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ABSTRACT
We present a frequency domain current macro-modeling tech-
nique for capturing the dependence of the block current
waveform on its input vectors. The macro-model is based on
estimating the Discrete Cosine Transform (DCT) of the cur-
rent waveform as a function of input vector pair and then
taking the inverse transform to estimate the time domain
current waveform. The input vector pairs are partitioned
according to Hamming distance and a current macro-model
is built for each Hamming distance using regression. Re-
gression is done on a set of current waveforms generated for
each circuit, using HSPICE. The average relative error in
peak current estimation using the current macro-model is
less than 20%.

Categories and Subject Descriptors
B.7 [Hardware]: Integrated Circuits—CAD ; B.7.2 [Integrated
Circuits]: Design Aids—Modeling

General Terms
Algorithms

Keywords
Power grid, Current macro-model, DCT

1. INTRODUCTION
Integrated circuits are drawing increasingly large currents

from the power grid. Such large currents in the power grid
aggravate physical reliability of IC’s due to electromigration.
They also cause significant voltage drop leading to circuit
slow-down or soft errors. As a result, power grid analysis
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and design is now an important concern during chip de-
sign, not only for power dissipation and reliability reasons,
but for performance reasons as well. Therefore, it is impor-
tant to do early design planning of the power grid, in order
to reduce the chance of having to redesign large parts of
it [4]. To enable this, in an environment where previously
designed blocks are being reused (hard IP blocks) we pro-
pose a bottom-up current waveform macro-model for logic
blocks. We work at a level of abstraction that may be called
structural RTL: the circuit is described as an interconnec-
tion of flip-flops and Boolean (combinational) logic blocks.
In this context, we develop a cycle-based model for the cur-
rent waveform of each combinational block that captures
the dependence of the current waveform per-cycle as a func-
tion of the vector pair applied at the block inputs. Previous
work has targeted either the average power [11, 9, 13, 6, 2]
or energy-per-cycle [12, 7].

Current waveform macro-modeling is difficult because of
the large variations that are possible in current waveform
shapes, and due to the very large number of possible vec-
tor pairs. To overcome this problem, we have developed
a macro-modeling technique that is based on Discrete Co-
sine Transform (DCT). In this approach, we estimate the
DCT of the current waveform, instead of the the time do-
main current waveform and then use the inverse DCT to
get the time-domain current waveform. Unlike time-domain
current waveforms, the DCT of current waveform is more
regular. Specifically, large variations in waveform shapes in
the time domain translate to variations only in the param-
eters of the DCT but not its overall shape. Therefore, in
our modeling approach, we use a template function for the
DCT of the per-cycle current waveform. The template pa-
rameters (discussed in section 4) depend on the input vector
pair. We have found that one can use low-order polynomial
models to capture this dependence. We use regression to
generate these polynomials, based on a number of randomly
generated vector pairs for which the circuit is simulated in
HSPICE.

The form of this template function is not exactly derived,
but inferred by examining the forms of the frequency trans-
forms of two types of current waveform shapes that one com-
monly sees in practice. In the next section, we will describe
the frequency transforms that will be used as the basis for
inferring a DCT model template.

2. DISCRETE COSINE TRANSFORM
The current waveform obtained from circuit simulation

(HSPICE) is a discrete-time signal, which can be considered



as being obtained from the periodic sampling of a continuous-
time current waveform, i.e, i[n] = ic(nT ), 0 ≤ n ≤ N − 1,
where N is the length of the current sequence, ic(·) is the
continuous-time current waveform and T is the sampling pe-
riod, whose reciprocal is the sampling frequency [10]. In case
of circuit simulation, T is equal to the (fixed) time step spec-
ified in the transient analysis (we have used a time step of
0.01 ns). The 1-dimensional Discrete Cosine Transform [8]
(DCT) of a sequence {i [n] , 0 ≤ n ≤ N − 1} is defined as:

I [k] = α (k)
N−1�
n=0

i [n] cos

�
π (2n + 1) k

2N

�
, 0 ≤ k ≤ N−1 (1)

where α(0) =
�

1/N , α(k) =
�

2/N , for 1 ≤ k ≤ N − 1,
and the inverse transform is given by:

i[n] =

N−1�
k=0

α (k) I [k] cos

�
π (2n + 1) k

2N

�
, 0 ≤ n ≤ N−1 (2)

In order to gain some insight into the form that the DCT
current macro-model should take, we will look at the ana-
lytical forms of the Fourier transform (FT) corresponding to
simplified representations of typical current waveforms. For
example, we will consider a piecewise-linear triangular cur-
rent waveform and construct its FT as an analytical closed-
form expression. The form of this FT will suggest what
forms we should use in our DCT model template. The rea-
son this makes sense is that there is a relationship between
the two transforms, as follows: the DCT is closely related
to the DFT (Discrete Fourier Transform), which is a sam-
pled form of the DTFT (Discrete Time Fourier Transform),
which is itself related to the FT. We will now explain these
relationships.

The N-sample DCT is related to a 2N-sample DFT [8], as
follows. The DCT of an input sequence of N-samples can be
obtained by extending the input to a 2N-sequence sample
with even symmetry, taking a 2N-point DFT, and saving N
terms of it. The even extension of i[n] is defined as:

i′[n] =

�
i[n] n = 0, 1, . . . , N − 1
i[2N − 1 − n] n = N, N + 1, . . . , 2N − 1

(3)

and the 2N-point DFT of i′[n], is given by:

I ′[k] =
1√
2N

2N−1�
n=0

i′[n]e−j(2kπ/2N)

=

�
2

N
e(jkπ/2N)

N−1�
n=0

i[n] cos

�
(2n + 1)kπ

2N

�
(4)

which shows that the 2N-point DFT and the DCT are closely
related. The relationship between the DFT and the DTFT
[10], is as follows. The DFT of a sequence, {i′n}2N−1

n=0 , is
a set of evenly spaced samples of the DTFT over the fre-
quency range 0 to 2π, multiplied by a constant factor to
make the DFT an orthonormal transform. Thus, I ′[k] =

1√
2N

Id (ω) |ω= 2πk
2N

where k = 0, 1, . . . , 2N − 1 and Id(ω)

is the DTFT of the sequence {i′n}, defined by: Id(ω) =�2N−1
n=0 i′[n]e−jωn, where ω is the frequency in radians. Fi-

nally, if we consider that the sequence {i′n} is obtained
by sampling from an even-extended continuous time cur-
rent waveform, then the relationship between Id(ω) and the
Fourier transform (FT) of the continuous waveform, denoted
by Ic(Ω), is given by [10]: Id(ω) = 1

T

�∞
n=−∞ Ic

�
ω+2πn

T

�
where Ω has been replaced by

�
ω+2πn

T

�
. When n = 0,

which corresponds to a DTFT between −π ≤ ω ≤ π, we
get Ω = ω

T
[10] . Thus, in summary, the DCT of a discrete

time sequence is related to the Fourier transform of an even-
extended version of the continuous-time function from which
the given discrete-time samples were taken. In the next two
sections, we discuss different possible approximations to the
actual current waveform, present their corresponding contin-
uous transforms, analyze them and then develop the DCT
current macro-model templates based on them.

3. ANALYSIS OF CURRENT WAVEFORMS
A CMOS combinational logic circuit draws current over

one cycle in response to a vector pair at its inputs, and these
waveform shapes typically fall into three categories:

Approximately Triangular: In this case, the time do-
main current waveform has a triangular geometry, and the
DCT of the current waveform is similar to the DCT of a
regular triangular wave.

Approximately Trapezoidal: In this case, the time
domain current waveform has a trapezoidal geometry, and
the DCT of the current waveform is similar to the DCT of
a regular trapezoid.

Multiple peaks: In this case the time domain current
waveform has multiple peaks which are separated in time.
Currently we use partitioning in time to convert such a wave-
form to a sequence of waveforms that are of one of the above
forms.

In the following, we will explore the FT of the triangular
and the trapezoidal current waveforms, which will be used
to infer reasonable forms for our DCT model template.

0 2000 4000 6000 8000 10000
Sample index

−0.005

0.000

0.005

0.010

0.015

C
ur

re
nt

 (
in

 A
)

Actual Current Waveform
Approximated Traingular Wave

a  b d  c

Figure 1(a). Typ. triangular Figure 1(b). Explanation
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3.1 Triangular Current Waveform
A typical triangular current waveform and its triangular

waveform approximation are shown in Fig. 1(a). Before tak-
ing the DCT, we increase the waveform time duration and
assume zero values for the waveform over the time exten-
sion. This is referred to as “zero padding,” and its main
advantage is that it increases the resolution of the DCT
(the corresponding DTFT is sampled more closely), which
gives a smoother DCT curve. Zero padding in the time do-
main is equivalent to using a higher sampling frequency in
the frequency domain of the DTFT to get the correspond-
ing DFT/DCT [10]. Thus, even though the original current
waveform ends at 2000 samples (which corresponds to 20 ns
for our sampling period of 0.01 ns), we have shown 10,000
sample points.

We construct an even extension of this triangular wave-
form and derive the corresponding continuous Fourier trans-
form. The triangular waveform shown in Fig. 1(a) can be



analytically expressed as:

ftri(t) =

	

�


�

0, for 0 ≤ t ≤ d
A(t − d)/a, for d ≤ t ≤ a + d (5)
A(a + b + d − t)/b, for a + d ≤ t ≤ a + b + d
0 for a + b + d ≤ t ≤ Q

where a, b, c, d are the dimensions shown in Fig. 1(b), and
Q = a+b+c+d. The Fourier transform of the even extension
of ftri(t), denoted by Ftri(Ω) is given by:

Ftri(Ω) = Ae−jΩ(Q)

�
2 cos Ω(b + c) − 2 cos Ω(a + b + c)

aΩ2

�

+ Ae−jΩ(Q)

�
2 cos Ω(b + c) − 2 cos Ω(c)

bΩ2

�
(6)

where Ω is the frequency in the analog (continuous) domain
and is related to ω, the digital frequency by ω = ΩT . In our
case, we have T = .01 ns and N = 10, 000 before the even
extension. After extension, we have 2N samples therefore
ω = 2πk/2N = πk/10, 000 and Ω = πk/100 rad/ns. It is
important to note that for Ω = πk/100, Ftri(Ω) is real for
all integral values of k because Q = a + b + c + d = 100 ns.

In Fig. 2(a), we show the first 100 samples (for clarity) of
the 10,00 point DCT of a current waveform, DCT of its tri-
angular waveform approximation and the plot of the contin-
uous transform. Fig. 2(a) is typical of all triangular current
waveform shapes that we have seen. The DCT plot of the
current waveform appears to be a decaying sinusoid. There-
fore, instead of constructing a model for each point on the
DCT (every frequency component), we use a generic func-
tion (a template) to model the entire DCT. In order to infer
the form of this template, we compare the plot of continuous
transform with the DCT plot. Except for a scale factor, it is
obvious that Ftri(Ω) has the right shape and thus may help
us define the form of the current macro-model.
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The most important aspect to observe is that the ampli-
tude of Ftri(Ω) decays as the square of the frequency, a fact
which we will make use of in developing our DCT model
template. Since the DCT looks like a decaying sinusoid, we
can use a simple sinusoid which decays as a square of the
frequency. But unlike a decaying sinusoid which has a con-
stant time period, the plots in Fig. 2(a) show that in case of a
current waveform and its approximations (both discrete and
continuous transform plots) the time period is varying (we
can use the difference between consecutive/alternate zero
crossings to measure the time period). We use this fact
in our model as well. It actually helps simplify our current
macro-model, in the sense that we do not use multiple cosine
terms as in Ftri(Ω), instead we use a simplified expression
with a variable time period, as discussed in section 4.

3.2 Trapezoidal Current Waveform
In some cases, the current waveform has trapezoidal shape,

as shown in Fig. 3(a), which also shows a piecewise linear
trapezoidal approximation to the current waveform. The
equation of the trapezoidal wave is given by:

ftra(t) =

	


�



�

0, for 0 ≤ t ≤ a
A(t − a)/b, for a ≤ t ≤ a + b
A, for a + b ≤ t ≤ a + b + c (7)
A(U − t)/d, for a + b + c ≤ t ≤ U
0 for U ≤ t ≤ W

where the dimensions are illustrated in Fig. 3(b), U = a +
b + c + d and W = a + b + c + d + e. The Fourier transform
of the even extension of ftra(t), denoted by Ftra(Ω) is given
by:

Ftra(Ω) = Ae−jΩ(W )

�
2 cos Ω(c + d + e) − 2 cos Ω(W − a)

bΩ2

�

+ Ae−jΩ(W )

�
2 cos Ω(e + d) − 2 cos Ω(e)

dΩ2

�
(8)

As before, it turns out that Ftra is real for the values of
Ω under consideration. In Fig 2(b), we show the DCT of
the current waveform, the DCT of the trapezoidal wave-
form approximation, and the plot of the continuous trans-
form. Again, we can observe that, except for a scale factor,
the continuous transform plot compares well with the actual
current waveform DCT. Thus, we can use the continuous
transform to infer the shape of the DCT model template.
The most obvious inference we can draw from the contin-
uous transform, is, as before, the quadratic decay in the
amplitude of the DCT, in terms of frequency.

If we compare the plots in Fig. 2(a) and Fig. 2(b), we
can see that the DCT plot of a trapezoid shows some de-
viation from the perfectly decaying sinusoid of triangular
waves. The same observation holds true for the respective
continuous transform as well, therefore we cannot use a de-
caying sinusoid with a varying time period to simplify our
model as in the case of triangular waveforms (see section 4).
Instead, we will use a slightly different analytical expres-
sion for the trapezoidal current waveform, which is based
on Ftra(Ω) to some extent, but also based on observations
related to the plots. Specifically, for trapezoidal waveforms,
we will use two cosine terms (the continuous transform has 4
cosine terms), and again use a varying time period. We use
the difference between successive maxima (or minima) as as
a measure of the time period. The DCT plots show that this
difference varies for successive maxima (or minima). Details
are given in section 4.

3.3 Waveform Partitioning
For multiple peak current waveforms we use a simple par-

titioning algorithm in the time domain, in which we detect
the index of the first peak, and then traverse to a point where
the current value is less 10% of the maximum value. We re-
peat this process and partition the time domain waveform
into sub-intervals so that each sub-interval contains a sin-
gle peak, and then use the same macro-modeling technique
discussed in section 4. This technique is used only in cases
where we have peaks which are very far apart. Partitioning
also keeps the number of current macro-model templates to
only two. Since in the current macro-model characteriza-
tion phase we need to automatically detect which template
to use depending on the error criterion (the error criterion



Table 1: Dummy Coding for transitions at a single
node.

y x1 x2 x3 y
0 → 1 0 0 1 1
1 → 0 0 1 0 2
1 → 1 1 0 0 3
0 → 0 0 0 0 4

would detect which of the two templates is a better fit), it
is good to minimize the number of possible templates.
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4. MACRO-MODEL CONSTRUCTION
In order to formulate a macro-model, one needs to develop

a mapping between the input Boolean vector pair and cer-
tain variables that can be the input variables to the macro-
model. These variables are used as predictor variables in
regression. For a given input vector, a single node at the
primary input can undergo one of the following four transi-
tions {0 → 1, 1 → 0, 1 → 1, 0 → 0}. We treat the set of four
possible transitions at each primary input as a categorical
variable [5]. In general, a categorical variable with k levels
(in our case 4) is transformed into k − 1 variables (in our
case 3) each with 2 levels. This process of creating variables
from categorical variables is called dummy coding. In our
case, we use three variables x1, x2 and x3 to code the cate-
gorical variables. The dummy coding for the 4 levels of our
categorical variable is shown in the second, third and fourth
columns of Table 1 (and also shown in [12]). These three
columns are labeled as x1, x2, x3 in Table 1. Basically, each
input transition is mapped to a vector of [x1 x2 x3], but this
has a clear disadvantage in that it increases the number of
variables as well as the number of regression coefficients.
But we have found that, depending on the Hamming dis-
tance of the vector pair, we can introduce a less expensive
solution, as follows. For large Hamming distances (more
than 60% of the inputs are switching), very few inputs un-
dergo 0 → 0 and 1 → 1 transition, therefore we can assume
that the categorical variable has just two levels, so that a
single two-valued variable is required to represent a primary
input. The mapping for large Hamming distance is shown
in the fifth column of Table 1, labeled y.

4.1 Triangular Template
The triangular template is a simplified as well as a mod-

ified version of ftri(Ω). The simplification is achieved be-
cause we explicitly incorporate the effect of the changing
time period (which happens because of multiple cosine terms
in ftri(Ω)). We estimate the first few time periods (in our
case, five) directly and use them in a single cosine term,

whose other parameters do not change. We can do this
only because of the energy compaction achieved with or-
thogonal transforms like DCT. The template equation for
the DCT of the triangular current waveform is given by:

Itri(k) = D(k)A cos


2π(k−1)
Ti

�
, k = 1, 2, . . ., where k is the

sample index, D(k) is a decay factor, A is a scale factor,
which we refer to as amplitude, and Ti, i ∈ {1, 2, 3, 4, 5}
is the variable time period. The DCT value corresponding
to Itri(k)|k=0 is called the DC Value. These terms are the
parameters of the template, which we relate to the variables
associated with the input vector pair. The triangular tem-
plate is similar to what was presented in [1] (the trapezoidal
template is new), where it was shown that the time period Ti

does not vary significantly for a given Hamming distance of
the input vector pair, prompting a partitioning of the model
according to Hamming distance. Thus, Ti is estimated as
in [1]. As for D(k), we use the following template for it,
which is motivated by the inverse square dependence on fre-

quency seen above: D(k) = f(x)k

g(x)k2+h(x)
where x is either

y (a vector of length one) or the vector [x1 x2 x3] (refer to
Table 1). This expression is similar to that defined in [1], ex-
cept that we have modified f(x), g(x) and h(x), to account
for possible interaction between the input variables, through
cross-product terms, so that f(x), g(x) and h(x) are now of
the form (where H stands for Hamming distance):

Πp
i=1(αiyi + βi), for large H. (9)

Πp
i=1(αi1x1,i + αi2x2,i + αi3x3,i + βi), for small H. (10)

where p is the number of primary inputs. The coefficients α
and β are estimated using regression as in [1]. The Ampli-
tude A, and the DC Value Itri(0) are also modeled along the
lines of f(x), g(x) and h(x). Their coefficients are also esti-
mated using regression. The triangular template can provide
a good model in cases of both large and small Hamming
distances, but in some cases for small Hamming distance,
the trapezoidal template is better. However, estimating the
coefficients of the parameters of the triangular template is
simpler.

4.2 Trapezoidal Template
A trapezoidal template equation model seems to best fit

the current waveforms for low Hamming distances for some
circuits, when the fraction of primary inputs switching is
less than 60% or so. Our trapezoidal template is given by:

Itra(k) =
A

D′(k)

�
B(k) cos

�
2π(k − 1)

Ti

��

+
A

D′(k)
[C(k) cos(2π(k − 1)ω)] (11)

where k = 1, 2, . . . is the sample index, Ti, i ∈ {1, 2, 3, 4, 5},
is the variable time period, A is the amplitude and B(k) =
p(x)k, C(k) = q(x)k, D′(k) = r(x)k2 + s(x), ω = t(x),
A = w(x) where x is the vector [x1 x2 x3]. The func-
tions p(x), q(x), r(x), s(x), t(x) and w(x), all have the
same functional form (with different coefficients), given by:
Πp

i=1(αi1x1 + βi2x2 + γi3x3 + δi), where the coefficients are
estimated using non-linear regression. Since the number of
parameters in the template is large compared to Itri, we have
a large number of coefficients and estimating the coefficients
of the parameters of the trapezoid is computationally more
expensive than estimating the coefficients of a triangular



wave. The polynomial function used to model the DC value
Itra(k)|k=0 is similar to that used for A. The coefficients
of the function corresponding to Itra(k)|k=0 are estimated
separately, using simple linear regression. The form of the
above template is motivated by the functional form of the
the continuous Fourier transform expression Ftra(Ω) for a
trapezoid waveform, which was given above (8) and which
involves four cosine terms, and decays as the square of the
frequency. Since four cosine terms may be too many (com-
putationally expensive model), and a single cosine term can-
not capture the deviation from a simple decaying sinusoid,
we have used only two cosine terms in our template, decay-
ing with the square of frequency. In order to maintain a
good fit with just two cosine terms, we have found that us-
ing separate frequency terms in the numerator, as we have
done with B(k) and C(k), is advantageous.
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The philosophy behind using two cosine terms is that one
cosine term would produce a basic decaying sinusoid (as in
the triangular case) and the other would account for the
deviations from the decaying sinusoid that are seen at low
Hamming distance. Therefore, the variable time period Ti is
used with only one of the two cosine terms, the one which is
aimed at generating the decaying sinusoid. The frequency ω
of the other cosine term is estimated as a function of input
vector pair using regression. The variable time period terms
Ti are approximated as the difference between consecutive
maxima (or minima) of the DCT. As in the triangular case
and [1], the time period does not vary much for a given
Hamming distance, as shown in Fig. 4. Thus, we use the
same method as in [1] to get an estimate of the first five time
periods. Basically, from the distribution of time periods for
a given Hamming distance, we choose the time period value
which occurs most often (in statistical terms, we choose the
mode of the time period distribution as the time period for
a given Hamming distance). The first five time periods are
enough to get an estimate of the dominant terms of the
DCT.

5. EXPERIMENTAL RESULTS
A set of randomly generated vectors were used to simulate

various benchmark circuits in HSPICE, and the correspond-
ing current macro-models were built for these circuits. The
resulting macro-models were tested for accuracy on a differ-
ent set of randomly generated vector pairs for each of the
benchmark circuits listed in Table 2, which also shows the
number of inputs and gates for each circuit. In Table 2,
epavg (5th column) denotes the average relative error in
peak current estimation, and etavg (6th column) denotes the
average relative error in the estimation of the time in-
stant at which the peak current occurs. The 4th column
in Table 2, denoted by RMSavg lists the average Root
Mean Square Error [8] between the estimated and the
actual current waveforms. The average error in all the three
cases has been computed over the number of input vector
pairs over which the macro-models have been tested. The
last column in Table 2 shows the total number of simulations
(number of vector pairs) needed to build the macro-model
for all possible hamming distances, for each circuit. The
number of simulations can be reduced by combining models
for various hamming distances.
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Figure 10. For c432, Figure 11. For c880,
ham dist =32. ham dist = 55.
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Figure 12. For f51ml, Figure 13. For cu,
ham dist = 7. ham dist = 2.

In order to give some intuition as to the goodness of these
average error numbers, and some measure of spread, we com-
pared the RMS error for each vector pair with the actual
peak current as shown in Fig 5. The plot shows that the



RMS error is more or less bounded across the various cur-
rent peak values for the benchmark circuits, and increases
very slowly with current peak. Figure 6 shows the corre-
lation plot between actual and estimated peak current and
similarly in Fig. 7 we show the correlation plot between ac-
tual and estimated time instant at which peak occurs. Both
these correlation plots are mostly linear which implies that
both the peak current and the time instant at which the
peak occurs can be estimated fairly accurately using our
macro-model.

Finally, in Figs. 8–17, we present a comparison of the
actual and estimated current waveform for the benchmark
circuits listed in Table 2, for some example Hamming dis-
tances, where we superimposed the the estimated current
waveform on top of the actual current waveform. These
plots show good accuracy in most of the cases, especially
for large Hamming distances. This occurs because when a
small fraction of inputs are switching, the current waveform
significantly depends on what inputs are switching, which
leads to large variations in the current amplitude. How-
ever, the current magnitude itself is much lower in case of
low Hamming distance, so that the absolute error is actually
small. Having said this, we must point out that the model in
fact works very well, capturing the required current wave-
forms in a high-level black box macro-model. Finally, we
should mention that even though our macro-model has been
built using HSPICE, one can build current macro-models
for much larger circuits using more efficient simulators, like
PowerMill, or gate-level simulation techniques such as [3].
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Figure 14. For x2, Figure 15. For random8,
ham dist = 8. ham dist = 4.
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Figure 16. For parity, Figure 17. For mux,
ham dist = 14. ham dist = 19.

6. CONCLUSION
In order to enable early block-level analysis of the power

grid, when using hard IP blocks, we have proposed a cycle-
based current waveform modeling technique that involves
predicting the DCT of the current waveform from the input
vector pairs, and using the inverse DCT to get back the time-
domain waveform. The parameters of the DCT template
function are expressed in terms of input vector pairs, using

Table 2: Benchmark circuits used in Figs. 5–17.

Circuit #I #Cells RMSavg epavg% etavg% #sim.
c880 60 383 .0032 11.98 5.92 7000
alu2 10 368 .0023 17.70 7.51 700
c432 36 217 .0030 12.43 6.45 4500
cu 14 48 .00049 18.91 1.99 770

f51ml 8 105 0.0011 19.21 2.12 320
mux 21 91 .0004 17.86 3.00 2000

random8 8 158 0.0010 14.14 6.02 320
parity 16 68 .00077 15.37 3.98 640

x2 10 50 .00054 14.35 2.43 500

regression. While we continue to improve the estimation
and validate this technique on more circuits, the data so-far
show that this type of estimation is indeed possible, enabling
early block level current estimation for power grid design.
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