2 3

1/2

1

0 10

1/2

0

0.44 0.26

00

01

11

10

00

01

10

11

00

01

10

11

1/2
1/2
1/2
1/2

0.26
0.44

−0.10
0.80

1/2
−1/2
−1/2

1/2

0

(b) (c)

0 1 32

0.80 −0.10 −1/2

(a)

Vector representation

QuIDD representation

Fig. 1. Sample QuIDDs of (a) best, (b) worst and (c) mid-range size.

A. Vectors and Matrices

Figure 1 shows an abstract view of the QuIDD structure for
three 2-qubit states. We consider the indices of the four vector
elements to be binary numbers, and define their bits as decision
variables of QuIDDs. A similar definition is used in ADDs [6].
For example, traversing thethenedge (solid line) of nodeI0 in
Figure 1c is equivalent to assigning the value 1 to the first bit of
the 2-bit vector index. Traversing theelseedge (dotted line) of
nodeI1 in the same figure is equivalent to assigning the value 0
to the second bit of the index. These traversals bring us to the
terminal value�1

2, which is precisely the value at index 10 in
the vector representation.

QuIDD representations of matrices extend those of vectors
by adding a second type of variable node and enjoy the same
reduction rules and compression benefits. Consider the 2-qubit
Hadamard matrix annotated with binary row and column in-
dices shown in Figure 2a. In this case there are two sets of
indices: The first (vertical) set corresponds to the rows, while
the second (horizontal) set corresponds to the columns. We as-
sign the variable nameRi andCi to the row and column index
variables respectively. This distinction between the two sets
of variables was originally noted in several works including
that of Bahar et al [6]. Figure 2b shows the QuIDD form of
this sample matrix where it is used to modify the state vector
j00i= (1;0;0;0) via matrix-vector multiplication.

B. Variable Ordering

Variable ordering can drastically affect the level of com-
pression achieved in BDD-based structures such as QuIDDs.
The CUDD package offers sophisticated dynamic variable-
reordering techniques, such as shifting, that are typically
greedy in nature, but achieve significant improvements in vari-
ous BDD applications. However, dynamic variable reordering
has significant time overhead, whereas finding a good static
ordering in advance may be preferable in some cases. Good
variable orderings are highly dependent upon the structure of
the problem at hand, and therefore one way to seek out a good
ordering is to study the problem domain. In the case of quan-
tum computing, we notice that all matrices and vectors contain
2n elements wheren is the number of qubits represented. Ad-

ditionally, the matrices are square and non-singular [4]. As
noted in the work of Bahar et al., matrices and vectors that do
not have sizes which are a power of two require padding with
zeros [6], which can complicate real implementations. For-
tunately, no such padding is required in quantum computing
applications.

Hachtel et al. demonstrated that ADDs representing non-
singular matrices can be operated on efficiently with inter-
leaved row and column variables [12]. Interleaving implies the
following variable ordering:R0 �C0 � R1 �C1 � ::: � Rn �
Cn. Intuitively, the interleaved ordering causes compression to
favor regularity in block sub-structures of the matrices. Such
regularity is created by tensor products that are required to al-
low multiple quantum gates to operate in parallel and also to
extend smaller quantum gates to operate on larger numbers of
qubits. The tensor productA
B multiplies each element ofA
by the whole matrixB to create a larger matrix which has di-
mensionsMA �MB by NA �NB. By definition, the tensor product
will propagate patterns in its operands. As a result, the static
interleaved variable ordering property of QuIDDs scales quite
nicely as the number of qubits in the circuit increases, offer-
ing an efficient and robust representation for quantum circuit
operators and state vectors.

C. QuIDD Operations

Most operations defined for ADDs also work on QuIDDs
with only slight modification. A key example is matrix mul-
tiplication, which is an extension of the dot-product operation
and implemented as a recursive procedure adapted from the
well-known BDD-Apply function [2]. Matrix multiplication
operations with ADDs are treated asquasi-ringswhich, among
other properties, means that they have some operator[which
distributes over some commutative operator] [6]. This prop-
erty is critical for computing the dot-products required in ma-
trix multiplication, where terminal values are multiplied ([) to
produce products that are then added (]) to create the new ter-
minal values of the resulting matrix. Another important issue
in matrix multiplication is compression. To avoid the same
problem that MATLAB encounters with its “pack” representa-
tion, ADDs must not be decompressed when performing this
operation. In the work of Bahar et al., this is addressed by
tracking the numberi of “skipped” variables between the par-
ent (caller) and its newly expanded child in each recursive call.
A factor of 2i is multiplied by the terminal-terminal product
that is reached at the end of a recursive traversal [6]. For more
details and pseudocode, see our technical report [10]. An ex-
ample circuit with the QuIDD representation of its computa-
tional behavior is shown in Figure 3.

Tensor products can be implemented as follows. As noted
in Subsection B,A
B multiplies each element ofA by the en-
tire matrix (or vector)B producing a new matrix (or vector).
Multiplication of the terminal values is done by first shifting
the variable numbers inB after those inA followed by a call to
the recursiveApplyfunction with an argument that directsAp-
ply to multiply when it reaches the terminals of both operands
[10]. Since QuIDD operations are variants ofApply, they have

00

01

R0R1 10

11

2
664

1
2

1
2

1
2

1
2

1
2 �1

2
1
2 �1

2
1
2

1
2 �1

2 �1
2

1
2 �1

2 �1
2

1
2

3
775

00 01 10 11

C0C1

(a)

0 1

0 −1/2 1/2
0 1 2 3

1

*

R

C

R

R

CC

1

1 1

1

0

0

C

C

0

1

2 3

3

(b)

Fig. 2. (a) 2-qubit Hadamard, and (b) its QuIDD representation multiplied byj00i= (1;0;0;0). Note that the vector and
matrix QuIDDs share the entries in a terminal array that is global to the computation.

complexityO(jAj � jBj), which is polynomial in the number of
qubits if bothjAj andjBj are.

Other key operations include quantum measurement and
matrix addition. Measurement can be expressed in terms of
matrix multiplication, tensor products, and scalar division by
a normalization factor (a case in which QuIDD property 2 is
useful), and so its QuIDD implementation is merely a combi-
nation of the operations described above. Matrix addition is
easily implemented by callingApplywith an argument direct-
ing it to add the terminals of the operands. Unlike the tensor
product, no special variable ordering shifting is required for
matrix addition.

QuIDD properties imply additional implementation details
such as the use of complex arithmetic. Abstract ADDs can
support terminals of any numerical type, but CUDD’s imple-
mentation of ADDs does not. For efficiency reasons, CUDD
stores node information in Cunions which are interpreted nu-
merically for terminals and as child pointers for internal nodes.
However, it is well-known that unions are incompatible with
the use of C++ classes because their multiple interpretations
hinder the binding of correct destructors. In particular, com-
plex numbers in C++ are implemented as a templated class and
are incompatible with CUDD. This was the original motivation
for storing terminal values in an external array, but it also pro-
vides the added benefit of efficient scalar operations (QuIDD
property 2).

Another important issue is the precision of complex numeric
types. Over the course of repeated multiplications, the values
of some terminals may become very small and induce round-
off errors if the standard IEEE double precision floating-point
types are used. This effect worsens for larger circuits. Unfortu-
nately, such round-off errors can significantly affect the struc-
ture of a QuIDD by merging terminals that are only slightly
different or not merging terminals whose values should be
equal, but differ by a small computational error. The use of ap-
proximate comparisons with an epsilon works in certain cases
but does not scale well, particularly for creating an equal su-
perposition of states (a standard operation in quantum circuits).
In an equal superposition, a circuit withn qubits will contain

the terminal value 1
2n=2 in the state vector. With the IEEE dou-

ble precision floating-point type, this value will be rounded to
0 atn= 2048 regardless of any epsilon. Furthermore, a static
value for epsilon will not work well for different sized circuits
(e.g. an epsilon of 1e� 6 may work well forn= 35, but not
for n= 40). Therefore, to address the problem of precision,
QuIDDPro uses an arbitrary precision floating-point type from
the GMP library [11] with the C++ complex template. Preci-
sion is then limited to the available amount of memory in the
system.

QuIDD property 3 is directly supported by CUDD and only
requires some extra implementation overhead to enforce the
variable ordering on the resultant QuIDD of any operation
[10]. Lastly, QuIDD property 4 simplifies our QuIDDPro im-
plementation since we do not need to handle matrices and vec-
tors of arbitrary size.

IV. SIMULATING GROVER’ S ALGORITHM

We used QuIDDPro in a few types of quantum computing
simulations to verify that QuIDDs provide a useful amount
of compression in practical applications. One such simula-
tion involves running Grover’s algorithm [14] for identifica-
tion of keys in an unstructured database. Given an unstruc-
tured database ofN elements, search for a single key matching
a given search criterion, using classical computation resources,
takesO(N) time owing to the fact that at least half the elements
must be examined on average. Grover’s algorithm is a quantum
algorithm that can locate the key using onlyO(

p
N) queries to

an oracle that judges a match with the search criterion. A cir-
cuit implementing Grover’s algorithm is shown in Fig. 4. The
algorithm can be summarized as follows:

Let N denote the number of elements in the database.
1. Initialize n= dlog2Ne qubits toj0i and theoracle qubitto
j1i.
2. Apply the Hadamard transform (H gate) to all qubits to put
them into a uniform superposition of basis states.
3. Apply the oracle. This sub-circuit performs a special form
of the controlled-NOT (CNOT) gate. If the input to this cir-

CA

BC

21

CA

BC

21

CA

BCBC

0 1

RA

CA

RB

CB

CA

0 1 2

CA

RB

CB

RA

CA

RB

CB

10

0 1

21CA

BC

1 0

CB

1

0 1

0

RA

CA

RB

CB

CA

0 1 2

21

(I H gate) (I H gate)

H H

1

2

1
0
0
1

1

2
−1
0
0
1

32

2 3

2 3

0 1

0 1 4

0 −1

4

1

3 2 1 1 0 3 2 1

02−1 02−1

2−1 2−1

(CNOT gate)

B

A

Fig. 3. Example quantum circuit with its QuIDD representation. The top row of QuIDDs represents the quantum operatorsI
H (a Hadamard
acting on qubitB alone),CNOT, and anotherI
H, respectively. The bottom row of QuIDDs represents the state vector form of qubitsA andB
before and after each operator acts on them. The terminal array is broken up with portions of it displayed under each QuIDD for visual clarity.

TABLE I
SIZE OF QUIDDS (# OF NODES) FOR GROVER’ S ALGORITHM.

Circuit Hadamards Conditional Oracles
Sizen Initial Repeated Phase Shift 1 2

20 80 83 21 99 108
40 160 163 41 199 228
60 240 243 61 299 348
80 320 323 81 399 468
100 400 403 101 499 588

cuit satisfies the search criterion, the state of the oracle bit is
flipped. For a superposition of inputs, those input basis states
that satisfy the search criterion will induce a bit flip (X gate) on
the oracle qubit in the composite state space. The oracle uses
ancillary qubits as its workspace, reversibly returning them to
their original states (shown asj0i in Fig 4). These ancillary
qubits will not be operated on by any other step in the algo-
rithm.

4. Apply the H gate to all qubits except the oracle qubit.

5. Apply theConditional Phase-Shiftgate on all qubits except
the oracle qubit. This gate negates the probability amplitude of
the j000: : :0i basis state, leaving that of the others unaffected.
It can be realized using a combination of X, H and Cn�1-NOT
gates as shown. A decomposition of the Cn�1-NOT into ele-

mentary gates is given in [17].

6. Apply the H gate to all gates except the oracle qubit.

7. Repeat steps 3-6R times, whereR= bπ
4

q
N
M c andM is the

number of keys matching the search criterion [16].

8. Apply the H gate to the oracle qubit in the last iteration.
Measure the firstn qubits to obtain the index of the matching
key with high probability.

Before starting simulation, we construct the QuIDD repre-
sentations of Hadamard operators by incrementally tensoring
together one-qubit versions of their matricesn�1 times to get
n-qubit versions. Similarly, we construct all other necessary
operators. Table I shows sizes (in nodes) of respective QuIDDs
atn-qubits, wheren= 20::100. We observe that memory usage
grows linearly inn and QuIDD-based simulations of Grover’s
algorithm are not memory-limited even at 100 qubits [10].

With the operators constructed, simulation can proceed. Ta-
bles IIa and IIb show performance measurements for simulat-
ing Grover’s algorithm with an oracle that searches for one
item out of 2n. QuIDDPro achieves asymptotic memory sav-
ings compared to known interpreted and compiled numerical
analysis packages. The overall runtimes are still exponential
in n because Grover’s algorithm entails an exponential num-
ber of iterations, even on an actual quantum computer [16].
We also studied a “mod-1024” oracle [10] that searches for
elements whose ten least significant bits are 1. Memory us-

H

H

H

H

H H

CONDITIONAL
PHASE SHIFT

Oracle "work"
qubit−space

HH

H

H

H

H

X

X

X

X

X

X

X

X

H

H

H

H

ORACLE

R Iterations (Boyer’s Formula)

|0> |0>

|0>

|0>

|0>

|1>

|0>

Fig. 4. Circuit-level implementation of Grover’s algorithm

age for the mod-1024 oracle for up ton= 25 qubits grew as
(7:592+0:041n) (see Tables IIc and IId). Results were pro-
duced on a 1.2GHz AMD Athlon with 1GB RAM running
Linux. Memory usage for MAT and Oct is lower-bounded by
the size of the state vector and conditional phase shift oper-
ator; B++ and QP memory usage is measured as the size of
the entire program. Simulations using MAT and Oct past 15
qubits timed out at 20 hours. See our technical report [10] for
additional details.

V. CONCLUSIONS ANDFUTURE WORK

We proposed and tested a new technique for simulating
quantum circuits using a data structure called a QuIDD. We
have shown that QuIDDs enable practical, generic and rea-
sonably efficient simulation of quantum computation. Their
key advantages are faster execution and lower memory usage.
In our experiments, QuIDDPro achieves exponential memory
savings compared to other known techniques. We are currently
studying the growth of required precision and simulation of
other quantum algorithms, such as Shor’s [15], where we plan
to introduce the effects of errors and decoherence. Error simu-
lation is important if one plans to model actual quantum com-
putational devices, and we suspect it may prove to be a diffi-
cult problem since errors may cause some of the symmetries
exploited by QuIDDs to be lost.

Additionally, our on-going work addresses thelimitations
of quantum computing by means of a “competition” between
classical and quantum computers. Classical computers have
the advantage that they are not subject to quantum measure-
ment and errors. Thus, when competing with quantum com-
puters, classical computers can simply run ideal error-free
quantum algorithms (as we did in Section IV), allowing tech-
niques such as QuIDDs to exploit the symmetries found in
ideal quantum computation. To this end we are also attempt-

ing to characterize quantum gates that can be represented by
polynomial-sized QuIDDs and thus facilitate fast error-free
simulation.

Acknowledgments. This work was partially supported by
the DARPA QuIST program. The views and conclusions con-
tained herein are those of the authors and should not be inter-
preted as necessarily representing official policies or endorse-
ments of funding agencies.

REFERENCES

[1] C.Y. Lee, “Representation of switching circuits by binary deci-
sion diagrams,”Bell System Tech. J., Vol. 38, pp. 985-999, 1959.

[2] R. Bryant, “Graph-based algorithms for Boolean function manip-
ulation,” IEEE Trans. on Computers, Vol. C35, pp. 677-691, Aug
1986.

[3] A. J. G. Hey, ed.,Feynman and Computation: Exploring the Lim-
its of Computers, Perseus Books, 1999, 438 pp.

[4] M. A. Nielsen and I. L. Chuang,Quantum Computation and
Quantum Information, Cambridge Univ. Press, 2000.

[5] E. Clarke et al., “Multi-terminal binary decision diagrams and
hybrid decision diagrams,” in T. Sasao and M. Fujita, eds,Repre-
sentations of Discrete Functions, pp. 93-108, Kluwer, 1996.

[6] R. I. Bahar et al., “Algebraic decision diagrams and their applica-
tions,” In Proc. IEEE/ACM ICCAD, 188-191, 1993.

[7] D. Greve, “QDD: a quantum computer emulation library,” 1999
http://home.plutonium.net/˜dagreve/qdd.html

[8] A. N. Al-Rabadi et al., “Multiple-Valued Quantum Logic,”11th
International Workshop on Post Binary ULSI, Boston, MA., May
2002.

TABLE II
SIMULATING GROVER’ S ALGORITHM WITH n QUBITS USINGOCTAVE (OCT), MATLAB (MAT), B LITZ ++ (B++) AND OUR

SIMULATOR QUIDDPRO (QP).

Oracle 1: Runtime (s)

n Oct MAT B++ QP
10 89.4 14.0 0.22 0.20
11 2.94e2 45.9 0.72 0.39
12 9.26e2 1.53e2 2.22 0.88
13 3.09e3 5.80e2 6.92 1.94
14 1.36e4 5.90e3 23.09 4.79
15 7.10e4 5.92e4 70.4 9.32
16 TIME-OUT TIME-OUT 2.13e2 22.2
17 TIME-OUT TIME-OUT 6.34e2 50.7
18 TIME-OUT TIME-OUT 1.92e3 1.13e2
19 TIME-OUT TIME-OUT 5.74e3 2.00e2
20 TIME-OUT TIME-OUT 1.74e4 3.25e2

Oracle 1: Peak Memory Usage (MB)

n Oct MAT B++ QP
10 3.60e-2 2.00e-2 1.95e-2 0.211
11 6.80e-2 4.40e-2 7.03e-2 0.207
12 0.132 9.20e-2 7.42e-2 0.281
13 0.260 0.188 0.129 0.426
14 0.268 0.264 0.250 0.444
15 0.524 0.520 0.500 0.605
16 1.04 1.03 1.00 0.840
17 2.06 2.06 2.00 0.965
18 4.11 4.10 4.00 1.59
19 8.20 8.20 8.00 1.77
20 16.4 16.4 16.0 2.04

(a) (b)

Oracle 2: Runtime (s)

n Oct MAT B++ QP
12 5.45e2 79.3 1.40 0.450
13 1.28e3 1.95e2 3.10 0.500
14 3.85e3 8.27e2 6.90 0.570
15 1.23e4 4.67e3 15.0 0.570
16 3.62e4 3.78e4 32.3 0.680

Oracle 2: Peak Memory Usage (MB)

n Oct MAT B++ QP
12 6.56e-2 4.12e-2 0.203 0.230
13 0.131 8.22e-2 0.324 0.313
14 0.148 0.164 0.574 0.336
15 0.295 0.328 1.07 0.371
16 0.590 0.656 2.07 0.402

(c) (d)

[9] D. Gottesman, “The Heisenberg representation of quantum com-
puters,”Plenary speech at the 1998 International Conference on
Group Theoretic Methods in Physics, quant-ph/9807006.

[10] G. Viamontes, M. Rajagopalan, I. Markov, J.
Hayes, “Gate-level simulation of quantum circuits,”
Los Alamos Quantum Physics Archive, Aug. 2002
http://xxx.lanl.gov/abs/quant-ph/0208003

[11] “GNU MP (GMP): Arithmetic Without Limitations,”
http://www.swox.com/gmp/

[12] G. Hachtel et al., “Markovian analysis of large finite state ma-
chines,” IEEE Trans. on Computer-Aided Design, Vol. 15, pp.
1479-1493, Dec. 1996.

[13] F. Somenzi, “CUDD: CU Decision Diagram Package,” release
2.3.0, Univ. of Colorado at Boulder, 1998.

[14] L. Grover, “Quantum Mechanics Helps In Searching For A Nee-
dle In A Haystack,”Phys. Rev. Lett.(79), pp. 325-8, 1997.

[15] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,”SIAM J. of Com-
puting, Vol. 26, p. 1484, 1997.

[16] M. Boyer, G. Brassard, P. Hoyer and A. Tapp, “Tight bounds on
quantum searching,”4th Workshop on Physics and Computation,
Nov. 1996.

[17] A. Barenco et al., “Elementary gates for quantum computation”,
Los Alamos Quantum Physics Archive, quant-ph/9503016, Mar.
1995.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

