
Compiler-Directed Scratch Pad Memory Hierarchy
Design and Management

�

M. Kandemir
Microsystems Design Lab

Pennsylvania State University
University Park, PA 16802, USA

kandemir@cse.psu.edu

A. Choudhary
ECE Department

Northwestern University
Evanston, IL 60208, USA

choudhar@ece.nwu.edu

ABSTRACT
One of the primary challenges in embedded system design is design-
ing the memory hierarchy and restructuring the application to take ad-
vantage of it. This task is particularly important for embedded image
and video processing applications that make heavy use of large multi-
dimensional arrays of signals and nested loops. In this paper, we show
that a simple reuse vector/matrix abstraction can provide compiler with
useful information in a concise form. Using this information, com-
piler can either adapt application to an existing memory hierarchy or
can come up with a memory hierarchy. Our initial results indicate that
the compiler is very successful in both optimizing code for a given
memory hierarchy and designing a hierarchy with reasonable perfor-
mance/size ratio.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures; D.3.4 [Programming Lan-
guages]: Processors—Compilers;Optimization

General Terms
Design, Experimentation, Performance

Keywords
Data Reuse, Scratch Pad Memory, Memory Hierarchy

1. INTRODUCTION
Embedded system design has undergone a major renaissance in the

last five years. An important characteristic of this change is that soft-
ware is playing an ever increasing role in system design. Consequently,
automatic compiler support for optimizing embedded software is of
critical importance. Classical compiler methods alone, however, may
not be sufficient for attaining the highest levels of performance from an
embedded platform. Instead, embedded system-specific issues should

�

This work is supported in part by NSF Career Award #0093082 and
by a grant from PDG.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA
Copyright 2002 ACM 0-58113-461-4/02/0006 ...$5.00.

also be accounted for. Software-managed memories (called scratch-
pad memories [9]) are an important part of design process, particularly
in image and video processing applications that make heavy use of
large multi-dimensional arrays of signals and nested loops. Compiler
can restructure a given code to adapt it to a given memory hierarchy;
but, it can also help designer to come up with a memory hierarchy for
a given application. This hierarchy can then be used as a starting point
for a more sophisticated memory hierarchy optimization.

While it might be possible (for some applications) to adopt a plain
(single level) scratch-pad memory architecture and obtain large sav-
ings in performance and energy [9, 7], many access patterns encoun-
tered in embedded image and video applications exhibit data reuse in
multiple loop levels, thereby necessitating a multi-level memory hier-
archy if we are to obtain the best results. Therefore, we believe that
as embedded codes get more and more complex, memory architectures
that contain multi-level scratch-pad memories will be more widely em-
ployed. This will also make it extremely important to provide compiler
support for optimizing applications in such hierarchies.

In this paper, we present a compiler-directed memory hierarchy de-
sign and code optimization strategy. More specifically, we make the
following major contributions:

� We show how an optimizing compiler can manage the flow of data
to/from a scratch-pad memory (SPM) hierarchy using a mathematical
abstraction based on reuse vectors and reuse matrices.

� We present an algorithm that, given an input code, tries to come
up with an SPM hierarchy. This hierarchy might be used as an input
for a more detailed systematic analysis and optimization framework.

� We present an algorithm that enforces a memory hierarchy for a
given code. For example, using this algorithm, it might be possible to
transform a given code in such a way that a majority of array references
in the code would work best with a specific depth of memory hierarchy.

� We report experimental data showing the effectiveness of our ap-
proach. Our results indicate that the compiler is very successful in both
optimizing code for a given hierarchy and designing a hierarchy with
reasonable performance/size ratio.

Our approach is different from many previous studies on software-
directed memory management. First, in contrast to studies in [9, 10,
7, 2] where the main focus is a single-level memory management, we
focus on a memory hierarchy. We focus on both designing a mem-
ory hierarchy and exploiting a given hierarchy for current data access
pattern. As compared to the design methodology in [3], our approach
is simpler as it uses a reuse vector/matrix abstraction (which can be
extracted by an optimizing compiler during data access pattern/data
dependence analysis). By using this abstraction, we can easily decide
the flow of data through memory hierarchy. In addition, this abstrac-
tion also allows us to come up with an initial hierarchy design very
quickly.

The rest of this paper is organized as follows. Section 2 presents
background material and gives details of our optimization strategy.
Section 3 discusses our implementation, introduces our experimental
framework, and presents performance and energy consumption data.
Section 4 summarizes our major results.

2. OUR APPROACH

2.1 Background
The iteration space

�
of a loop nest contains one point for each

iteration. An iteration vector can be used to label each such point in
�

.
We use

� �������	��

������
������
to represent the iteration vector for a loop nest

of depth � , where each
���

corresponds to a loop index (or its value at
a specific point in time), starting with

���
for the outermost loop index.

In fact, an iteration space
�

can be viewed as a polyhedron bounded
by the loop limits.

The subscript function for a reference to an array � is a mapping
from the iteration space

�
to the data space � . The data space can

also be viewed as a polyhedron bounded by array bounds. A subscript
function defined this way maps an iteration vector to an array element.
In this paper, we assume that subscript mappings are affine functions
of the enclosing loop indices and symbolic constants. Many array ref-
erences found in embedded image and video processing codes fall into
this category. Under this assumption, a reference to an array � can be
represented as ��� ���� � � where �!� is a linear transformation matrix
called the access (reference) matrix,

� � is the offset vector, and
� �

is
the iteration vector [12]. If the loop is � -deep and the array � is " -
dimensional, ��� is "$#%� and

� � has " elements. For example, the
reference &(')+*�' ,-* in Figure 1(a) can be written as:�/. ��0� � . �2143537637683:9�; �,)=< �>1?33:9 �

According to Li [8], if
��

and
�, are two iteration vectors that access

the same memory location,
�@ � �,BA �� is called a reuse vector (assum-

ing that
�, is lexicographically greater than

� �
). For a loop of depth � ,

the reuse vector is � dimensional. The loop corresponding to the first
non-zero element from top is the one that carries the corresponding
reuse. If there are more than one reuse vector in a given direction,
they are represented by the lexicographically smallest one. The reuse
vector gives us useful information about how array elements are used
by different loops in a given nest. In this paper, we mainly focus on
self reuses (that is, the reuses originating from individual references)
as in very rare circumstances group reuse (that is, the reuse between
different references to the same array) brings additional benefits that
cannot be exploited by self reuse [8]. There is a temporal reuse due to
reference � � � �C� � � if and only if there exist two different iterations

��
and

�, such that � � � ��� � � � � � �, � � � ; that is,
�,DA ���E:FHG @JI � �LK .

This last expression indicates that the temporal reuse vector
�@ � �,BA ��

belongs to the kernel set (null set) of � � [12].
As an example, let us focus on the matrix multiply nest shown in

Figure 1(a). The reuse vector due to �D' � *�')+* is
� 3
 6
 3 � . Informally,

what this means is that, for fixed values of loops
�

and) , the successive
iterations of the , loop access the same element from this array. That
is, the , loop carries (exhibits) temporal reuse for this reference.

The reuse vectors coming from individual references make up a
reuse matrix, M . In considering the matrix multiply code again, we
find that: M � ; 353N6376O3683P3 < �
The first, second, and third columns in this matrix correspond to the
reuse vectors for QR' � *�' ,-* , �D' � *�')+* and &(')+*�' ,-* , respectively. As will be
discussed shortly, each column indicates which array sections should
be brought into (and discarded from) the SPM at what time.

A linear one-to-one mapping between two iteration spaces can be
represented by a square, non-singular matrix S . Using such a transfor-
mation, each element

��
of the original iteration space

�
is mapped to��UTC� S �� on the transformed iteration space

� T
. Converting the original

loop nest to the transformed nest is a two-step process [12]. First, each

array reference � � ���� � � is transformed to � � SWV � �� T � � � . Second,
the loop bounds are transformed accordingly. Finding the new loop
bounds can necessitate the use of Fourier-Motzkin elimination, details
of which can be found in [12]. It can be shown that if S is a linear
transformation matrix,

�@ is a reuse vector, and M is a reuse matrix, S �@
and SXM are the transformed reuse vector and the transformed reuse
matrix, respectively [8].

In Sections 2.2 through 2.5, we assume the existence of an SPM hi-
erarchy and focus on how to manage data flow through this hierarchy.
In Section 2.6, we show how to design a memory hierarchy based on
data reuse. Till Section 2.4, we exclusively focus on a two-level mem-
ory hierarchy which contains a large (slow and energy-consuming)
memory and a small (fast and less energy-consuming) memory. The
problem is then to decide what data to bring to the fast memory at what
time and how to decide when data in the fast memory are not useful
anymore. We use the terms (software-controlled) memory hierarchy
and SPM hierarchy interchangeably.

2.2 Reuse Based Data Transfers
Recall that �D' � *�')+* in Figure 1(a) leads to a reuse vector of

� 3
 6
 3 � .
Suppose that we have a section of array � in Figure 1(a), �D' � *�' 6ZY\[*
(the

�
th row), residing in the fast memory. Since all loop iterations���	
 6
 6 �]

���	
 6
]^_�]
�������
`���	
 6
 [�]
`���	
�^a
 6 �]
`���	
�^a
]^_�]
�������
`���	
�^+
 [�]
�����������b���	
 [
 6 �]
`����
 [
�^_�]

������
`����
 [
 [�

access this same array section, this section can be kept in the fast mem-
ory (in the fast SPM) during the entire execution of these iterations;
and, following the execution of the iteration

���	
 [
 [� , it can be dis-
carded from the fast memory. It should also be noted that this section
can be brought into the fast memory just before the iteration

���	
 6
 6 �
starts execution (i.e., just before the , loop is entered). For clarity,
we represent these iterations collectively using

���	

�

�
�
, where � de-

notes all iterations in the corresponding loop level; we also represent
this array section using �D' � *�' � * , where � indicates all elements in the
corresponding dimension. To sum up, by just considering the value of
1 in this reuse vector (the second entry), we can decide the point in
the code at which an array section (in our case, this is the

�
th row of�) should be brought into the fast memory and the point at which it

should be removed from the fast memory. This brings us to the follow-
ing conclusion:

An array section should remain in the fast memory from
the start of the loop that carries reuse for the correspond-
ing array reference to the termination of the same loop.

Let us consider the following generic � -deep loop nest that accesses
an " -dimensional array:ced @ ��� � �4� ��fhg � ��i � ��j0g � � �k�B�ced @ ����lX�=��l�f g ��l i �hl�j g ��lm�n�B�ced @ ����op�=��o f�g ��o i ��o jeg ��oq�r�B�

... ced @ ��� � �=� � f g � �si � � j g � � �k�B��D' c � ��� �
���lt

����
	� � � *�' c la��� �
u�hl-
v����
�� � � * ����� ' c`w ��� �
	��l-
�������
�� � � *
In this nest, each

c]x �u� �/� 6 i , i " � is an affine function correspond-
ing to a subscript expression.

� � f
and

� � j
are the lower and upper

bounds for loop
� �

. Assume that
�@ �y� @ ��
 @ l
v������
 @ ��� is the corre-

sponding reuse vector. Assume further (for now) that there is only a
single non-zero element (say @ �) in

�@ ; all other elements are assumed
to be zero. In other words, the loop

� �
is the one that carries the reuse.

In this case, the compiler can make use of the fast memory as fol-
lows. Let us use

c f ��� �
u�hl-
v����
�� � V �
 �

�

����

�
�

to denote all indices enu-
merated in a dimension z by fixing the first){A 6 loops at specific val-
ues (

� �
	��l-
�����
�� � V �) and considering all values (within the loop bound
ranges) for all other loop index positions. Just before executing the
loop

� �
, the compiler brings the array section containing all elements

represented by �D' c � ��� �
	��l-
�����
�� � V �
 �

�

����

�
� *+' c lJ��� �
	��l-
�����
�� � V �
 �

�

����

�
� * ... ' c`w ��� �
	��l-
�����
�� � V �
 �

�

v����

�
� * into the fast memory, and keeps

them there while executing all iterations in
��� �
	��l-
�����
�� � V �
 �

�

����

�
�
.

When the last iteration in this set has been executed, the section can be
removed from the fast memory. If this is done, the said set of elements
would reside in the fast memory as long as they are reused, and as soon
as the last iteration that reuses the elements is completed, the set can
be removed from the fast memory. It should be emphasized that if any
element in this set is updated while it is in the fast memory, it should
be written back to slow memory.

If there are multiple references to the same array, the reuse vectors
are considered together and the corresponding data transfers are com-
bined as much as possible. Consider the nested loop in Figure 1(b).
We have two reuse vectors:

� 3
 6
 3 � (due to reference �D' � *�')a*) and� 3
 3
 6 � (due to reference �D' � *�' ,-*). We note that the data transfer in-
dicated by

� 3
 3
 6 � is subsumed by the transfer indicated by
� 3
 6
 3 � ;

that is, once the transfer of the
�
th row to the fast memory is complete

(just before entering the , loop), there is no need for performing an
extra transfer for the element �D' � *�' ,-* . Let us now focus on the code
given in Figure 1(c). In this case, the reuse vectors are

� 3
 6
 3 � and� 3
 6
 3 � . Consequently, both data transfers should be performed be-
fore the , loop is entered. However, one data transfer contains the

�
th

row of the array whereas the other contains the
�
th column. Except for

one element, these two transfers do not overlap; so, they should be per-
formed separately. Our current implementation uses the following rule
to decide whether the transformations required by different references

to the same array can be combined. Let � � � � �e� � � � and � l � � �0� � l �
be two references to array � . If � � � � � l � , there is a good chance
that there exists significant amount of data reuse between these two

references (even if
� � � �� � l �). Consequently, in this case, the data

transfers due to these references can be combined and performed to-
gether. On the other hand, if � � � �� � l � , these two references are
treated as if they belong to different arrays. If a nest contains ref-
erences to multiple arrays, each array is treated independently and a
separate data transfer is performed for each array.

2.3 Transformations
In some cases, it may not be clear which loop carries the reuse. To

make the loop carrying the reuse explicit, it may be necessary to apply
loop transformations. As an example, consider the loop nest shown
in Figure 1(d). When considered alone, none of the references in this
nest has temporal reuse. However, there is a group reuse in this nest
with a reuse vector of

�@ � � 6
 A 6 � . Consequently, it is not trivial to
find the point in the code to perform memory transfers so that we can
exploit the fast memory. However, if we transform this nest using the
loop transformation matrixS � 1 656683 9

we obtain the nest in Figure 1(e). We now see that the reuse vector for
this transformed nest is

�@ � � 3
 6 � . This means that only the innermost
loop carries reuse, and we can make use of the fast memory. To see
how the reuse is exploited in this case, let us list the array elements
accessed by a few initial iterations:��� T ���\
 , T �?^-��� �D' ^ *�' 6 * and �D' 6 *�' ^ *��� T ����
 , � T ^-��� �D' ^ *�' ^ * and �D' 6 *�' � *��� T ����
 , T ���_��� �D' � *�' 6 * and �D' ^ *�' ^ *��� T ���+
 , T �?^-��� �D' ^ *�' � * and �D' 6 *�' � *��� T ���+
 , T ���_��� �D' � *�' ^ * and �D' ^ *�' � *��� T ���+
 , T ���J��� �D' � *�' 6 * and �D' � *�' ^ *
We observe that (for a specific

� T
) the iterations in

��� T

�
�

cause the
reuse of elements �D' , T *�' � T A , T * , where "
	�� ��^+
h� T A [� 6 � i , T i" � � � [
�� T A 6 � A 6 . Therefore, just before entering the , T loop (in the
transformed nest), these elements can be brought into the fast memory.
As compared to the matrix multiply case, this example illustrates two

interesting points. First, in some cases, loop transformations might be
necessary for identifying where (in the code) to perform data transfers.
Second, the data transfers for different values of the outer loop are of
different sizes. So, if we are to design a memory hierarchy, in deter-
mining the size of the fast memory, we should consider the maximum
number of reused elements over all

� T
values.

Another question in this example is how to determine the transfor-
mation matrix to use. We can determine the transformation matrix
using the default and desired reuse vectors. For our current example,
the default reuse vector is

�@�
 � � 6
 A 6 � . Since we have only two
loops in the nest, if want to make sure that the reuse will be carried
by one of them, the desired reuse vector should

�@�� � � 3
 6 � . Then,
from

�@�� � S �@
 , we can determine the entries of S . Note that we
used loop transformations in this section to modify the group temporal
reuse vector so as to exploit a two-level memory hierarchy. As will be
discussed shortly, loop transformations can also be used for modifying
the temporal reuse vectors.

2.4 Multi-Level Hierarchy
When there are multiple non-zero elements in a given reuse vector,

we can use this fact for exploiting a multi-level memory hierarchy. In
the most general case, we can exploit a memory level for each non-zero
entry in the reuse vector. To illustrate this, let us consider the four-deep
nest in Figure 1(f). For �D' � *�')+* , the reuse vector is

� 3
 6
 3
 6 � which
indicates that there are reuses in , and z loops (although the reuse itself
is carried by the , loop). We can exploit these reuses as follows. Before
entering the , loop, the

�
row of this array can be transferred from the

slow memory (called Level 1) to the fast memory (called Level 2). In
addition to that, if we have an even faster memory (called Level 3),
the element �D' � *�')a* can be transferred to this memory (just before thez loop) and can be used from there throughout the execution of the z
loop. In other words, at a given time, one row of array � can be in
Level 2 SPM and one element from this row can be in Level 1 SPM
(the fastest level). This is depicted in Figure 2. A similar data transfer
scheme is valid for reference & ' ,-*�' zb* as well. Before entering the

�
loop, the entire array can be transferred to Level 2 (if we have that
much space in Level 2), and a row the array can be transferred to Level
1 before the) loop.

It is important to note that just the fact that there are two non-zero
entries in the temporal reuse vector does not mean that we can use the
nest in question only with a three-level memory hierarchy. In fact, we
can still use it with a two-level memory hierarchy and the fact that
there are two non-zero entries in the reuse vector gives the compiler
flexibility in scheduling data transfers. For example, focusing on ref-
erence �D' � *�')a* in Figure 1(f), we have two options assuming a two-
level memory: (i) we can perform data transfer before the , loop, or
(ii) we can perform data transfer before the z loop. Note that transfer
before the , loop requires a larger fast memory space, but it is also
expected to give better results. It is also important to emphasize that
loop transformations can make a nested loop written for a two-level of
memory hierarchy suitable for a three-level of memory hierarchy, and
vice versa. For example, the loop transformation matrix

S � ��
�
376 3 3683 3 3376 6 A 6353 3 6

���
�

can transform a reuse vector
� 3
 6
 3
 3 � to

� 6
 3
 6
 3 � . Note that while� 3
 6
 3
 3 � is suitable for a two-level of memory hierarchy,
� 6
 3
 6
 3 �

is suitable for a three-level of memory hierarchy.

2.5 Imperfectly Nested Loops
While all examples given so far have focused on perfect nests only,

our reuse vector/matrix based strategy can work with imperfectly-nested
loops as well. An imperfect nest is the one that contains assignment
statements between loops, whereas in a perfect nest all assignment
statements are nested within the innermost loop. In our framework,
imperfectly-nested loop nests in general present opportunities for min-

���������
	���
�������
��������
����������	���
�������
�� �����
���!�"��#$	���
%#&����
%#������
')(�+* (�,*+�-	�. (�/* (#�*1032 (#�* (�,*4

(a)

���������
	���
�������
��������
����������	���
�������
�� �����
���!�"��#$	���
%#&����
%#������
5 �6	�. (�+* (#�*"��. (�/* (�,*4

(b)

���������
	���
�������
��������
����������	���
�������
�� �����
���!�"��#$	���
%#&����
%#������
5 �6	�. (�+* (#�*"��. (#�* (�/*/

(c)

���������
	879
�������
��������
����������	���
������;:<��
=�>�����
#?�8	�. (�/* (�,*"�@. (�A:��%* (� ���B*4

(d)

���������4C
	8D?
���CE��7��;:<��
��4C������
����������CA	8FHG�I
�47"JK��C
:L�M���,��
���CE��FH��NO�4�HJK��CA:<�!�K
���C1�����
#?�8	�. (��C4* (��CA:���C/*?�@. (��C
:��%* (�4CA:���C����B*4

(e)

���������
	���
�������
��������
����������	���
�������
�� �����
���!�"��#$	���
%#&����
%#������
���!�"�/PQ	���
KPR���S
KP������
T �@	U�V. (�+* (#�*�0W. (�+* (#�*+�E:�2 (�,* (P�*4

(f)

���������
	���
�������
��������
����������	���
�������
�� �����
���!�"��#$	���
%#&����
%#������
5 �6	�. (�+* (#�*�0W2 (�,* (#�*4
����������	���
�������
�� �����
���!�"��#$	���
%#&����
%#������
T 	 5 �@. (#�* (�/*"��. (�/* (#9*/

(g)

�������+�!XO	���
��!XW����
��!XR	��!XA��YZ�
�������4�A	���
�������
��1�����
���!�"����	��!XK
=�[�<�!XA��Y�:���
K� �����
���!�"��#$	���
%#&����
%#������
')(�+* (�,*+�-	�. (�+* (#�*�0W2 (#9* (�,*4

(h)

Figure 1: Different code fragments.

i th row

U[i][k]

Level 1

Level 2

Level 3

(slowest)

(fastest)

Figure 2: Exploiting three-level memory.

compute reuse matrix \ 	 (?]��^�J]�,_�J!`�`�`�J]�!a%*
level=1;
for i = 1, b
k = number of non-zeros in

]�!c
;

if (k d level) then level = k; endif
endfor;
for l = 2, level
capacity[level] = 0;

endfor;
for i = 1, b
current level = 2;
let
]�,c

be
(��^=c%JK�,_�cBJ!`�`�`�J=�,e"cf*

;
for j = 1,

N
if (
�Bg=c$h	@i

) then
amount = j (reference(

]�!c
));

capacity[current level] = capacity[current level] + amount;
current level = current level + 1;

endif;
endfor;

endfor;
return(level,capacity[]);

Figure 3: Memory hierarchy design algorithm.

imizing data transfers by overlapping or combining them with each
other. Consider, for example, the code fragment shown in Figure 1(g).
Let us focus on a two-level memory hierarchy and on data transfers
due to array � . Since both the sub-nests in this code has the same
reference �D' � *�')+* , the data transfer due to this reference can be per-
formed just before the first , loop; there is no need to perform data
transfer (due to this reference) before the second , loop. The second
sub-nest has another reference to array � : �D')+*�' � * . The data transfer
due to this reference can be performed along with that due to �D' � *�')a*
before the first , loop. After the execution of the second , loop, the ele-
ments of array � which reside in the fast memory can be discarded (as
their reuse ends). Our current implementation handles perfectly-nested
and imperfectly-nested loops of any depth. But, it does not attempt
to optimize the hierarchical SPM usage across multiple, independent
imperfectly-nested loops. That is, it does not try to take advantage of
inter-nest data reuse. However, it should also be noted that handling
imperfectly-nested loops means that our approach can be extended op-
erate on an entire program as the entire code can be thought of as an
imperfectly nested loop enclosed by an imaginary outermost loop that
iterates only once.

2.6 Memory Design Algorithm
So far, we have assumed that a memory hierarchy already exists and

tried to determine how this hierarchy can be exploited by capturing
the reuse of data using reuse vectors/matrices. Our reuse vector/matrix
based analysis however can also be used for designing a suitable SPM
hierarchy for a given code. In this subsection, we address this prob-
lem. Note that after obtaining an initial memory hierarchy using the
technique presented in this subsection, more sophisticated techniques
[3] can be used, if desired, to refine the hierarchy.

2.6.1 Hierarchy Design for a Given Code
We first present a strategy to determine the cache configuration given

a loop nest. A sketch of our approach is given in Figure 3. Our ap-
proach tries to build a separate hierarchy for each nest and then com-
bines these hierarchies into a single hierarchy by choosing the largest
memory required for each level. The algorithm first builds the reuse
matrix and then it constructs the memory hierarchy incrementally. It
starts with the first reuse vector and determines how much SPM space
we need in each level. It then moves to the second reuse vector. Con-
sidering this vector, the algorithm can increase either the number of
levels or the space needed by existing level(s) or both. These incre-
mental updates stop once the last reuse vector has been processed.

As an example, consider once more the matrix multiply code in Fig-
ure 1(a) and its reuse matrix in Section 2.1. Considering the first reuse

vector,
� 3
 3
 6 � , we decide that the hierarchy should be at least two

levels and that the smaller (and faster) memory should be able to holdQ ' � *�' ,-* . Considering the second reuse vector,
� 3
 6
 3 � , we can see

that the number of levels does not need to be increased (as this reuse
vector has the same number of non-zero elements as the previous one).
However, it should be large enough to hold an entire row of � . Finally,
the last reuse vector

� 6
 3
 3 � implies that the fast memory should be
able to hold the entire array & . Based on these, our algorithm decides
that we need a two-level SPM hierarchy and that the faster level should
have a capacity of at least [l � [� 6 elements. By default, we assume
that the slower level has a capacity to hold the entire working set ([o
elements). In the algorithm in Figure 3, we first compute the number
of levels in the hierarchy and then find the capacity of each level. The
function ‘reference(.)’ gives the array reference corresponding to the
reuse vector under consideration, and the ‘

� �u� �
’ function computes the

SPM space demanded by that reference (see Section 2.2).
We next discuss how to modify this strategy if the underlying system

has some memory space constraints. For example, in case we may
not be able to store the entire & array (in our current example) in the
fast memory, we need to modify the code slightly. We note that strip-
mining, a loop transformation that divides the iteration space of a given
loop into stripes [12], can be useful in this context. In our example, we
can strip-mine the , loop as shown in Figure 1(h). In this code, � is
the stripe size. Now, the total space requirement for the fast memory
(considering only

�
, , , and) loops) is [� � [� 6 . By choosing a

suitable value for � , the space demand (put on the fast memory) can
be kept under control.

2.6.2 Enforcing a Hierarchy
The algorithm presented in the previous subsection does not try to

modify the code to enforce it to adopt a pre-specified memory hierar-
chy; that is, it does not modify the reuse matrix; it just builds a hierar-
chy considering the current reuse matrix. In many cases, however, we
might want to modify the reuse matrix to control the number of levels
in the hierarchy. A reuse matrix can be changed using two types of
transformations:

� The transformations that change the number of zeroes and non-
zeroes in the reuse vectors.

� The transformations that re-order zeroes and non-zeroes in the
reuse vectors (without changing their numbers).

Since in general the second type of transformation can be reduced
to the first type, we focus only on the first types of transformations
here. Our approach can take a reuse matrix and transform it to an-
other reuse matrix such that in the resulting matrix most reuse vectors
demand a � -level memory hierarchy, where � being a value between 2
and � (the number of loops in the nest). For the clarity of presenta-
tion, however, we present the algorithm for only the case when � � �
(see Figure 4); that is, for each reuse vector in M , we would like to
make all the entries in the vector zero, except two entries (these two
entries will represent the loops that exhibit reuse). Note that in gen-
eral the order in which the reuse vectors in a given reuse matrix are
processed might also be important. Our current approach orders reuse
vectors from left to right considering the number of times each reuse
vector occurs in the code. The most frequently used reuse vector oc-
cupies the leftmost column whereas the least frequently used one sits
in the rightmost column. Then, for the most frequent reuse vector, the
algorithm makes sure that only two non-zero elements are obtained
(after the transformation). It achieves this by selecting suitable vectors
for the first � A ^ rows of S . In doing so, data dependences are also
checked using the approach in [8] (this is not shown in the code for
clarity). It then processes the remaining reuse vectors and selects suit-
able vectors for the remaining two rows. As soon as all rows of S have
been determined, the algorithm returns the transformed reuse matrix
(SXM) and terminates.

3. EXPERIMENTS
We used array-based versions of four embedded image processing

applications to evaluate the effectiveness of our strategy. wood is a

compute reuse matrix \ 	 (?]��^9J]�,_"J,`�`�`�J]�!aB*
let � be the transformation matrix and

]X ^ J]X _ J,`�`�`�J]X e
be the rows of � ;

finished=false;
select

]X ^ J]X _ J,`�`�`�J]X e���� J]X e��A_
such that]XK^	��

�B���]��^��

,
]X�_���

�B���]��^��

...
]X�e�������

�B���]��^��

,
]X�e��A_���

�,���]��^��

;
j = 2;
while (not finished)
bool

^
= (
]XK^��

�B���]�Bg��

);
bool

_
= (
]X _ �

�B���]� g �

);
....
bool

e��A_
= (
]X����

�B���]�Bg��

);
k = number of trues in

�
bool

^
,bool

_
,...,bool

e��A_ �
;

if (k
�

(
N

-4)) then
set

]X�e��Z^
to vector in

�B���]�,g��
;

set
]X e

to vector in

�B���]� g �

;
finished = true;

else
if (k = (

N
-3)) then

if (
]X�e��Z^

is not set) then
set

]X e��Z^
to vector in

�B���]� g �
;

else
if (
]X�e

is not set) then
set

]X e
to vector in

�B���]� g �
;

finished = true;
endif;

endif;
endif;
j = j + 1;

endwhile;
return(TR);

Figure 4: Memory hierarchy transformation algorithm.

Figure 5: Percentage energy and performance improvements over
ver4. Top: two-level memory hierarchy; Bottom: three-level
memory hierarchy.

color-based visual surface inspection method for wood properties. It
builds the color histogram percentile features of the image to recog-
nize wood surface defects with relatively low complexity. wavelet
is a wavelet-based noise reduction and restoration application. mpc
is a medical pattern classification application. It is used mainly for
choosing therapy for peptic ulcers. Finally, usonic is a feature-
based estimation algorithm for ultrasonic image sequences. The total
input sizes used for wood, wavelet, mpc, and usonic are 271KB,
306KB, 586KB, and 410KB, respectively. For each benchmark code,
we experimented with four different versions. ver1 is a static SPM
optimization strategy. It profiles the code and selects a set of array el-
ements that has the highest reuse. It then puts these elements in the
fast memory (at the beginning of the program) and keeps them there
throughout the execution. ver2 is a nest-based dynamic SPM man-
agement strategy. It changes the contents of SPM depending on the
current access pattern; its details can be found elsewhere [7]. ver3
is the reuse vector/matrix based SPM management strategy discussed
in this paper. ver4 is a version that uses a cache memory (instead of
SPM) in conjunction with the locality-optimized version of each appli-
cation. All versions tested here have been implemented in a source-to-
source translator using the SUIF infrastructure [1]. Our compiler takes
a C code as input and optimizes it taking into account the memory hi-
erarchy. The compiler output (which is also a C code) is then fed into
a custom simulator. The simulator models a memory hierarchy (which
is constructed using SPMs) and assumes a simple, single-issue embed-
ded core (running on 200MHz). For cache experiments, the simulator
directly calls Dinero [4].

We performed two sets of evaluations. In the first set, we fixed the
SPM hierarchy and evaluated the performance and energy consump-
tion of each version. In the second set, for each version, we determined
the total fast level memory size and energy consumption under a given
performance bound. We calculated the access latencies for different
sizes of SPMs and data caches using the CACTI tool [6]. To compute
the per access energy costs for different sizes of memories, we em-
ployed a slightly modified form of the model proposed by Shiue and
Chakrabarti [11]. While our simulator also gives the energy spent in
interconnect, we found this value very small for all benchmarks used.

Figure 5 gives the performance (execution cycles) and energy re-
sults for two-level (top) and three-level (bottom) memory hierarchies.
All values presented are normalized with respect to the correspond-
ing value of ver4 (the cache version). In the two-level memory, the
simulated faster memory (SPM) size is 4KB; the cache used in the
ver4 version is also 4KB (two-way associative with a block size of
32 bytes). In the three-level memory hierarchy, the fastest SPM size is
2KB and the middle level memory is 6KB. In all cases, the first level
memory (the slowest memory) is 1MB. These results show that our
strategy outperforms both ver1 and ver2 in both energy and per-
formance. We also note that the gains are larger with the three-level
memory (as our reuse vector based strategy utilizes all the fast levels
fully). The average performance improvements due to ver1, ver2,
and ver3 are 9.4%, 18.3%, and 26.5%, respectively, for the two-level
memory. The corresponding values for the three-level memory are
10.0%, 19.2%, and 32.3%. Figure 6 shows the percentage increase
in memory capacity and energy consumption (with respect to our ap-
proach) when all version generate the same performance results. Our
experimentation methodology is as follows. First, we ran the algo-
rithm in Figure 3 and determined a memory hierarchy for our version
(ver3). We then recorded the total memory size (excluding the slow-
est memory, the size of which is always fixed at 1MB) used by our ver-
sion and its execution time. Then, we ran other versions using several
different levels and capacities, and found (for each version) the con-
figuration that gave the same execution time as ver3 (within an error
margin of 2%). We observe from these results that in order to catch the
performance of ver3, the other versions demand much larger memory
space and (because of this) significantly larger energy consumption.
Even ver2 (which is the best among the remaining ones) increases
the memory capacity (omitting the slowest one) by 35.4% and energy
consumption by 16.5% on the average.

Figure 6: Percentage increase in memory size and energy over
ver3 under constant performance.

4. CONCLUSIONS
We presented and discussed a scratch-pad memory (SPM) hierarchy

design and optimization framework. In this framework, the compiler
has a central role in the sense that it manages the flow of data across
a given hierarchy (by staging computation and data). Given an access
pattern, the compiler can also come up with a memory hierarchy which
might be used as a starting point for further analysis and synthesis.
The effectiveness of this strategy was measured using four complete
applications from the embedded image processing domain. Our results
reveal that this optimization framework is very successful in reducing
both energy and execution cycles and that it outperforms two previous
approaches to SPM management.

5. REFERENCES
[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The

SUIF compiler for scalable parallel machines. In Proc. the Seventh SIAM
Conference on Parallel Processing for Scientific Computing, February,
1995.

[2] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy
efficiency of embedded systems by application-specific memory
hierarchy generation. IEEE Design & Test of Computers, pages 74–85,
April-June, 2000.

[3] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and A.
Vandecappelle. Custom memory management methodology –
exploration of memory organization for embedded multimedia system
design. Kluwer Academic Publishers, June, 1998.

[4] Dinero IV Trace-Driven Uniprocessor Cache Simulator. URL:
http://www.cs.wisc.edu/ � markhill/DineroIV/

[5] J. Eyre and J. Bier. DSP processors hit the mainstream. IEEE Computer
Magazine, pp. 51–59, August 1998.

[6] N. P. Jouppi and S. J. E. Wilton. An enhanced access and cycle time
model for on-chip caches. Research Report 93/5, Compaq WRL, Palo
Alto, CA, July 1994.

[7] M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan, I. Kadayif,
and A. Parikh. Dynamic management of scratch-pad memory space. In
Proc. the 38th Design Automation Conference, Las Vegas, NV, June
2001.

[8] W. Li. Compiling for NUMA Parallel Machines. Ph.D. Thesis,
Computer Science Department, Cornell University, Ithaca, NY, 1993.

[9] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of
scratch-pad-memory in embedded processor applications. In Proc.
European Design and Test Conference, Paris, March 1997.

[10] P. R. Panda, N. D. Dutt, and A. Nicolau. Architectural exploration and
optimization of local memory in embedded systems. In Proc. ISSS’97,
Antwerp, September 1997.

[11] W-T. Shiue and C. Chakrabarti. Memory exploration for low power,
embedded systems. In Proc. Design Automation Conference, New
Orleans, Louisiana, 1999.

[12] M. Wolfe. High Performance Compilers for Parallel Computing,
Addison-Wesley Publishing Company, 1996.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

