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Abstract and is incorporated in a simulation tool (known as e
method). To avoid th& element in simulation, The trun-

In this paper, we present a novel wire duplication-based catedL ! matrix can be inverted to obtain a new inductance
interconnect modeling technique. The proposed modelingmatrix (denoted by t). As t is also a dense matrix, direct
technique exploits the sparsity of the'Lmatrix, where L simulation of £ (referred to as the £ method) is not efficient.
is the inductance matrix, and constructs a sparse and stable[1] performs sparsification on the £ matrix (known as the
equivalent RLC circuit by windowing the original inductance double-inverse inductance model). Essentially, the double-
matrix. The model avoids matrix inversions. Most impor- inverse inductance model requires two approximation (spar-
tant, it is more accurate and more efficient than many exist- sification) steps. [2] calculates the sparse inductance ma
ing techniques. trix directly by using exponential potentials and matrix in-
versions are avoided.

In this paper, we present a novel interconnect modeling
technique based omire duplication This technique is mo-
tivated by the mathematical property that only a subset of
the entries of the the £ matrix is required to reconstruct the

With the continual increasing of clock frequency and 4 -1 matrix. Consequently, we can construct an circuit that
global interconnect length and decreasing of signal transi-is equivalent to the £ matrix out of the subset of t by
tion time, accurate modeling of inductance effects becomesyjire duplication It is stable, sparse and as accurate as the
increasingly more important. The partial inductance matrix K method [3, 5]. Furthermore, we can apply the wire dupli-
L obtained from the PEEC model [7] is extremely large and cation technique to the original inductance matridirectly.
dense. Direct simulation of the full matrix is very time-  Thys, matrix inversions are avoided. Most important, the ac-
consuming and memory-consuming. To make the simulationcyracy is improved.
more efhme_nt, sparsification @&fandL~! matrices has been We use the following notation in the paper:
consideredin [6, 4, 3,5, 1, 2].

One sparsification approach is to discard the mutual cou-
pling terms that are below some threshold. However, the re-
sulting inductance matrix may not be positive definite; that
leads to an unstable circuit. The shift-truncate method pro-
posed in [6, 4] can guarantee that the generated sparse induc-
tance matrix is positive definite. However, the accuracy is ® £~ Truncated~2.
not satisfactory [3, 5].

[3] demonstrates the locality &f 1. Hence, the.~! ma- e t: the inverse of truncated 1.
trix can be easily sparsified by dropping small entries while
stability is guaranteed. Thus, modeling the inductance with t method: The method that uses t instead_dh the
the truncated.—! matrix (denoted by £%) instead of the simulation.

L matrix can reduce the number of coupling elements and
speed up the simulation. In [5], a new circuit elem&nt
which is defined as the inverse of inductance, is introduced

*This research is supported in part by SRC (99-TJ-689), NSF (CAREER ~ ® WD/L: The Wire_dUplicaﬁon model using the original
Award CCR-9984553), and a grant from Intel Corporation. inductance matrix..

1 Introduction

e L: The original partial inductance matrix.

e L1 Theinverse of..

WD/L: The wire duplication model using the £ matrix.
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2 Mathematical Background

In this section, we present the mathematical property that

the £ matrix contains redundant information. Consequently,
we may use only the central band of £ to reconstruct the
£ ~! matrix. That is the key to the proposeite duplication

method. The theorems and the proofs behind the mathemat-

ical property are given in [8].

Let A be aN x N band matrix with bandwidth equal to
2b+1, andB = A~1. We take rows —btoi+band columns
i—btoi+bof Bto form a sub-matrix. Then, the center
row and center column of the inverse of the sub-matrix are
identical to thd'™™ row andit" column of theA matrix:

Alii—b:i+b)=(B(i—b:i+bi—b:i+b)) 1(b+1,),

Ali—b:i+b,i)=(B(i—b:i+bi—b:i+b) 1(:b+1). (1)

Here, we use the following notatioi(i : j,m: n) refers to
the sub-matrix at the intersection of row® j and columns
mto n of A; A(:,m) refers to columm andA(i,:) refers to
rowi; A(:,m: n) refers to columns frormto nandA(i : j,:)
refers to rows from to j. The index of the matrix begins at
l.Ifi—b<lori+b> N, weuseloN instead.

We illustrate the mathematical property using a layout of
7 parallel and aligned wires. The wire length is 60 and
the cross section isBumx 1um. The separation between the
wires is Q5pm. Thel matrix and its inversel(! matrix) are
(ignoring the units):

L = 10%x
108 851 722 645 590 547 513
851 108 851 722 645 590 547
722 851 108 851 722 645 590
6.45 722 851 108 851 722 645 |,
590 645 722 851 108 851 722
547 590 645 722 851 108 851
513 547 590 645 722 851 108
Lt = 10¥x
254 -168 -013 -012 -008 -006 -0.11
168 365 -160 -005 -007 -0.04 —0.06
013 -160 365 -160 -005 -0.07 -0.08
-012 -005 -160 366 -160 -005 -0.12
-008 -007 -005 -160 365 -160 -0.13
006 -004 -007 -005 -160 365 -168
011 -006 -008 -012 -013 -168 254

If we drop the small off-diagonal terms In%, we obtain
a band matrix, £1, with bandwidth 3:

£t = 109«
254 —168
-168 365 -160
~160 365 -160
-160 366 -160
-160 365 —1.60
-160 365 -168
-168 254

If we invert the =1 matrix, we obtain the £ matrix:

107 x
6.73 420
420 632
249 375
148 223
090 135
057 086
038 057

£t =
249
375
592
352
2.13
135
090

1.48
223
352
581
352
2.23
148

090
135
213
352
592
375
2.49

Q57
086
135
223
375
632
420

038
057
090
1.48
249
420
673

Although t is a full, dense matrix, we know from the the-
orem that we can reconstruct the tmatrix from only the
bold entries in the £ matrix. Here, we illustrate how we can
reconstruct thesLand 39 rows (columns) of the £* matrix.

In the rest of the paper, we drop the orders of tand ¢ for
a more concise presentation.

To obtain the ¥ row and column of the £ matrix, we

use the (1:2,1:2) window of L.

6.73 420
I=£(1:21:2) = { 420 632

| |

whose first row and column correspond to the first row and
column of the £ matrix.

Similarly, for the 3% row and column of the £* matrix,
we use the (2:4,2:4) window of L.

Invertingl, we obtain

2.54
—-1.68

—1.68
2.70

It =

6.32 375 223
375 592 352 |,
223 352 581

=£(2:4,2:4) =

{ 253 —1.60 —o.oo]
[71=1 -160 365 —1.60 !.
[—o.oo —1.60 2.69J

Thus, the central band (with bandwidth+4l) of the £
matrix contains all the information in the £ matrix.

3 Wire Duplication Model

In the previous section, we have demonstrated that the in-
formation of £1 is contained in the central band of £.. The
next step is to build an equivalent circuit out of the entries in
this band and ignore the remaining entries.

The following equation describes the magnetic couplings
between the wires in the layout example in the previous sec-
tion with the £~ matrix:

2.54
—1.68

—1.68
365
—1.60

M1
M2
M3
M4
M5
Ve
M7

—1.60
365
—1.60

—1.60
366
—1.60

—1.60
365
—1.60

(2)

Sle

—1.60
365
—1.68

—1.68
254



whereVix andlg refer to the voltage drop due to the induc-
tance and the current in the wikeespectively.

We can rewrite the preceding equation in terms of the £
matrix:

Vi1 6.73 420 249 148 090 057 038 I
Vi2 420 632 375 223 135 086 057 12
Vis 249 375 592 352 213 135 090 d I3
Vig | =| 148 223 352 581 352 223 148 | — | Is
Vis 090 135 213 352 592 375 249 |t Is
Vie 057 086 135 223 375 632 420 lg
Viz 038 057 090 148 249 420 673 I7

Now, we shall show how an equivalent circuit can be con-
structed out of the windows of the £ matrix. For example,
if we take the window corresponding to the (2:4,2:4) sub-
matrix of the £ matrix, and apply them to wires 2, 3 and 4,

we have:
; a [t
= m |3 )
4

Vi2
M3
Vig

375 592 352
223 352 581

632 375 223
®

or
gtk 253 —160 -000 ][ V2

G| |=| 160 365 —160 || Vig |. )
toy 000 -160 269 Via

Among the three circuit equations fdg, I3, andl, in
Eqgn. (4), only the following equation

dis

at —1.60Vi2+ 3.65Vj3— 1.60V|4

(®)

matches that in Eqn. (2). Hence, we can model wire 3 cor-

rectly, provided thaV,, andVj4 are correct. However, the
equations forl; andl4 in Egn. (4) do not match those in

Eqgn. (2), i.e., wires 2 and 4 are not correctly modeled. Thus,

their voltagesvj» andV,4 are incorrect. To provide a rem-

Figure 1. Modeling of wire 3.

wire 3 and wire 5 are included. Real wires 2 and 4 in these
two groups provide the correct voltagés andVj4 for the
VCVSs in Figure 1.

In general, only one wire is correctly modeled in one
group; so we neelll groups forN wires in the simulation.
There are one real wire andb 2ummy wires in each group
if the bandwidth of £1 is 20+ 1 (the groups at the two ends
are special cases).

In each group, every pair of wires (including both real and
dummy ones) are inductively coupled, and there is no induc-
tive coupling among groups. Létbe the partial inductance
matrix for the wire duplication model, thdnis block diag-
onal and each block corresponds to one grolipt is also
block diagonal. If we remove the rows for dummy wires and
utilize the fact that dummy wires have the same voltages as
the corresponding real wires, we get back thé imatrix,
which is positive-definite [5, 1, 2]. Thus, the circuit obtained

edy to this problem, we can model these two wires correctly by wire duplication is stable.

somewhere else and use the corkégtindV, 4 values for the
modeling of wire 3 here.

Figure 1 shows the modeling of signal 3. In this figure,
the symbol< stands for voltage controlled voltage source
(VCVS) element. The two VCVSs provide the correct volt-
ages forL, andL4. The inputs of the VCVSs come from
the correct modelings df, andL4. Sincel, andL4 here are

We use HSPICE to verify the correctness of tlvige du-
plication model. We refer to the wire duplication model us-
ing the £ matrix as the WD/t model. Two sets of simulation
are carried out: one set uses the full £ matrix (the £ method),
the other uses the WD/t model. They prodweactlythe
same results (See Section 6 for details). It indicates that sim-
ulation with the WD/L model is also numerically equivalent

controlled by their corresponding correct modelings, they areto the . method. This is expected, as they are physically

just dummy copies. We call such copiésmmy wiresand
draw them in dashed lines. In contrast, if a wire is correctly
modeled, we call it aal wireand draw it in solid lines. Here

wire 3 is areal wire and wires 2 and 4 are dummy wires. The

real wire and the dummy wires formggoup. The total num-
ber of wires in a group is called thgroup sizeor window
size Figure 1 shows such a group, which models wire 3
correctly. Similarly, we can construct a group that includes
dummy copies of wire 1 and wire 3 to model wire 2 correctly.
In the group that models wire 4 correctly, dummy copies of

and mathematically equivalent. Since the £ method knd
method [3] are equivalent, simulation with the WD/t model
is also equivalent to thk method [3].

4 Optimizing the Group Size

In the wire duplication model described in the previous
section, there arel®2t+ 1 wires in each group (less thai 2
at the two ends). There are altogether atfduf2b+ 1) -b
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Figure 2. Modeling of wires 1 and 2.

Figure 3. Simulation times for different window
sizes.

inductive couplings, whereas the full inductance matrix con-

tainsN - (N —1)/2 couplings. Ifb < N, the wire duplication

technique will produce an equivalent circuit of a smaller size. couplingsin each group increases quadratically with the win-
There are two methods to reduce the circuit size even fUr-dOW Size_ We discuss the trade_off in the remainder Of th|S

ther. The first method merges the groups at the ends. Thesection.

following window captures the modeling of wire 2: For simplicity, we assume that all the groups are of the

same sizeB. The number of wires commonly found in two

adjacent groups should bb.2_etn be the number of groups

6.73 420 249
I=t(1:31:9) = [ gig ggé g;g ] ’ needed. Then,
254 168 0.00 n-B-2b(n-1)=N= n= E:—i’ (6)
™= [ _égg _fgg _;gg ] ' The number og_(té)f%l wires used B-n; the number of

total couplings is—=—"n. The purpose of this study is to
We can see that wire 1 is also correctly modeled. It meansbuild an equivalent circuit with a smaller size. It includes

that wire 1 and 2 can share one group, as shown in Figure 2both wires and the coupling elements. As a rough estimate,

Similarly, wiresN — 1 andN can share one group. we useB?-n/2 as the circuit size and try to minimize it. We
Such an improvement is marginal; the second method,.5, easily conclude th@ _ B%(N-2b) is minimized when

which uses larger windows, can achieve more reduction. For 2(B-20)

example, if we use a window of size 4, for the (1:4,1:4) win- B =4b, (7

dow, the corresponding matrices are:

and the minimal value d82-n/2 is
6.73 420 249 148

2 —
|_b(1:41:4— | 420 632 375 223 (B”-n/2)min = 4b(N — 2b). (8)
, 249 375 592 352 |” For the circuit example in Section 6, we set the bandwidth
148 223 352 381 of L~1 to be 5, i.e.b = 2, and perform wire duplication sim-

ulations for different window sizes (from 5 through 12). The
igg _;gg 228 _888 run times are shown in Figure 3. We can see that the cir-
=1 = _0‘00 160 _3;65 _1.60 ) cuit obtained with a window size of 8, which i®4has the
A s B 2.69 smallest run time. That coincides with our estimation.
000 -000 -160 ' Although the circuit sizes at different window sizes are
In this case, wires 1, 2, and 3 are correctly modeled in this different, all the resulting circuits are physically and mathe-
group with a dummy copy of wire 4. matically equivalent. The simulation results for all of them
With larger windows, fewer groups are needed to model areexactlythe same.
all the wires. However, this reduction is achieved at the ex- WhenB = 4b, there are abou#b — 1) (N — 2b) inductive
pense of more couplings within each group; the number of couplings and @N — 2b) wires (N — 4b of them are dummy
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(b=2) and 8 & 4b), respectively. We can see that the eigen-
Wit duplcaton vang L values of the equivalent inductance matrix for WDnatch
those of the full matrix better; the eigenvalues of the equiv-
alent inductance matrix for WD/t diverges earlier. Simula-
tion results also validate this conclusion (see Section 6 for
details).

In the wire duplication method, using thematrix is more
accurate than using the £ matrix only when the window size
B is larger than its minimum valueb2-1. If B=2b+ 1,
usingL does not capture more couplings. Indeed, it may not
capture the correct*! values due to the small window size.
As pointed out in Section 4, using minimum window size

1e-09

eigenvalues (H)

le-10

ety 20 0 % %0 100 120 140 160 (B =2b+ 1) for simulation is not efficient. As itis preferred

eigenvalue #

to a large window size for simulation, we should always use

Figure 4. Eigenvalues for full matrix, wire du- the original inductance matrixinstead of t..

plication using £ matrix, and wire duplication )
using L matrix. 6 Experiment Results

We demonstrate the wire duplication technique on a bus
with 128 signals. Shields are inserted after every four signals.

wires). Note that th& method has abolt-N couplingsand 1€ wire length is inm, the cross-section isx.1pym, and the
requires no dummy wires. Therefore, the wire duplication S€Paration between wires igrh. The wires are divided into
technique uses about four times couplings required in the K> Se€gments along the length. The driver resistance ¢ 30
method and an additional — 2b dummy wires. This is the ~and the load capacitance is#0

price that we pay for RLC simulation instead of RKC simu- Different simulation techniques are studied: the full ma-
lation. trix method, the £ method, WD/, WD/L, simple trunca-

tion, shift-truncate [6, 4], and the double-inverse inductance
) L. . . model [1, 2]. Because Ksim [5] is not available to us, we
5 Wire Duplication Using L Matrix cannot perfornK method directly. Instead, we use the t
method, which is mathematically equivalent to khenethod.

In the previous sections, we use the £ matrix, which is (Note that £ method is different from the double-inverse in-
obtained by two matrix inversions, in the wire duplication ductance model). The bandwidth oftis 5 (b= 2), and the
model. It turns out that we can use the original inductance window size for wire duplication is 8 4b).
matrix L directly in the modeling to avoid matrix inversions. A 1V 20ps ramp inputis applied to the first signal, and the
An additional and more significant benefit is that the accu- rest are quiet. The waveforms for the second signal obtained
racy is also improved. We refer to the wire duplication model from different methods are shown in Figure 5. Results from
using thel. matrix as the WD/L model. the £ method and the wire duplication methods are shown

The use of the windowed £ matrix is based on a strict on the left; and results from the shift-truncate and double-
mathematical property. That mathematical property can alsoinverse methods are shown on the right. As a reference, the
explain the validity of using the windowddmatrix to a cer- result from full matrix modeling appears in both plots. The
tain extent, sincd.~! is almost a band matrix. We have simple truncation method is not stable and not shown.
shown that WD/t is stable. For WD/L, we can also prove  The first conclusion we can draw from Figure 5 is that
its stability in a similar way. WDI/L is equivalent to the £ method. These two methods

There is another benefit of using thematrix instead of =~ matchexactly The second conclusion is that WD/L is more
the £ matrix: It is more accurate. If we use thie window accurate than WD/L.
size (as suggested in Section 4), we can capture alboufi4 In the double-inverse method [1, 2], the same cutoff per-
inductive couplings between each wire and its neighbors. Incentage is used for tHe"! matrix and the £ matrix. Both
contrast, the WD/t model can only capturb. 2Although the double-inverse method with 2.2% cutoff and the shift-
some of the extra coupling captured by WD/L may not be truncate method have similar number of mutual inductances
very accurate, it is better than ignoring them. Figure 4 plots as the wire duplication methods, while the double-inverse
the eigenvalues for the full matrix and the equivalent induc- method with 1% cutoff has about twice as many mutual in-
tance matrices for WD/t, and WD/L. The bandwidth oft. ductances. We can see that they perform worse than WD/L.
and window size used in the wire duplication methods are 5 Table 1 lists the memory and time usage for different
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Figure 5. Simulation results for signal 2.

Table 1. Run time and memory usage.

Method Memory(MB) | Run Time(s)
full L matrix 812.3 474%x10°
t method 230.2 2.30x 10*
double-inverse (1% cutoff) 97.1 897
double-inverse (2.2% cutoff) 44.3 357
shift-truncate 38.5 283
wire duplication 15.3 58

methods. Both WD/t and WD/L methods use the same
amount of time and memory. We can see that although there
are additional dummy wires in wire duplication method, it

uses much less memory and runs much faster.

cation model instead of the £ matrix is even more accurate.
Moreover, it avoids matrix inversions.
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