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Abstract

In this paper, we present a novel wire duplication-based
interconnect modeling technique. The proposed modeling
technique exploits the sparsity of the L�1 matrix, where L
is the inductance matrix, and constructs a sparse and stable
equivalent RLC circuit by windowing the original inductance
matrix. The model avoids matrix inversions. Most impor-
tant, it is more accurate and more efficient than many exist-
ing techniques.

1 Introduction

With the continual increasing of clock frequency and
global interconnect length and decreasing of signal transi-
tion time, accurate modeling of inductance effects becomes
increasingly more important. The partial inductance matrix
L obtained from the PEEC model [7] is extremely large and
dense. Direct simulation of the fullL matrix is very time-
consuming and memory-consuming. To make the simulation
more efficient, sparsification ofL andL�1 matrices has been
considered in [6, 4, 3, 5, 1, 2].

One sparsification approach is to discard the mutual cou-
pling terms that are below some threshold. However, the re-
sulting inductance matrix may not be positive definite; that
leads to an unstable circuit. The shift-truncate method pro-
posed in [6, 4] can guarantee that the generated sparse induc-
tance matrix is positive definite. However, the accuracy is
not satisfactory [3, 5].

[3] demonstrates the locality ofL�1. Hence, theL�1 ma-
trix can be easily sparsified by dropping small entries while
stability is guaranteed. Thus, modeling the inductance with
the truncatedL�1 matrix (denoted by Ł�1) instead of the
L matrix can reduce the number of coupling elements and
speed up the simulation. In [5], a new circuit elementK,
which is defined as the inverse of inductance, is introduced
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and is incorporated in a simulation tool (known as theK
method). To avoid theK element in simulation, The trun-
catedL�1 matrix can be inverted to obtain a new inductance
matrix (denoted by Ł). As Ł is also a dense matrix, direct
simulation of Ł (referred to as the Ł method) is not efficient.
[1] performs sparsification on the Ł matrix (known as the
double-inverse inductance model). Essentially, the double-
inverse inductance model requires two approximation (spar-
sification) steps. [2] calculates the sparse inductance ma-
trix directly by using exponential potentials and matrix in-
versions are avoided.

In this paper, we present a novel interconnect modeling
technique based onwire duplication. This technique is mo-
tivated by the mathematical property that only a subset of
the entries of the the Ł matrix is required to reconstruct the
Ł�1 matrix. Consequently, we can construct an circuit that
is equivalent to the Ł�1 matrix out of the subset of Ł by
wire duplication. It is stable, sparse and as accurate as the
K method [3, 5]. Furthermore, we can apply the wire dupli-
cation technique to the original inductance matrixL directly.
Thus, matrix inversions are avoided. Most important, the ac-
curacy is improved.

We use the following notation in the paper:

� L: The original partial inductance matrix.

� L�1: The inverse ofL.

� Ł�1: TruncatedL�1.

� Ł: the inverse of truncatedL�1.

� Ł method: The method that uses Ł instead ofL in the
simulation.

� WD/Ł: The wire duplication model using the Ł matrix.

� WD/L: The wire duplication model using the original
inductance matrixL.
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2 Mathematical Background

In this section, we present the mathematical property that
the Ł matrix contains redundant information. Consequently,
we may use only the central band of Ł to reconstruct the
Ł�1 matrix. That is the key to the proposedwire duplication
method. The theorems and the proofs behind the mathemat-
ical property are given in [8].

Let A be aN�N band matrix with bandwidth equal to
2b+1, andB=A�1. We take rowsi�b to i+b and columns
i � b to i + b of B to form a sub-matrix. Then, the center
row and center column of the inverse of the sub-matrix are
identical to theith row andith column of theA matrix:

A(i; i�b : i+b) = (B(i�b : i+b; i�b : i+b))�1(b+1; :);

A(i�b : i+b; i) = (B(i�b : i+b; i�b : i+b))�1(:;b+1): (1)

Here, we use the following notation:A(i : j;m : n) refers to
the sub-matrix at the intersection of rowsi to j and columns
m to n of A; A(:;m) refers to columnm andA(i; :) refers to
row i; A(:;m : n) refers to columns fromm to n andA(i : j; :)
refers to rows fromi to j. The index of the matrix begins at
1. If i�b< 1 or i+b> N, we use 1 orN instead.

We illustrate the mathematical property using a layout of
7 parallel and aligned wires. The wire length is 100µm, and
the cross section is 0:5µm�1µm. The separation between the
wires is 0:5µm. TheL matrix and its inverse (L�1 matrix) are
(ignoring the units):

L = 10�11
�2

66666664

10:8 8:51 7:22 6:45 5:90 5:47 5:13
8:51 10:8 8:51 7:22 6:45 5:90 5:47
7:22 8:51 10:8 8:51 7:22 6:45 5:90
6:45 7:22 8:51 10:8 8:51 7:22 6:45
5:90 6:45 7:22 8:51 10:8 8:51 7:22
5:47 5:90 6:45 7:22 8:51 10:8 8:51
5:13 5:47 5:90 6:45 7:22 8:51 10:8

3
77777775

;

L�1
= 1010

�2
66666664

2:54 �1:68 �0:13 �0:12 �0:08 �0:06 �0:11
�1:68 3:65 �1:60 �0:05 �0:07 �0:04 �0:06
�0:13 �1:60 3:65 �1:60 �0:05 �0:07 �0:08
�0:12 �0:05 �1:60 3:66 �1:60 �0:05 �0:12
�0:08 �0:07 �0:05 �1:60 3:65 �1:60 �0:13
�0:06 �0:04 �0:07 �0:05 �1:60 3:65 �1:68
�0:11 �0:06 �0:08 �0:12 �0:13 �1:68 2:54

3
77777775

:

If we drop the small off-diagonal terms inL�1, we obtain
a band matrix, Ł�1, with bandwidth 3:

Ł�1
= 1010

�2
66666664

2:54 �1:68
�1:68 3:65 �1:60

�1:60 3:65 �1:60
�1:60 3:66 �1:60

�1:60 3:65 �1:60
�1:60 3:65 �1:68

�1:68 2:54

3
77777775

:

If we invert the Ł�1 matrix, we obtain the Ł matrix:

Ł = 10�11
�2

66666664

6:73 4:20 2:49 1:48 0:90 0:57 0:38
4:20 6:32 3:75 2:23 1:35 0:86 0:57
2:49 3:75 5:92 3:52 2:13 1:35 0:90
1:48 2:23 3:52 5:81 3:52 2:23 1:48
0:90 1:35 2:13 3:52 5:92 3:75 2:49
0:57 0:86 1:35 2:23 3:75 6:32 4:20
0:38 0:57 0:90 1:48 2:49 4:20 6:73

3
77777775

:

Although Ł is a full, dense matrix, we know from the the-
orem that we can reconstruct the Ł�1 matrix from only the
bold entries in the Ł matrix. Here, we illustrate how we can
reconstruct the 1st and 3rd rows (columns) of the Ł�1 matrix.
In the rest of the paper, we drop the orders of Ł�1 and Ł for
a more concise presentation.

To obtain the 1st row and column of the Ł�1 matrix, we
use the (1:2,1:2) window of Ł:

l = Ł(1 : 2;1 : 2) =

�
6:73 4:20
4:20 6:32

�
:

Invertingl , we obtain

l�1 =

�
2:54 �1:68

�1:68 2:70

�
;

whose first row and column correspond to the first row and
column of the Ł�1 matrix.

Similarly, for the 3rd row and column of the Ł�1 matrix,
we use the (2:4,2:4) window of Ł:

l = Ł(2 : 4;2 : 4) =

2
4 6:32 3:75 2:23

3:75 5:92 3:52
2:23 3:52 5:81

3
5 ;

l�1 =

2
4 2:53 �1:60 �0:00
�1:60 3:65 �1:60
�0:00 �1:60 2:69

3
5 :

Thus, the central band (with bandwidth 4b+1) of the Ł
matrix contains all the information in the Ł�1 matrix.

3 Wire Duplication Model

In the previous section, we have demonstrated that the in-
formation of Ł�1 is contained in the central band of Ł. The
next step is to build an equivalent circuit out of the entries in
this band and ignore the remaining entries.

The following equation describes the magnetic couplings
between the wires in the layout example in the previous sec-
tion with the Ł�1 matrix:

d
dt

2
66666664

I1
I2
I3
I4
I5
I6
I7

3
77777775
=

2
66666664

2:54 �1:68
�1:68 3:65 �1:60

�1:60 3:65 �1:60
�1:60 3:66 �1:60

�1:60 3:65 �1:60
�1:60 3:65 �1:68

�1:68 2:54

3
77777775

2
66666664

Vl1
Vl2
Vl3
Vl4
Vl5
Vl6
Vl7

3
77777775

: (2)



whereVlk andIk refer to the voltage drop due to the induc-
tance and the current in the wirek respectively.

We can rewrite the preceding equation in terms of the Ł
matrix:

2
66666664

Vl1
Vl2

Vl3
Vl4

Vl5
Vl6

Vl7

3
77777775
=

2
66666664

6:73 4:20 2:49 1:48 0:90 0:57 0:38
4:20 6:32 3:75 2:23 1:35 0:86 0:57
2:49 3:75 5:92 3:52 2:13 1:35 0:90
1:48 2:23 3:52 5:81 3:52 2:23 1:48
0:90 1:35 2:13 3:52 5:92 3:75 2:49
0:57 0:86 1:35 2:23 3:75 6:32 4:20
0:38 0:57 0:90 1:48 2:49 4:20 6:73

3
77777775

d
dt

2
66666664

I1
I2
I3
I4
I5
I6
I7

3
77777775

:

Now, we shall show how an equivalent circuit can be con-
structed out of the windows of the Ł matrix. For example,
if we take the window corresponding to the (2:4,2:4) sub-
matrix of the Ł matrix, and apply them to wires 2, 3 and 4,
we have:

2
4

Vl2
Vl3
Vl4

3
5
=

2
4

6:32 3:75 2:23
3:75 5:92 3:52
2:23 3:52 5:81

3
5 d

dt

2
4

I2
I3
I4

3
5

; (3)

or

d
dt

2
4

I2
I3
I4

3
5
=

2
4

2:53 �1:60 �0:00
�1:60 3:65 �1:60
�0:00 �1:60 2:69

3
5
2
4

Vl2
Vl3
Vl4

3
5

: (4)

Among the three circuit equations forI2, I3, and I4 in
Eqn. (4), only the following equation

dI3
dt

=�1:60Vl2+3:65Vl3�1:60Vl4 (5)

matches that in Eqn. (2). Hence, we can model wire 3 cor-
rectly, provided thatVl2 andVl4 are correct. However, the
equations forI2 and I4 in Eqn. (4) do not match those in
Eqn. (2), i.e., wires 2 and 4 are not correctly modeled. Thus,
their voltagesVl2 andVl4 are incorrect. To provide a rem-
edy to this problem, we can model these two wires correctly
somewhere else and use the correctVl2 andVl4 values for the
modeling of wire 3 here.

Figure 1 shows the modeling of signal 3. In this figure,
the symbol3 stands for voltage controlled voltage source
(VCVS) element. The two VCVSs provide the correct volt-
ages forL2 and L4. The inputs of the VCVSs come from
the correct modelings ofL2 andL4. SinceL2 andL4 here are
controlled by their corresponding correct modelings, they are
just dummy copies. We call such copiesdummy wiresand
draw them in dashed lines. In contrast, if a wire is correctly
modeled, we call it areal wireand draw it in solid lines. Here
wire 3 is a real wire and wires 2 and 4 are dummy wires. The
real wire and the dummy wires form agroup. The total num-
ber of wires in a group is called thegroup sizeor window
size. Figure 1 shows such a group, which models wire 3
correctly. Similarly, we can construct a group that includes
dummy copies of wire 1 and wire 3 to model wire 2 correctly.
In the group that models wire 4 correctly, dummy copies of

+

-

+

-

vl3 vl4vl2

L3 +

-

R3

L2 L4

Figure 1. Modeling of wire 3.

wire 3 and wire 5 are included. Real wires 2 and 4 in these
two groups provide the correct voltagesVl2 andVl4 for the
VCVSs in Figure 1.

In general, only one wire is correctly modeled in one
group; so we needN groups forN wires in the simulation.
There are one real wire and 2b dummy wires in each group
if the bandwidth of Ł�1 is 2b+1 (the groups at the two ends
are special cases).

In each group, every pair of wires (including both real and
dummy ones) are inductively coupled, and there is no induc-
tive coupling among groups. LetL̃ be the partial inductance
matrix for the wire duplication model, theñL is block diag-
onal and each block corresponds to one group.L̃�1 is also
block diagonal. If we remove the rows for dummy wires and
utilize the fact that dummy wires have the same voltages as
the corresponding real wires, we get back the Ł�1 matrix,
which is positive-definite [5, 1, 2]. Thus, the circuit obtained
by wire duplication is stable.

We use HSPICE to verify the correctness of thiswire du-
plication model. We refer to the wire duplication model us-
ing the Ł matrix as the WD/Ł model. Two sets of simulation
are carried out: one set uses the full Ł matrix (the Ł method),
the other uses the WD/Ł model. They produceexactlythe
same results (See Section 6 for details). It indicates that sim-
ulation with the WD/Ł model is also numerically equivalent
to the Ł method. This is expected, as they are physically
and mathematically equivalent. Since the Ł method andK
method [3] are equivalent, simulation with the WD/Ł model
is also equivalent to theK method [3].

4 Optimizing the Group Size

In the wire duplication model described in the previous
section, there are 2b+ 1 wires in each group (less than 2b
at the two ends). There are altogether aboutN � (2b+ 1) � b
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Figure 2. Modeling of wires 1 and 2.

inductive couplings, whereas the full inductance matrix con-
tainsN � (N�1)=2 couplings. Ifb� N, the wire duplication
technique will produce an equivalent circuit of a smaller size.

There are two methods to reduce the circuit size even fur-
ther. The first method merges the groups at the ends. The
following window captures the modeling of wire 2:

l = Ł(1 : 3;1 : 3) =

2
4 6:73 4:20 2:49

4:20 6:32 3:75
2:49 3:75 5:92

3
5 ;

l�1 =

2
4 2:54 �1:68 0:00
�1:68 3:65 �1:60

0:00 �1:60 2:70

3
5 :

We can see that wire 1 is also correctly modeled. It means
that wire 1 and 2 can share one group, as shown in Figure 2.
Similarly, wiresN�1 andN can share one group.

Such an improvement is marginal; the second method,
which uses larger windows, can achieve more reduction. For
example, if we use a window of size 4, for the (1:4,1:4) win-
dow, the corresponding matrices are:

l = Ł(1 : 4;1 : 4) =

2
664

6:73 4:20 2:49 1:48
4:20 6:32 3:75 2:23
2:49 3:75 5:92 3:52
1:48 2:23 3:52 5:81

3
775 ;

l�1 =

2
664

2:54 �1:68 0:00 �0:00
�1:68 3:65 �1:60 �0:00

0:00 �1:60 3:65 �1:60
�0:00 �0:00 �1:60 2:69

3
775 :

In this case, wires 1, 2, and 3 are correctly modeled in this
group with a dummy copy of wire 4.

With larger windows, fewer groups are needed to model
all the wires. However, this reduction is achieved at the ex-
pense of more couplings within each group; the number of
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Figure 3. Simulation times for different window
sizes.

couplings in each group increases quadratically with the win-
dow size. We discuss the trade-off in the remainder of this
section.

For simplicity, we assume that all the groups are of the
same size,B. The number of wires commonly found in two
adjacent groups should be 2b. Let n be the number of groups
needed. Then,

n �B�2b(n�1)= N) n=
N�2b
B�2b

(6)

The number of total wires used isB � n; the number of
total couplings isB�(B�1)

2 n. The purpose of this study is to
build an equivalent circuit with a smaller size. It includes
both wires and the coupling elements. As a rough estimate,
we useB2

�n=2 as the circuit size and try to minimize it. We

can easily conclude thatB2
�n

2 = B2(N�2b)
2(B�2b) is minimized when

B= 4b; (7)

and the minimal value ofB2
�n=2 is

(B2
�n=2)min= 4b(N�2b): (8)

For the circuit example in Section 6, we set the bandwidth
of L�1 to be 5, i.e.,b= 2, and perform wire duplication sim-
ulations for different window sizes (from 5 through 12). The
run times are shown in Figure 3. We can see that the cir-
cuit obtained with a window size of 8, which is 4b, has the
smallest run time. That coincides with our estimation.

Although the circuit sizes at different window sizes are
different, all the resulting circuits are physically and mathe-
matically equivalent. The simulation results for all of them
areexactlythe same.

WhenB= 4b, there are about(4b�1)(N�2b) inductive
couplings and 2(N�2b) wires (N�4b of them are dummy
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wires). Note that theK method has aboutb�N couplings and
requires no dummy wires. Therefore, the wire duplication
technique uses about four times couplings required in the K
method and an additionalN�2b dummy wires. This is the
price that we pay for RLC simulation instead of RKC simu-
lation.

5 Wire Duplication Using L Matrix

In the previous sections, we use the Ł matrix, which is
obtained by two matrix inversions, in the wire duplication
model. It turns out that we can use the original inductance
matrixL directly in the modeling to avoid matrix inversions.
An additional and more significant benefit is that the accu-
racy is also improved. We refer to the wire duplication model
using theL matrix as the WD/L model.

The use of the windowed Ł matrix is based on a strict
mathematical property. That mathematical property can also
explain the validity of using the windowedL matrix to a cer-
tain extent, sinceL�1 is almost a band matrix. We have
shown that WD/Ł is stable. For WD/L, we can also prove
its stability in a similar way.

There is another benefit of using theL matrix instead of
the Ł matrix: It is more accurate. If we use the 4b window
size (as suggested in Section 4), we can capture about 4b�1
inductive couplings between each wire and its neighbors. In
contrast, the WD/Ł model can only capture 2b. Although
some of the extra coupling captured by WD/L may not be
very accurate, it is better than ignoring them. Figure 4 plots
the eigenvalues for the full matrix and the equivalent induc-
tance matrices for WD/Ł, and WD/L. The bandwidth of Ł�1

and window size used in the wire duplication methods are 5

(b= 2) and 8 (= 4b), respectively. We can see that the eigen-
values of the equivalent inductance matrix for WD/L match
those of the full matrix better; the eigenvalues of the equiv-
alent inductance matrix for WD/Ł diverges earlier. Simula-
tion results also validate this conclusion (see Section 6 for
details).

In the wire duplication method, using theL matrix is more
accurate than using the Ł matrix only when the window size
B is larger than its minimum value 2b+ 1. If B = 2b+ 1,
usingL does not capture more couplings. Indeed, it may not
capture the correct Ł�1 values due to the small window size.
As pointed out in Section 4, using minimum window size
(B= 2b+1) for simulation is not efficient. As it is preferred
to a large window size for simulation, we should always use
the original inductance matrixL instead of Ł.

6 Experiment Results

We demonstrate the wire duplication technique on a bus
with 128 signals. Shields are inserted after every four signals.
The wire length is 1mm, the cross-section is 1�1µm, and the
separation between wires is 1µm. The wires are divided into
5 segments along the length. The driver resistance is 30Ω
and the load capacitance is 40f F.

Different simulation techniques are studied: the full ma-
trix method, the Ł method, WD/Ł, WD/L, simple trunca-
tion, shift-truncate [6, 4], and the double-inverse inductance
model [1, 2]. Because Ksim [5] is not available to us, we
cannot performK method directly. Instead, we use the Ł
method, which is mathematically equivalent to theK method.
(Note that Ł method is different from the double-inverse in-
ductance model). The bandwidth of Ł�1 is 5 (b= 2), and the
window size for wire duplication is 8 (= 4b).

A 1V 20ps ramp input is applied to the first signal, and the
rest are quiet. The waveforms for the second signal obtained
from different methods are shown in Figure 5. Results from
the Ł method and the wire duplication methods are shown
on the left; and results from the shift-truncate and double-
inverse methods are shown on the right. As a reference, the
result from full matrix modeling appears in both plots. The
simple truncation method is not stable and not shown.

The first conclusion we can draw from Figure 5 is that
WD/Ł is equivalent to the Ł method. These two methods
matchexactly. The second conclusion is that WD/L is more
accurate than WD/Ł.

In the double-inverse method [1, 2], the same cutoff per-
centage is used for theL�1 matrix and the Ł matrix. Both
the double-inverse method with 2.2% cutoff and the shift-
truncate method have similar number of mutual inductances
as the wire duplication methods, while the double-inverse
method with 1% cutoff has about twice as many mutual in-
ductances. We can see that they perform worse than WD/L.

Table 1 lists the memory and time usage for different
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Figure 5. Simulation results for signal 2.

Table 1. Run time and memory usage.
Method Memory(MB) Run Time(s)

full L matrix 812.3 4:74�105

Ł method 230.2 2:30�104

double-inverse (1% cutoff) 97.1 897
double-inverse (2.2% cutoff) 44.3 357

shift-truncate 38.5 283
wire duplication 15.3 58

methods. Both WD/Ł and WD/L methods use the same
amount of time and memory. We can see that although there
are additional dummy wires in wire duplication method, it
uses much less memory and runs much faster. Although
the number of wires and couplings contribute directly to run
time of simulation, the convergence rate, which depends on
how well-conditioned the matrices are, is also very impor-
tant. We can see that the wire duplication methods are faster
and require less memory even than the shift-truncate method
and the double-inverse method (2.2% cutoff), despite the fact
that their circuit sizes are actually larger (due to the addi-
tional dummy wires). One possible explanation is that the
inductance matrices of the wire duplication model are well-
conditioned, resulting faster simulation times.

7 Conclusion

In this paper, we propose a new interconnect modeling
technique—wire duplication. With this technique, we can
generate stable, sparse and yet accurate inductance models
for on-chip interconnects. The wire duplication model using
the Ł matrix is physically and mathematically equivalent to
K method. However, it avoids using the new circuit element
K. Using the original inductance matrixL in the wire dupli-

cation model instead of the Ł matrix is even more accurate.
Moreover, it avoids matrix inversions.
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