
Using Sparse Crossbars within LUT Clusters

Guy Lemieux
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada M5S 3G4

lemieux@eecg.toronto.edu

David Lewis
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada M5S 3G4

lewis@eecg.toronto.edu

ABSTRACT
In FPGAs, the internal connections in a cluster of lookup tables
(LUTs) are often fully-connected like a full crossbar. Such a high
degree of connectivity makes routing easier, but has significant area
overhead. This paper explores the use of sparse crossbars as a
switch matrix inside the clusters between the cluster inputs and the
LUT inputs. We have reduced the switch densities inside these
matrices by 50% or more and saved from 10 to 18% in area with
no degradation to critical-path delay. To compensate for the loss
of routability, increased compute time and spare cluster inputs are
required. Further investigation may yield modest area and delay
reductions.

1. INTRODUCTION
A recent trend in FPGA architectural design is to use a clustered

architecture, where a number of lookup tables (LUTs) are grouped
together to act as the configurable logic block. The motivation for
using clusters is manifold: to reduce area, to reduce critical path
delay, and to reduce CAD tool runtime [1, 2, 9, 10]. This trend is
followed by FPGAs from Xilinx’s Virtex and Spartan-II families,
as well as Altera’s APEX and ACEX products. All of these FPGAs
are based on clusters of 4-input lookup tables.

In a clustered architecture, the LUT inputs can be chosen from
two sources: 1) a set of shared cluster inputs, which are signals
arriving from other clusters via the general purpose routing, or 2)
from feedback connections, which are the outputs of LUTs in this
cluster. It has been common to assume that these internal clus-
ter connections are fully populated or fully connected, meaning ev-
ery LUT input can choose any signal from all of the cluster inputs
and feedback connections combined. This arrangement can also
be viewed as a full crossbar, where a switch or crosspoint exists at
the intersection point of every LUT input and every cluster input or
feedback connection.

In this paper, it is assumed that the connections within the cluster
are made by multiplexers driving the LUT inputs, called LUT input
multiplexers. These multiplexers tend to have a large number of in-
puts and, after including the requisite input buffers and controlling
SRAM bits, contribute significantly to FPGA area.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA 2001, February 11–13, 2001, Monterey, CA., USA.
Copyright 2001 ACM 1-58113-341-3/01/0002 ...$5.00

A clustered FPGA is composed of a number of cluster tiles
which are repeated in a simple array pattern during layout. Each
tile is complete in that it includes the cluster logic (the flip-flops,
LUTs, and LUT input multiplexers) as well as the general routing
to interconnect them. Based on an area model stated later in Sec-
tion 2, the LUT input multiplexers alone can consume 24 to 33%
of the transistor area in a cluster tile. A breakdown of the area
estimates for a number of such tiles is provided in Table 1.

The significant amount of area required by the LUT input multi-
plexers motivated the idea of removing switches from the full cross-
bar, or depopulating it, to result in a sparse crossbar. Naturally,
depopulating the cluster raises the following questions:

1. Will depopulation save area, require greater routing area, or
create unroutable architectures?

2. Will depopulation reduce or increase routing delays?

3. What amount of depopulation is reasonable?

4. How much area or delay reduction can be attained, if any?

5. What are the other effects of depopulating the cluster?

This paper addresses these questions using an experimental pro-
cess of mapping benchmark circuits to clustered FPGA architec-
tures and measuring the resulting area and delay characteristics.

1.1 Comparison to Prior Work
The use of fully-connected clusters likely stems from previous

work [12] which suggests that inputs of a 4-LUT be fully connected
to the routing channel. This provides enough routing flexibility to
obtain minimum channel widths in non-clustered architectures, the
area metric in use at that time. Since then, clustered architectures
have become prevalent, CAD tools have improved, and area metrics
have become more detailed.

Reducing the amount of connectivity within the cluster was re-
cently explored using a simple striped switch layout [11]. Rather
than modify the router, the T-VPACK packing algorithm was al-
tered in such a way that routability of the cluster was still guar-
anteed. Unfortunately, the area improvement obtained using this
technique was limited to 5% and delays increased up to 30%.

In this work, the packing algorithm was left unchanged. In-
stead, improved switch patterns were used, spare cluster inputs
were added to the cluster, and modifications to the router were
made to support these architectural changes. Although these spare
inputs contribute to additional area, they also improve routability
and reduce channel width requirements. Overall, a net area reduc-
tion of up to 16% with no degradation to critical-path delay was
obtained.

59



Architecture Fully Populated Cluster Tile Area
LUT Cluster (Number of Minimum-Width Transistor Areas)
size size LUT+FF Routing LUT Input Mux Total

4 6 990 (10.6%) 6050 (65.0%) 2267 (24.4%) 9307
5 6 1840 (16.4%) 6321 (56.2%) 3080 (27.4%) 11241
6 6 3496 (24.4%) 6713 (46.9%) 4109 (28.7%) 14318
7 6 6831 (34.8%) 7645 (39.0%) 5146 (26.2%) 19622
7 10 11358 (32.3%) 12022 (34.2%) 11765 (33.5%) 35145

Table 1: Breakdown of cluster tile area. The routing area is an arithmetic average required to route 20 MCNC circuits.

Fc

Fcout

Fcin

Fcfb

partitioned

single

BLE

BLE

BLE

BLE

Disjoint
S Block

Figure 1: Details of the cluster tile architecture.

1.2 Tradeoffs
Sparse clusters give the promise of reduced area, but one impor-

tant tradeoff that must be made to realize this savings is increased
routing time. In our experience, an approximate runtime increase
of three to four times was observed. This increase may not be toler-
able during early prototyping stages when design changes are fre-
quent, but a less costly device could offset this inconvenience when
an FPGA design shifts to volume production. Consequently, the
premise of this paper is to evaluate the limits of area reduction that
can be obtained using a high degree of CAD tool effort.

The remainder of this paper is organized as follows. In Section
2, the FPGA architecture is described along with the area and de-
lay models. Section 3 discusses the experimental methodology and
CAD tools used. Section 4 presents the results, and Section 5 con-
cludes.

2. FPGA ARCHITECTURE
This section describes assumptions made about the FPGA archi-

tecture and the area and delay models.

2.1 Architectural Model
The architecture used in this study is a symmetrical, island-style

FPGA containing interconnected clusters. The basic FPGA tile

k LUT size
N cluster size
I number of cluster inputs
Ispare number of additional cluster inputs,

used for routing only

Table 2: Cluster organization parameters.

Fcin cluster input to LUT input density
Fcf b LUT feedback to LUT input density
Fc routing channel to cluster input density
Fcout cluster output to the routing channel density

Table 3: Switch density parameters.

formed by a cluster and its routing channels is shown in Figure 1.
This tile is drawn in a way to suggest a step-and-repeat layout that
is possible, with wires on the left edge of one tile lining up with
wires on the right edge of the adjacent tile.

One cluster contains N basic logic elements (BLEs), where one
BLE contains a k-input LUT and a register. Each cluster has
I = bk(N+1)=2c primary inputs which are used during packing [2].
As well, a cluster has Ispare additional cluster inputs which are re-
served only for routing. These extra inputs are required to improve
routability due to the restrictions imposed by sparse clusters. All of
these cluster organization parameters are summarized in Table 2.

The cluster inputs are assumed to be logically equivalent, but
they may connect to only some of the LUT inputs. The cluster
input (and output) pins, which connect the cluster to the general
routing, are evenly distributed on the four sides of the tile. Later
in Section 4.3, we shall partition the cluster inputs into four groups
based on which side they are placed.

2.2 Routing Architecture Details
Detailed routing architectural parameters were set to be the same

as earlier studies [2, 4]. In the detailed routing architecture, 50% of
the tracks are length-4 segments using tri-state buffers, the remain-
ing tracks are length-4 segments using pass transistors, and clocks
were assumed to be routed on a global resource. The disjoint switch
(S) block was used, so signals entering the routing on track i must
remain on that track number until the destination is reached. The
number of i=o pads per cluster tile pitch was set to 5 for N = 6, and
to 7 for N = 10.

The routing switch sizes (i.e., buffer and pass transistor
sizes) and wiring RC properties were computed assuming double
minimum-spaced wiring and a fully-populated cluster tile size. For
the k= 4;N = 6 architecture, the buffer was 6:1 times the minimum

60



size and the pass transistor was 12:2 times the minimum. The other
architectures had larger tile sizes and used buffer sizes of 6:6, 7:6,
8:9, and 11:8. The pass transistor sizes were always chosen to be
twice the corresponding buffer size.

Within a BLE, the LUT inputs are assumed to be logically equiv-
alent and hence freely permutable. These inputs can select signals
from two independent sources: either cluster inputs or feedback
connections. The density of switches for these two regions, Fcin

and Fcf b , respectively, are independently controlled. These two pa-
rameters control the sparseness of switches inside the cluster.

For connections to outside the cluster, the inputs from and out-
puts to the general routing channels are selected using switch ma-
trices with densities of Fc and Fcout , respectively. The part of the
general routing channel that connects to the cluster is commonly
referred to as the connection block or C block.

The parameters controlling switch densities inside and outside of
the cluster are summarized in Table 3.

Each BLE output directly drives a cluster output and a local feed-
back connection. The BLE outputs are assumed to be logically
equivalent, allowing any function to be placed in any of the BLEs
of the cluster. To achieve this output equivalence, every BLE is
given the exact same input switch pattern.1

To improve routability, the routing tool takes advantage of the
input and output equivalences just described. It may also replicate
logic onto multiple BLEs in the same cluster, provided there are
empty BLEs available.

2.3 Area Model
The area model used in this paper is the same buffer-sharing

model used previously [2, 4], with a few minor changes described
below. This model is based on the unit area of a minimum-width
transistor (T), including the spacing to an adjacent transistor. As
mentioned in [4], discussions with FPGA vendors have suggested
that this, and not wiring, is the area-limiting factor.

All of the logic structures in the FPGA are modeled, including
BLEs, the LUT input multiplexers, and the cluster routing, but not
the padframe. For example, the area contribution of a pass transis-
tor depends on the transistor width, and a buffer chain depends on
the number of inverter stages as well as the required drive strength
of each stage.

The drive strength requirement for a buffer is based on fan-out
and is computed as follows. In general, it is assumed that a size B
inverter in a buffer is sufficient to drive another inverter of size 4B,
or a total transistor gate width of 8B. However, buffers driving the
LUT input multiplexers, i.e., the cluster input buffers, were sized
differently. These buffers must drive a larger load created by the
many levels of the LUT input multiplexer tree. This load is larger
not only due to the depth of the tree, but also because diffusion is
being driven. For these buffers, a size B was selected if the first
level fan-out of the buffer 2 was loaded by a total diffusion width
of 2B, with the exception that drive strength was limited to be at
least 7x and at most 25x minimum size. These approximations were
made after examining HSPICE results [Ahmed and Wilton, private
communication].

There were a few additional improvements made to the area

1An alternative architecture with different input switch patterns for
each BLE can be built. Such an architecture would require a full
permutation stage to reorder all of the BLE outputs to the cluster
outputs and feedback connections. This could be done by fixing
Fcf b = Fcout = 1:0, for example, or by using N additional N� to�1
multiplexers. We did not consider such an architecture here.
2Note that this fan-out can be significantly lower in a sparsely pop-
ulated cluster, and this area savings is counted.

model described in [4]. The previous LUT area model was slightly
pessimistic and used the largest buffer required for all LUT inputs.
In addition, it was optimistic when estimating cluster input buffer
load, and this produced slightly understated area results. In this
paper, every LUT input buffer and every cluster input buffer was
sized according to its unique load requirements, yielding a slightly
smaller LUT area but a larger cluster tile area than previously re-
ported.

One simplification made while employing this area model was
that the routing switch sizes were chosen beforehand based on the
tile size of a fully populated cluster. As a result, the switches are
larger than required, since any area saved by employing a sparse
cluster would surely shrink the tile size. If recomputed using the
smaller sparse cluster tile size, the routing switch sizes, hence the
overall tile size, would be reduced. However, this simplification
merely implies that area savings reported in this paper are conser-
vative.

2.4 Delay Model
The delay model used here is the same path-based, critical-path

delay model used previously [2, 4]. Timing parameters for all delay
results were obtained using 0.18µm TSMC process information and
detailed HSPICE circuit models. The precise delays along each
path are computed in one of two ways, as described below.

Routing delays from the cluster output buffer to the cluster input
buffer are computed using the Elmore delay [6] of the RC-tree net-
work. The delays inside a cluster, however, are modeled as constant
worst-case delay times (either rise or fall) extracted from HSPICE
simulation results of a fully populated cluster. For example, these
constant delays measure propagation from a cluster input to a LUT
input, or the delay through the LUT.

Delay results in this paper are very conservative and may be
overstated for two principal reasons. First, the routing delay results
are overestimated because they ignore the tile size shrink that was
mentioned in Section 2.3. Consequently, the routing wirelength
parasitics and switch sizes are larger than required. Second, due to
reduced loading and smaller cluster input buffers, internal cluster
delays might be reduced if this simulation was repeated for sparsely
populated clusters.

For these two reasons, the delay model used tends to produce
pessimistic results for both components of delay: internal cluster
routing and general purpose routing. Since internal cluster routing
alone accounts for 35% of the critical-path delay on average [14],
any savings from either component would lead to a measurable
overall delay reduction.

3. METHODOLOGY
In general, the experimental methodology from [2, 4] was used.

Benchmark circuits were optimized using SIS [13], mapped into
LUTs using FlowMap and FlowPack [5], packed into clusters us-
ing T-VPACK [9], and placed using VPR [3, 4, 10] onto the small-
est square FPGA that fits the circuit. In all experiments, the same
packing and placement was used for each unique combination of
circuit, LUT size and cluster size.

Below, the remainder of the CAD process is described, begin-
ning with details about the routing stage, then a description of the
router enhancements, and lastly a note on CAD tool parameter se-
lection.

3.1 Routing Step
The last step of the CAD flow involves routing a placed netlist

in the detailed routing architecture. The routing tool used here is
based on a modified version of VPR 4.30 which was tailored specif-

61



ically for sparse clusters. This version of VPR includes the latest
timing-driven packing and placement enhancements [9, 10].

During routing, the minimum channel width required to route,
Wmin, was found using a binary search. Afterwards, a final low-
stress routing was done with W = 1:3 �Wmin tracks to compute area
and delay statistics. This procedure models the way FPGAs are
actually used; designers are seldom comfortable working on the
edge of capacity or routability.

The final low-stress routing actually failed in 34 out of 3980
(0.9%) circuit/architecture combinations, usually due to slow con-
vergence or switch pattern interference.3 To resolve this, one, two,
then three additional tracks were added to the channel. This strat-
egy was sufficient to route all but four of the troublesome cases —
the three underlying architectures for these cases were deemed un-
routable, so they were abandoned from further consideration in this
paper.

Also, if the binary search was unable to find a reasonable min-
imum channel width (Wmin � 240) for any of the circuits, the ar-
chitecture was deemed unroutable and abandoned. Consequently,
every architectural result presented in this paper was obtained by
routing all of the benchmark circuits.

All area and delay results are averages obtained from placing and
routing the 20 largest MCNC benchmark circuits [7]. Area is com-
puted as the geometric average of the active FPGA area, which is
defined below. The geometric average ensures that the circuits are
all weighted equally, independent of the size of the circuit. Delay
results are also the geometric average of the critical-path delay for
each benchmark circuit.

Active FPGA area is the area, in units of minimum-width transis-
tor areas, of one cluster tile (including its routing) times the number
of clusters actually used by the benchmark circuit. This measure-
ment was used in [1, 2] to better distinguish packing efficiency. We
have chosen to use the active FPGA area metric here to be consis-
tent with those results.4

3.2 CAD Tool Enhancements
Originally VPR routed only to cluster input pins because fully-

connected clusters could guarantee the routability of cluster inputs
and feedback connections. Extensive modifications to VPR were
necessary to route sparsely populated clusters. For example, the
routing graph, timing graph, and netlist structures had to be altered
to accommodate the cluster feedback nets and the location of every
BLE sink. As well, other changes were necessary to permit nets to
enter a cluster more than once to improve routability.

The switch pattern generator from [8] was integrated into VPR
to create the switch patterns for the LUT input multiplexers. This
generator first distributes switches to balance the fan-in and fan-out
of each wire, usually in a random pattern. A greedy improvement
strategy is then followed which roughly maximizes the number of
distinct output wires reached by every pair of input wires. To ac-
complish this, switches are randomly selected, first in pairs, then
singly, and moved only if the fan-in/-out constraints are kept and
the aforementioned cost improves. Using this technique, the switch
patterns within a cluster are individually well-designed.

Other switch patterns in the routing fabric, namely the cluster
input and output patterns, use the original VPR switch placement
generators. Additionally, we have not attempted to optimize the
cascading of the the cluster input multiplexers and LUT input mul-
tiplexers, except as noted below in Section 4.3. This extension to
the work is nontrivial and left for future investigation.

3Of the failed combinations, 20 of them had Ispare = 0 and the
remainder had Fcin � 0:25.
4Note that the results in [2] use a different process technology.

Cluster feedback connections are also sparsely populated, and
this may cause some problems during routing. In particular, there
may be too few switches to satisfy all possible feedback connection
patterns, so feedback signals are also permitted to leave the clus-
ter and re-enter through the cluster inputs. This may cause speed
degradation, or some netlists may become unroutable because all
cluster inputs are used.

There is no immediate solution for the speed degradation prob-
lem, but we address the routability problem by assuming there are
spare cluster inputs in the architecture. These spare inputs improve
routability by providing the router with more choices [8]. The num-
ber of spare inputs given, Ispare, is specified prior to routing as a
fixed part of the architecture. For convenience, the packing tool
adds these as part of the netlist and the router automatically uses
them.

The effectiveness of the modified VPR router was validated
against the original version of VPR. Both routers obtained similar
delays, channel widths and area results for fully populated clusters
using a variety of cluster and LUT sizes.

3.3 Tool Parameters
In general, the packing, placement and routing tools were run

in timing-driven mode using their default parameters. Some non-
standard command line switches were used for routing — these are
shown in Table 4 and described in further detail below.

The number of router iterations had to be increased beyond
the default value of 30, partly because sparsely populated clus-
ters require additional routing effort. As well, large variations
were observed in delay results because the router parameter
that increases the cost of nets sharing wires between iterations
(pres fac mult) was too high.

The impact of reducing this parameter on runtime and average
critical-path delay of the low-stress route can be seen in Figure 2.
As well, the range of average delay values (across all benchmarks)
for each architecture is shown using error bars. This wide range
made it difficult to distinguish architectures with low delay from
those with higher delay. Clearly, increased routing effort was re-
quired to reduce the delay variation, but we feel this was time well-
spent. Without this effort, we would be unable to conclusively com-
pare the delay results of the different architectures.

For this experiment, the maximum number of router iterations
was set to 300. On average, however, the number of iterations used
increases from 23 to 160 in a manner that very closely follows the
increase in runtime. The router values shown in Table 4 were cho-
sen in reference to these results.

4. RESULTS
This section gives the area and delay results from placing and

routing 20 MCNC benchmark circuits. In all cases, only the geo-
metric average is used for FPGA area and critical-path delay. Initial
experiments determined the best routing parameters, then these pa-
rameters were used to evaluate the area and delay of sparse cluster
architectures.

4.1 Key to Curve Labels
In the following graphs, each curve represents a family of archi-

tectures parameterized along the x-axis. Each curve label describes
the specific architecture parameters in the following order:

k N Ispare Fcin Fc f b

These parameters are fully described in Tables 2 and 3. Where
the value of a parameter is given as ‘X’, that simply means the
parameter is being varied along the x-axis.

62



Tool Additional Parameters
T-VPACK default
VPR placement default
VPR binary search -pres fac mult 1.3 -max router iterations 250
VPR final route -pres fac mult 1.05 -max router iterations 300

Table 4: CAD tools and non-default parameters used.

100

200

300

400

500

600

700

800

900

1000

1100

1200

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1.4e-08

1.5e-08

1.6e-08

1.7e-08

1.8e-08

1.9e-08

ru
nt

im
e 

(s
)

de
la

y 
(n

s)

router sharing penalty factor

average runtime
min/avg/max of (avg delay)

Figure 2: Variation in average critical path delay is shown as
a function of the router sharing penalty factor. To reduce the
variation (and the delay), longer runtime is required.

4.2 Routing Architecture Selection
To explore the sparse population of switches inside the cluster,

it is first necessary to establish a good routing architecture outside
of the cluster. Hence, the best values for Fc and Fcout need to be
selected beforehand. We chose to find the best switch density that
would give minimum area rather than delay. To generate the results
for this expediently, the number of router iterations was limited to
75, but all other parameters were left at their default values.

4.2.1 Selecting Fc for minimum area
The density of switches connecting channel wires to cluster in-

puts in the C blocks is called Fc. We wish to determine the value of
Fc that would result in a minimum-area FPGA.

The choice of Fc depends on the effectiveness of the CAD tools
and the size of the C block, determined by the channel width, W ,
and the number of cluster inputs, I. It has been our experience that
I is the most important factor influencing the choice of Fc.

Routing experiments were done for k = 7 architectures, varying
N from 2 to 9. This large LUT size was chosen because we are
mostly interested in the effects of having a large number of cluster
inputs. Both full (100%) and sparse (50%) population levels in-
side the cluster were tried. The 50% density was chosen because
this was almost always routable without adding spare inputs, hence
Ispare = 0 here.

The average low-stress channel width required to route the
benchmark circuits, W , is presented in Figure 3 for a variety of
Fc values. Only three cluster sizes are illustrated, but the other re-
sults are similar. From these results, it can be seen that choosing
Fc > 0:4 has little impact on channel width. Although not shown,
this is particularly true for N > 3.

Interestingly, the channel width results are very similar for both
sparse and fully-populated clusters. Sparse clusters typically re-

30

35

40

45

50

55

60

65

70

75

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
lo

w
-s

tr
es

s 
ch

an
ne

l w
id

th
Fc

7 2 0 0.5 0.5
7 2 0 1.0 1.0
7 5 0 0.5 0.5
7 5 0 1.0 1.0
7 9 0 0.5 0.5
7 9 0 1.0 1.0

Figure 3: Fc impact on channel width.

quired only 2 to 4 more tracks than the corresponding fully popu-
lated ones. Hence, the sparse architecture is still quite routable at
the 50% population level.

Although channel width is not hindered by a large value of Fc,
having more switches than necessary will contribute to an area in-
crease. Figure 4 also shows the active FPGA area versus Fc for
cluster sizes 2 and 9.5 Again, similar results were obtained for
cluster sizes 3 through 8.

One unexpected area result is that the 50% sparse cluster near
Fc = 1:0 always uses fewer transistors than the minimum-area
fully-populated cluster. This can be seen in Figure 4 where point
B is lower than A, and D is lower than C. This trend holds for the
other cluster sizes as well. Hence, it is better to sparsely populate
the clusters than the general routing, a non-intuitive result. One
reasonable explanation for this is there are about twice as many
LUT input multiplexers as cluster input multiplexers, even though
the cluster input multiplexers can easily have twice as many inputs
(based on the channel width).

Another result shown in Figure 4 is a significantly larger area
reduction for N = 9 than N = 2. The reduction is so large that
the N = 9 architecture goes from using more area (curve C) than
the corresponding N = 2 architecture (curve A) to using less area
(curves D and B). This result shows how sparse clusters can shift
the optimum design point towards larger clusters. For example,
in this k = 7 architecture, the fully-populated cluster should con-
tain between 4 and 6 LUTs to be area-efficient. However, the 50%
sparsely-populated cluster should contain between 4 and 9 LUTs.
Further investigation of different cluster sizes is left as future work.

The values of Fc producing the lowest area for each cluster size,
i.e., for each value of I, are shown in Figure 5. It is remarkable that

5Notice that the sparse Fc = 1:0 result is missing for N = 9 in Fig-
ures 3 and 4 because VPR was unable to route the clma circuit
under low-stress conditions due to slow convergence.

63



4.4e+06

4.6e+06

4.8e+06

5e+06

5.2e+06

5.4e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ac
tiv

e 
ar

ea
 (

T
s)

Fc

A
B

sparse 7 2 0 0.5 0.5
full 7 2 0 1.0 1.0

4.4e+06

4.6e+06

4.8e+06

5e+06

5.2e+06

5.4e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ac
tiv

e 
ar

ea
 (

T
s)

Fc

C

D

sparse 7 9 0 0.5 0.5
full 7 9 0 1.0 1.0

Figure 4: Fc impact on area for cluster sizes of 2 and 9. Intermediate cluster sizes gave similar results.

the sparse and fully populated cluster results are so similar. This
can be partly attributed to the relative flatness near the minimum
area. For N = 9, varying Fc from 0.1 to 0.5 causes less than 5%
change in area. Hence, precise Fc selection is not critical, provided
it is large enough to be routable, yet not wastefully large.

For the remainder of the results in this paper, it was determined
that a fixed value of Fc would not significantly hinder area results.
Rather than using the minimum-area Fc values from Figure 5, we
felt that having a few more switches in the routing (by having a
slightly larger Fc) would be helpful as clusters were made even
more sparse (internally). This is especially important because no
effort was made to tune the two switch patterns together and we
wished to avoid possible interference patterns. Hence, we chose
to set Fc = 0:5 for the N = 6 architectures and Fc = 0:366 for the
k = 7;N = 10 architecture. These particular values were chosen
because they were used in previous work [2, 4] and this gives us
the most comparable results.

4.2.2 Selecting Fcout

Previous experiments have shown that Fcout = 1=N is adequate
for routing in fully populated architectures [4]. Considering the
similarity of the Fc area results between sparse and fully popu-
lated architectures, it was decided that modifying Fcout would have
insignificant impact in a sparsely connected architecture. Hence,
Fcout = 1=N was used for all results.

4.3 Partitioning of Cluster Inputs
Additional net delay can be caused by sparsely populated clus-

ters because some LUT inputs may not be reachable from particu-
lar sides of the cluster. For example, consider the case when some
LUT input connections have already been formed, and the last re-
maining input signal is being made. A lack of switches inside the
cluster may cause that net to enter the cluster from a more distant
side. The result is increased delay.

We investigated this problem by trying a single switch matrix for
all cluster inputs, and one which was partitioned into four smaller
switch matrices, one for each input side. The partitioned matrix
addresses the above problem by ensuring that all of the cluster in-
puts from any particular side can reach all of the LUT inputs. It
also has a weakness though: these smaller switch matrices are not
carefully designed to couple together well. Each partitioned matrix
is derived from the same basic switch pattern, but each has its own

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 15 20 25 30 35

m
in

im
um

 a
re

a 
F

c

I cluster inputs

sparse 7 X 0 0.5 0.5
full 7 X 0 1.0 1.0

Figure 5: Best Fc corresponding to minimum area as a function
of I cluster inputs.

permutation of the rows (or outputs) to balance the fan-in of the
LUT inputs. These matrices, but not the permutation pattern, are
illustrated in Figure 1.

Both switch designs were routed in a k= 7, N = 10, Fcin =Fcf b =
0:43 architecture. Both designs required identical transistor area,
and the partitioned matrix was only about 1% faster. Although this
is not significantly faster, it was used for subsequent results in this
paper since it may help with some pathological cases.

4.4 Sparse Cluster Area Results
The primary motivation for depopulating clusters is to reduce the

area, and subsequently the cost, of an FPGA. In Section 4.2, it was
determined that simply depopulating the cluster to 50% is more
effective at reducing area than choosing the proper value of Fc. In
this section, further depopulation of the cluster is explored.

To reduce the number of routing experiments, it was decided to
fix the cluster size to N = 6 and vary the LUT sizes from 4 through
7. That particular cluster size was selected because it generated
near-minimum area and area-delay results for fully populated clus-
ters with all of these LUT sizes. The larger LUT sizes are especially
interesting because they require larger input switch matrices, hence

64



3.2e+06

3.4e+06

3.6e+06

3.8e+06

4e+06

4.2e+06

4.4e+06

4.6e+06

4.8e+06

0 2 4 6 8 10 12 14

ac
tiv

e 
ar

ea
 (

T
s)

Ispare

4 6 X 0.25 0.5
4 6 X 0.33 0.5
4 6 X 0.4  0.5
4 6 X 0.5  0.5
4 6 X 1.0  1.0

3.2e+06

3.4e+06

3.6e+06

3.8e+06

4e+06

4.2e+06

4.4e+06

4.6e+06

4.8e+06

0 2 4 6 8 10 12 14

ac
tiv

e 
ar

ea
 (

T
s)

Ispare

5 6 X 0.2 0.5
5 6 X 0.3 0.5
5 6 X 0.4 0.5
5 6 X 0.5 0.5
5 6 X 1.0 1.0

3.2e+06

3.4e+06

3.6e+06

3.8e+06

4e+06

4.2e+06

4.4e+06

4.6e+06

4.8e+06

0 2 4 6 8 10 12 14

ac
tiv

e 
ar

ea
 (

T
s)

Ispare

6 6 X 0.17 0.5
6 6 X 0.25 0.5
6 6 X 0.33 0.5
6 6 X 0.41 0.5
6 6 X 0.5 0.5
6 6 X 1.0 1.0

3.2e+06

3.4e+06

3.6e+06

3.8e+06

4e+06

4.2e+06

4.4e+06

4.6e+06

4.8e+06

0 2 4 6 8 10 12 14

ac
tiv

e 
ar

ea
 (

T
s)

Ispare

7 6 X 0.14 1.0
7 6 X 0.22 0.43
7 6 X 0.29 0.43
7 6 X 0.43 0.43
7 6 X 1.0  1.0

Figure 6: Active FPGA area of fully and sparsely populated clusters.

offering more potential for depopulation. One additional architec-
ture with k = 7;N = 10 was chosen to study an even larger number
of inputs entering the cluster.

A number of preliminary routing experiments were run with a
wide range of values for Fcin and Fcf b . From these results, which
are not shown here, it was confirmed that Fcf b has less influence on
area. As Fcf b was reduced below 50%, a number of circuits would
no longer route. It was determined that Fcf b of 50% (or 3=7 = 43%
for k = 7) was as low a value as could be tolerated. Similar prelim-
inary sweeps indicated that Fcin � 0:5 was nearly always routable,
so area reduction should concentrate on more sparse values.

The area results from routing the four LUT sizes are shown in
Figure 6. In these graphs, each curve represents the geometric av-
erage of active FPGA area for a fixed value of Fcin . The number
of spare inputs is varied along the x-axis. The sparse cluster re-
sults should be compared against the bold curve representing the
fully-populated cluster area.

The most apparent trend in these curves is a gentle dip, then a
general upward climb in area as Ispare is increased. The upward
trend is an expected result, since the spare inputs will require addi-
tional cluster input multiplexers. The dip is caused by a rapid initial
decline in average channel width, which then gradually reaches a
5% to 20% reduction (10% is typical).

A number of data points are missing in Figure 6, specifically for
small Ispare values. This is because one or more benchmark circuits

could not be routed on the architecture. Hence, although they con-
tribute to area reduction in only a few cases, it is essential to have
these spare inputs to make sparse clusters routable. Typically, be-
tween two to five spare inputs are required to make the architecture
routable and attain the lowest area.

The lowest-area architectures from Figure 6 are summarized in
Table 5. As well, the large N = 10 cluster architecture is included.
With these architectures, a 10 to 18% area savings is achieved. As
mentioned earlier, between two and five spare inputs is sufficient
to achieve most of this savings, which is surprising since this only
about one spare input per side.

A breakdown of the cluster tile area is given Table 6. For 4-
input LUTs, there was a slight decrease in routing area because
the spare inputs helped reduce average channel width. The 5- and
6-input LUTs cases did not achieve the same benefit because the
spare inputs contributed more to area than the amount saved by the
slight channel width reduction. The two 7-LUT architectures had
an increase in routing area due to the spare inputs and a channel
width increase. However, the sparse switch populations produced a
net area savings of 14% and 18%, with the larger cluster benefitting
more. With respect to the entire tile, depopulating the clusters was
very effective at reducing the relative LUT input multiplexer size
from the 24–33% range down to 12–18%.

One very interesting result from this data is that a sparse cluster
of six 6-input LUTs is slightly more area-efficient (3%) than six

65



Architecture Best Sparse Parameters Channel Width (arith. avg.) Active FPGA Area (�106 Ts)
k N I Fc Ispare Fcin Fc f b Fully Populated Best Sparse Fully Populated Best Sparse Savings

4 6 14 0.5 2 0.5 0.5 47.9 45.9 3.71 3.33 10.1%
5 6 17 0.5 2 0.4 0.5 46.4 45.6 3.79 3.35 11.5%
6 6 21 0.5 2 0.33 0.5 44.3 43.5 3.76 3.23 14.0%
7 6 24 0.5 5 0.143 0.43 43.8 44.6 4.62 3.95 14.3%
7 10 38 0.366 10 0.143 0.43 53.7 55.1 4.96 4.03 18.8%

Table 5: Active FPGA area savings obtained by depopulating switches inside the cluster.

Tile Area (Number of Minimum-Width Transistor Areas)
Architecture Fully Populated Cluster Best-Area Sparse Cluster

k N Total LUT+FF Routing LUT Input Mux Total LUT+FF Routing LUT Input Mux

4 6 9307 990 6050 2267 (24.4%) 8380 990 5960 1430 (17.1%)
5 6 11241 1840 6321 3080 (27.4%) 9964 1840 6371 1753 (17.6%)
6 6 14318 3496 6713 4109 (28.7%) 12343 3496 6732 2115 (17.1%)
7 6 19622 6831 7645 5146 (26.2%) 16879 6831 8120 1928 (11.4%)
7 10 35145 11358 12022 11765 (33.5%) 28646 11358 12990 4298 (15.0%)

Table 6: Breakdown of cluster tile area. The routing area is an arithmetic average for all circuits.

1.2e-08

1.25e-08

1.3e-08

1.35e-08

1.4e-08

1.45e-08

4 5 6 7

de
la

y 
(n

s)

k

Figure 7: Delay decreases with LUT size.

4-LUTs in a sparse cluster. This is a departure from previous work
which has consistently shown that 4-LUTs achieve lower area, al-
beit in fully populated clusters. The reason for this difference is
simple: larger LUTs provide more opportunity for depopulation.
This concept is supported by previous work which has shown that
sparse crossbars with more outputs require fewer switches for the
same level of routability [8].

4.5 Sparse Cluster Delay Results
As mentioned earlier, reduced switch densities may cause an in-

crease in delay due to an increase in bends or wire use to achieve
routability. Although delay may decrease for other reasons such
as reduced loading, we chose to be conservative and ignore these
possible benefits.

The curves in Figure 7 show the impact that varying the LUT size
has on delay for a few of the N = 6 architectures. The curve labels
identifying the architectures have been omitted for clarity, since
only trends need to be observed. The important thing to notice is
that, for all architectures, delay goes down as k increases.

1.2e-08

1.25e-08

1.3e-08

1.35e-08

1.4e-08

1.45e-08

0.1 0.2 0.3 0.4 0.5 0.6

de
la

y 
(n

s)

Fcin

k=4

k=5

k=6
k=7

Figure 8: Delay is not influenced by Fcin . Similar results indi-
cate it is not influenced by Ispare or Fcf b .

Similarly, Figure 8 shows the change in delay as the switch den-
sity Fcin is varied. It is apparent in the graph that curves of the same
LUT size are all grouped together. In particular, the 4- and 5-LUT
data is easily distinguished from the 6- and 7-LUT data. The flat-
ness of all of these curves illustrates how little impact Fcin has on
delay.

Analysis of delay while varying Ispare or Fcf b shows the same re-
sult: delay is independent of these parameters. Even though sparse
clusters present a challenge to the router and remove many choices,
and even though some feedback connections must leave the clus-
ter and re-enter through the general-purpose routing, the router still
has enough freedom to ensure that nets on the critical path remain
on the fastest paths to the critical sinks.

4.6 Sparse Cluster Area-Delay Product
The previous two sections presented results indicating the 6-LUT

had the lowest area and the 7-LUT had the lowest delay. When the

66



0.035

0.04

0.045

0.05

0.055

0.06

0.065

0 5 10 15 20

ar
ea

 ⋅ 
de

la
y 

(T
⋅n

s)

Ispare

Fully Populated Cluster

4 6 X 1.0 1.0
5 6 X 1.0 1.0
6 6 X 1.0 1.0
7 6 X 1.0 1.0

7 10 X 1.0 1.0
0.035

0.04

0.045

0.05

0.055

0.06

0.065

0 5 10 15 20

ar
ea

 ⋅ 
de

la
y 

(T
⋅n

s)

Ispare

Best-Area Sparse Cluster

4 6 X 0.50 0.50
5 6 X 0.40 0.50
6 6 X 0.33 0.50
7 6 X 0.14 0.43

7 10 X 0.14 0.43

Figure 9: Area-delay product results for fully-populated and best-area sparse architectures.

Average Runtime (seconds) Average # Routing Iterations
Architecture VPR 4.30 Modified VPR VPR 4.30 Modified VPR

k N Fully Populated Best Sparse Fully Populated Best Sparse

4 6 70 153 150 84 86 86
5 6 72 183 205 93 91 93
6 6 57 177 178 84 86 88
7 6 53 188 350 88 83 109
7 10 43 177 275 96 94 116

Table 7: Average runtime and number of routing iterations for the final low-stress route (arithmetic averages of 20 benchmarks).
Runtimes were collected on an 866MHz Pentium III computer with 512MB of SDRAM.

area and delay results are combined in the form of an area-delay
product, the 6-LUT emerges as the superior logic block choice.
This metric is important because it indicates when the best trade-
off is being made between using an additional amount of area for a
similar relative gain in clock rate (or vice versa). For example, it is
directly useful in FPGA-based computation because the computa-
tion rate is a product of both the clock rate and parallelism.

The best sparse area-delay product organizations are compared
to their fully-populated versions in Figure 9. The area-delay prod-
uct improves for every LUT size due to the area reduction. The
overall best sparse architecture containing 6-LUTs is about 14%
more efficient than one containing 4-LUTs, and about 22% more
efficient than the traditional fully-populated 4-LUT cluster.

4.7 Routing Runtime with Sparse Clusters
The removal of switches inside the cluster also removes the

routability guarantee of the cluster. Consequently, the router must
pay attention to all of the wires and switches within the cluster, so
it is expected that additional runtime effort is required to complete
the route.

The average runtime and average number of iterations required
for routing the different architectures are shown in Table 7. Results
are presented for fully populated clusters to compare the original
VPR 4.30 to the modified one. As well, the modified VPR can be
compared against itself to study the additional impact of routing the
best-area sparse clusters.

Generally, the modified VPR currently runs about three to four
times slower than the original version when fully populated clusters

are used. Even though runtime has increased, the number of router
iterations used is practically unchanged. The main reason for the
slowdown comes from the increased number of wires and switches
in the architecture that must be examined with each iteration: all
cluster inputs now have connections to many LUT inputs, and nets
are allowed to enter a cluster more than once. This causes the router
to evaluate many more routing paths before making a decision.

It is worthwhile to note that having larger LUT sizes and clus-
ter sizes reduces the amount of work that VPR 4.30 must do, so
runtime decreases. This benefit was not realized in the modified
VPR because the amount of wiring inside the cluster also increases,
keeping runtime relatively flat.

The additional runtime needed to route the best-area sparse ar-
chitectures is also shown in Table 7. For k = 4;5;6 the runtime
and the number of iterations is similar, for k = 7 runtime nearly
doubled and the number of iterations increased by 25–30%.6 This
increase in the average is caused by a large increase in four of the
normally difficult-to-route circuits. The need for more router it-
erations indicates these architectures are barely routable, probably
because Fcin is so low, even though these circuits are being routed
using the low-stress channel width.

Increasing routability by increasing Ispare to 15 for the
k = 7, N = 10 architecture reduced runtime to 210 seconds and 97
iterations. Hence, the amount of area savings can also be balanced
against the runtime effort.

6The amount of searching done in each iteration may increase as
the search space expands, so each iteration’s runtime may increase.

67



5. CONCLUSIONS
This work has studied the area and delay impact of sparsely pop-

ulating the internal cluster connections in a clustered architecture.
At the expense of three to four times the compute time, an area
savings of 10 to over 14% was realized by sparsely populating the
cluster internals of 4-, 5-, 6-, and 7-input LUT architectures con-
taining 6 LUTs per cluster. A larger cluster size of ten 7-LUTs
obtained an 18% area savings. It was also observed that the addi-
tional router effort and reduced routing flexibility did not degrade
critical-path delay.

A fixed number of spare inputs were added to each cluster.
These inputs are used only by routing, and are not used or re-
quired for packing. By adding up to 15 spare inputs, the channel
width decreased by about 10% in most architectures, whether full
or sparsely populated. Although sparse clusters on their own im-
pose a small increase in channel width, the spare inputs reduce the
channel width, resulting in a small, net savings.

The channel width reduction typically produced a net savings in
routing area alone when up to seven spare inputs were added, but
resulted in a net increase thereafter. Of course, the cluster area (ex-
cluding the routing) always increased with the addition of spare in-
puts. However, this area increased at a slower rate in more sparsely
populated clusters, as expected. When added to the routing area,
most architectures became less efficient after more than five spare
inputs were employed.

The increase in routability and decreases in channel width and
area indicate that it is best to force the packing algorithm to leave a
few spare inputs (two or three) for the router.

One interesting outcome of this work is that, contrary to popular
belief, it is more area-efficient to depopulate only the LUT input
multiplexers than it is to depopulate only the cluster input multi-
plexers (i.e., the C blocks) in the general routing. The reason for
this is that, due to input sharing in a cluster, there are about twice as
many LUT input multiplexers than cluster input multiplexers. Of
course, depopulating both regions provides even more savings.

Another interesting observation is that 6-LUTs become more
area efficient than 4-LUTs when sparse clusters are employed. This
was entirely attributable to the more sparse pattern that could be
used in the 6-LUT case.

The area and delay results in this paper used conservative esti-
mates and ignored secondary effects which would improve results
further. In particular, the tile size and the subsequent routing switch
size reduction from sparse cluster use should lead to additional area
and delay reduction. Delay improvement may also come from re-
duced loading inside the cluster and by generally using larger clus-
ter sizes, which are more area-efficient when using sparse clusters.

It is reasonable to expect that larger cluster sizes may produce
an even larger area savings due to the large amount of area concen-
trated in the LUT input multiplexers.

Future work in this area will include effort to jointly design the
LUT input switch matrices with the cluster input multiplexers to
avoid switch pattern interference. Additional constraints such as
carry chains or other local routing may impact sparse cluster de-
sign and should be evaluated. A wider variety of cluster sizes,
particularly the effectiveness of large clusters, should also be ex-
plored. The area savings from sparely populated clusters will re-
duce tile size, but the subsequent area and delay reduction from us-
ing smaller routing switches should also be quantified. The delay
improvements arising from reduced loading and larger cluster sizes
should be investigated. Also, efforts should be made to improve the
runtime of the router while still retaining the area savings.

An interesting extension of this work would involve tighter cou-
pling with the packing stage. For example, under special circum-

stances, it may be reasonable to have the packing tool use the spare
inputs reserved for routing. Before doing this, it could first do a
routability test to verify whether the potential cluster of logic blocks
is routable. Since this shouldn’t be a common case, it can be done
with reasonable CPU effort. This may increase the usefulness of
the FPGA architecture for subcircuits which have wide fan-in (or
poor input sharing), such as finite state machines.

6. ACKNOWLEDGEMENTS
The authors wish to thank Elias Ahmed, Mike Sheng, and Steve

Wilton for HSPICE timing results and helpful discussions.

7. REFERENCES
[1] E. Ahmed. The effect of logic block granularity on deep-

submicron FPGA performance and density. Master’s thesis,
Department of Electrical and Computer Engineering,
University of Toronto, 2001.

[2] E. Ahmed and J. Rose. The effect of LUT and cluster size on
deep-submicron FPGA performance and density. In
ACM/SIGDA Int’l. Symp. on FPGAs, pages 3–12, 2000.

[3] V. Betz and J. Rose. VPR: A new packing, placement and
routing tool for FPGA research. In Field-Programmable
Logic, pages 213–222, 1997.

[4] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
Boston, 1999.

[5] J. Cong and Y. Ding. FlowMap: An optimal technology
mapping algorithm for delay optimization in lookup-table
based FPGA designs. IEEE Transactions on Computer-Aided
Design, pages 1–12, January 1994.

[6] W. Elmore. The transient response of damped linear
networks with particular regard to wideband amplifiers.
Journal of Applied Physics, pages 55–63, January 1948.

[7] C. B. Laboratory. LGSynth93 suite.
http://www.cbl.ncsu.edu/www/.

[8] G. Lemieux, P. Leventis, and D. Lewis. Generating
highly-routable sparse crossbars for PLDs. In ACM/SIGDA
Int’l. Symp. on FPGAs, pages 155–164, Monterey, CA,
February 2000.

[9] A. Marquardt, V. Betz, and J. Rose. Using cluster-based
logic blocks and timing-driven packing to improve FPGA
speed and density. In ACM/SIGDA Int’l. Symp. on FPGAs,
pages 37–46, 1999.

[10] A. Marquardt, V. Betz, and J. Rose. Timing-driven placement
for FPGAs. In ACM/SIGDA Int’l. Symp. on FPGAs, pages
203–213, 2000.

[11] M. I. Masud. FPGA routing structures: A novel switch block
and depopulated interconnect matrix architectures. Master’s
thesis, Department of Electrical and Computer Engineering,
University of British Columbia, December 1999.

[12] J. Rose and S. Brown. Flexibility of interconnection
structures in field-programmable gate arrays. IEEE Journal
of Solid State Circuits, 26(3):277–282, March 1991.

[13] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for
sequential circuit analysis. Technical Report UCB/ERL
M92/41, University of California, Berkeley, May 1992.

[14] M. Sheng and J. Rose. Mixing buffers and pass transistors in
FPGA routing architectures. In ACM/SIGDA Int’l. Symp. on
FPGAs, 2001.

68


	Main Page
	FPGA'01
	Front Matter
	Table of Contents
	Author Index




