
Access Pattern based Local Memory Customization for
Low Power Embedded Systems.�

Peter Grun Nikil Dutt Alex Nicolau
pgrun@cecs.uci.edu dutt@cecs.uci.edu nicolau@cecs.uci.edu

Center for Embedded Computer Systems
University of California, Irvine, CA 92697-3425, USA

Abstract

Memory accesses represent a major bottleneck in embed-
ded systems power and performance. Traditionally, the local
memory relied on a large cache to store all the variables in
the application. However, especially in large real-life appli-
cations, different types of data exhibit divergent types of local-
ity and access patterns, with diverse locality and bandwidth
needs. Traditional caches had to compromise between the dif-
ferent types of locality required by the access patterns, and
trade-off performance against bandwidth requirement. In-
stead, our approach customizes the local memory architec-
ture matching the diverse access patterns and locality types
present in the application, to reduce the main memory band-
width requirement, and significantly improve power consump-
tion, without sacrificing performance. Our approach gener-
ated an average 30% memory power reduction without de-
grading performance on a set of large multimedia/general
purpose applications and scientific kernels, over the best tra-
ditional cache configuration of similar size, demonstrating the
utility of our algorithm.

1 Introduction

In recent embedded systems architecture, memory repre-
sents a major performance and power bottleneck [25]. In-
creasingly, the performance gap between processor and mem-
ory has been addressed using faster memory modules (such as
SDRAM, RAMBUS, DDRAM [7, 10]), or by fetching more
data into local memories (for instance through prefetching [3,
5, 19]). However, such techniques while aggressively target-
ing performance, rely on significantly increased bandwidth.
For instance, the burst-mode, page-mode, pipelined accesses
[24, 25] in SDRAM, RAMBUS, increase performance by in-
creasing the memory bandwidth. Similarly, prefetching re-
sults in substantial bandwidth increase, due to un-avoidable
useless/redundant fetches [21]. These additional bandwidth
requirements result in significant rise in power consumption.
Instead, while improving performance, we would also like
to reduce power by modulating the bandwidth. We present
here such an approach, where we reduce the bandwidth and
power consumption, without sacrificing performance. The

�This work was partially supported by grants from NSF (MIP-9708067),
DARPA (F33615-00-C-1632) and a Motorola fellowship.

key idea is that by customizing the local memory architecture
for the specific access patterns in the application, it is possible
to achieve comparable or better performance, while decreas-
ing the main memory bandwidth thus generating significant
power savings.

Whereas traditionally local memory optimizationshave con-
centrated on increasing hit ratio, or reducing transition activ-
ity through address coding or program transformations, to our
knowledge, no prior work has addressed reducing the main
memory bandwidth and power consumption by customizing
the local memory modules to the specific applicationaccess
patterns and locality types.

Traditionally, a simple cache hierarchy, containing a level
one and possibly level two cache was used, and assuming that
by increasing the hit ratio, also the number of accesses to the
main memory will decrease. However, this is not always true,
since increasing the hit ratio past a point comes at the cost
of bringing substantially more data into the levels closer to
the CPU (e.g, by increasing the cache line size, or through
prefetching [21]), resulting in useless or redundant fetches,
and increased memory traffic.

Moreover, there is a large variation in the access patterns
and locality type of the data not only between different do-
mains [6, 18, 26], but also within the the same domain and
application [8]. For instance, while scalars (such as counters)
generally exhibit large temporal locality, and moderate spatial
locality, vectors with large stride exhibit no spatial locality,
and vectors with small stride exhibit large spatial locality, and
may or may not exhibit temporal locality.

By customizing the local memory modulesaccording to
the prevalent access modes in the application, it is possible to
fine-tune the local memory management mechanism for the
different types of locality, resulting in a more judicious main
memory bandwidth management, and substantial power sav-
ings. In this paper we present such an approach, where we
use different types of local memory modules to store vari-
ables with high temporal and high spatial locality, to improve
the utilization of the main memory bandwidth, and generate
power reduction, without sacrificing performance.

In Section 2 we compare our approach to previous work in
the area. In Section 3 we present our approach. In Section 4
we use an example application to illustrate our technique, and
then present our exploration algorithm in Section 5. In Sec-
tion 6 we present a set of experiments on multimedia, general

purpose and scientific benchmarks, showing the bandwidth
and power reduction obtained by our approach. We conclude
with a short summary in Section 7.

2 Related Work

Related work on memory optimizations has addressed four
main areas: cache hit ratio optimizations, memory bandwidth
management optimizations, memory subsystem power opti-
mizations and cache architecture optimizations.

An extensive amount of work has concentrated oncache
hit ratio optimizations through code transformations (such as
loop interchange, loop blocking) [22, 30], and memory map-
ping optimizations (such as padding, tiling) [4, 22] to im-
prove locality. While such techniques can improve the differ-
ent types of locality, they cannot substantially change the ac-
cess patterns characteristics (for instance they cannot change
a stream access or a randomaccess into a highly temporal ac-
cess). We capitalize on the large variation of access patterns
and locality types in the application, by customizing the lo-
cal memory modules to meet these locality needs. Moreover,
while previous techniques aggressively targeted performance
improvement by improving the hit ratio, we complement this
work by addressing memory bandwidth and power reduction.

Wuytack et. al. [31] present an approach to manage the
memory bandwidth by increasing memory port utilization,
through memory mapping and code reordering optimizations.
Our technique complements this work by improving the band-
width utilization in the presence ofcaches.

In [11] we presented the Miss Traffic Management (MIST)
compiler optimization technique which explicitly manages the
main memory traffic, to hide the latency of the cache misses,
and generate performance improvements. Here, we explore
different local memory architectures, targeting power reduc-
tion through local memory customization. Once the memory
bandwidth has been reduced, the MIST algorithm can be ap-
plied at the later compilation stage, to further improve per-
formance by overlapping the remaining main memory traffic
with other CPU and cache hit operations. In [10] we pro-
posed a compiler technique to improve the memory band-
width by exploiting special features of SDRAM, RAMBUS,
DDRAM modules, such as page-mode, burst-mode, pipelined
accesses [24]. Rixner et. al [7] proposed a hardware memory-
controller solution to this problem. However, both these ap-
proaches in effect improve performance by increasing the band-
width provided by the memory modules. Instead, our goal in
this work is to reduce the memory bandwidth requirement of
the application.

Compiler transformations addressing memory system power
reduction have concentrated mainly on address coding to re-
duce the transition activity on the address bus [23]. Benini et.
al [1] presented an encoding/decoding interface logic synthe-
sis approach that minimizes the average number of transitions
on global buses. Instead, we reduce the number of accesses to
the main memory through customization of the local memory

architecture. Kulkarni et. al [17] presented a combined in-
place memory mapping and code transformations approach to
reduce the memory system power for different cache sizes.
Instead of this traditional cache architecture, we use a more
flexible local memory, containing possibly multiple modules
targeting different types of locality, to fine-tune the balance
between performance and power.

Reconfigurable cache architectures have been proposed re-
cently [29] to improve the cache behavior for general purpose
processors, targeting a large set of applications. However, the
extra control needed for adaptability and dynamic prediction
of the access patterns results in a power overhead which is
prohibitive in embedded systems. Instead, we statically tar-
get the local memory architecture to the data access patterns,
and significantly reduce power. Adve et. al [27] propose a re-
configurable cache, which allows using the available on-chip
SRAM space in CPU-bound applications for different hard-
ware supported optimizations (such as hardware lookup tables
for instruction reuse or hardware prefetching).

The work closest to ours is by Gonzales et. al [8], which
presents a doublecache architecture, containing a temporal
cache and a spatial cache, targeting general purpose proces-
sors, and relying on a dynamic prediction mechanism to route
the data to either the spatial or the temporal caches, based on
a history buffer. Instead, in our approach we allocate the vari-
ables statically to the different local memory modules, avoid-
ing the power and area overhead of the dynamic prediction
mechanism. Moreover, while in their approach they target
performance, our goal is to reduce power consumption, while
keeping the performance comparable or better.

3 Our approach

Different types of data usually exhibit different types of
locality properties andaccess patterns. For instance, scalar
variables tend to have high temporal locality (e.g., counters,
indices), with moderate degree of spatial locality, since vari-
ables stored close to each other in memory are not always ref-
erenced at the same time. Vectors with large stride have poor
spatial locality, may or may not have temporal locality, and
may be suitable for stream access. Vectors with small strides
exhibit large spatial locality, while randomaccesses have in
general poor locality.

In the traditional single-cache hierarchy architecture, all
variables in an application were cached by a single cache.
However, especially in large real-life programs, with many
variables exhibiting such variedaccess patterns and locality
characteristics, it is very difficult to find a single one-size-fits-
all cache, which efficiently exploits all locality types. For in-
stance, when increasing the cache line size to improve spatial
locality, many useless fetches from the main memory are in-
troduced, in the variables with little or no spatial locality.

In this paper we present a technique to customize the lo-
cal memory architecture for the different access and locality
patterns. We first cluster the variables according to different

types of locality, then match the needs ofeach such cluster
using different local memory modules. For instance, by us-
ing temporal caches for variables with high temporal local-
ity, and spatial caches for variables with high spatial locality,
we reduce the main memory bandwidth requirement, and sig-
nificantly reduce power consumption. Temporal caches are
caches with small line size (of a few bytes), and spatial caches
exhibit large line sizes to exploit the spatial locality.

Figure 1 presents the flow of our approach. Our local mem-
ory customization technique is part of the MemorEx early De-
sign Space Exploration (DSE) approach. The design starts by
selecting a set of local memory modules from a local mem-
ory IP library, along with main memory modules from a main
memory IP library and processors from a processor IP library.
Our EXPRESSION Architectural Description Language (ADL)
[13], is used to capture the processor-memory subsystem [20],
and retarget the profiler for early memory subsystem profil-
ing, as well as the latter compilation [10, 11, 12] and simu-
lation stages [16]. The PaLM algorithm customizes the local
memory architecture, according to the locality types of the
variables present in the input C application.

C Application

Processor
IP Library

Main Memory
 IP Library

Local Memory
 IP Library

Processor/Memory
 System in
 EXPRESSION

Profiling

To H/S Partitioning, Synthesis,
 Compilation

Compiler, Simulator
 Retargeting

PaLM

Figure 1. The flow of our approach

4 Illustrative example

We use the Go benchmark from SPECINT95 to illustrate
the power savings generated by our approach. The Go pro-
gram is an application for playing Go, exhibiting a varied set
of data access patterns and locality types. The characteristics
of the program are presented in Table 1.

We present the system performance and power in 2 cases:
(I) the traditional local memory architecture, containing a sin-
gle cache, tuned to best balance between temporal and spatial
locality for the specific mixture ofaccess patterns in the ap-
plication, and (II) our customized local memory architecture,
containing a temporal and a spatial cache to specifically ex-
ploit the types of locality of the different variables.

Using simulation results from the WATTCH power simula-
tor [2] for an 8KB 2-way set associative on-chip cache in 0.35
micron technology, thecache accesses consume an average of
0.025W and idle cycles consume 0.0025W (at a frequency of
100MHz). The off-chip main memory dissipates an average
of 2W for accessing 8 bits at100MHz [15]. Using the bus
power estimation function from [4], the main memory inter-

connect dissipates 0.6W for accesses at100MHz. We assume
the total local memory space available is 8KB.

(I) In the traditionalcache architecture, a single cache mod-
ule services all the variables in the application. In order to de-
termine the best such traditional cache configuration, which
best compromises the different types of locality present in the
application, we explore the hit ratio and memory bandwidth
requirements for different cache line sizes for our example.

Figure 2 presents the hit ratio and bandwidth variation with
the cache line size for the go benchmark, assuming an 8KB 2-
way set associative cache, and varying the cache line size. The
X axis represents the cache line sizes in 4 byte words, and the
Y axis represents the cache hit ratio and main memory band-
width, computed as the average number of bytes requested
from the main memory per cycle.

0

20

40

60

80

100

hit ratio

bandwidth

2 4 8 16 32 64 128 256

1

2

3

4

5
hit ratio / bandwidth

 cache
line size

Figure 2. The cache hit ratio and memory bandwidth vari-
ation with the cache line size for the go benchmark

Bench # lines of code # scalars # arrays array sizes locality types
go 30K 86 202 8 - 54380 temporal, spatial,

[bytes] stream, random

Table 1. Characteristics of Go benchmark.

When increasing the cache line size, the hit ratio initially
increases, reaching a peak of 95% for line sizes of 8 and 16
words, then decreases for larger cache lines. On the other
hand, the bandwidth increases with the cache line size slowly
initially, then explodes for line sizes larger than 32 words. The
best balance between hit ratio and bandwidth is reached for
line sizes 8 and 16: hit ratios are both 95%, while the band-
width for line size 8 is 0.32 bytes/cycle, significantly lower
than for line size 16 (0.58 bytes/cycle). Since the power con-
sumption is directly influenced by the main memory accesses,
the line size 8 cache represents the best configuration.

The average main memory power consumption for the tra-
ditional approach is the average number of main memory ac-

cesses per cycle multiplied with the power consumed by an
access:

Trad power = bandwidth � (dram power + bus power)

= 0:32bytes=cycle � (2W + 0:6W) = 0:832W

In the following we will show how by customizing the lo-
cal memory architecture, it is possible to significantly reduce
the power consumption of the memory system, without sacri-
ficing performance.

(II) In our approach, we use two local memory modules
to separately match the needs of variables with high temporal
locality and variables with high spatial locality from the ex-
ample application. Instead of the single cache module from
the traditional approach, we use two smaller caches: a tempo-
ral cache, exhibiting small line size, to store the variables with
small spatial locality, and a spatialcache, with larger line size,
to store the variables with high spatial locality. By analyzing
the access patterns in our example application, and clustering
the variables into groups exhibiting different locality patterns,
we determine the amount of local memory needed foreach
such type of locality.

In the Go benchmark, the scalars and small arrays have
mostly high temporal locality, and moderate spatial locality.
For instance, ldir, an array of 52 integers storing a table of
directions, has large temporal locality (an average of 255 ac-
cesses per value), and small spatial locality (only 28% of the
neighboring values are reused). On the other hand, the large
arrays, tend to have large spatial and small to moderate tem-
poral locality. For instance, the array armyrun of 3600 inte-
gers, storing the number of liberties around an army, averages
1 access per value, and100% of the neighboring values are
reused. Due to the distribution of the temporal and spatial lo-
cality among variables, we use a small temporalcache, to hold
mostly scalars and small arrays, and some of the larger arrays
with small spatial locality, and a larger spatialcache, exhibit-
ing a large line size, to store the large arrays with high spatial
locality. For our example, the temporalcache has a line size
of 4 words, and a size of 2KB, and the spatial cache has a line
size of 8 words, and a size of 6KB (we assume words of 4
bytes).

The hit ratio for the customized architecture is 95%, similar
to the best traditional cache configuration (in fact marginally
better than the line size 8 traditional cache configuration). Due
to the better match between the cache line sizes and the types
of locality present in the application, a large number of use-
less main memory accesses are avoided, and the main memory
bandwidth is reduced to 0.26 bytes/cycle, representing a 23%
reduction over the traditional cache configuration.

There are 3 components which influence the power con-
sumption in our approach. (a) the main memory system power
consumption in our architecture is reduced by the smaller num-
ber of main memory accesses, (b) the power consumed by
each cache access is reduced due to the smaller size of the
caches (since the cache power grows with the cache size, and
the total number of cache accesses is the same as in the tra-
ditional approach), and (c) the cache idle power is increased

due to the extra cache control.
(a) The main memory power consumption for our approach

is equal to the average number of main memory accesses (the
main memory bandwidth) multiplied with the memoryaccess
power consumption:

PaLM mem power = bandwidth � (dram power + bus power)

= 0:26bytes=cycle � 2:6W = 0:67W

(b) The power consumed by a cache during an access grows
with the size of the cache. Since in our approach each of the
two caches have smaller size than the cache in the traditional
approach (the two caches in our approach use the same space
as the single cache in the traditional approach), each cache ac-
cess will consume less power than the traditional large cache,
while the total number of cache accesses remains the same.
However, for simplicity of the explanations we do not include
this power saving in our computations.

(c) During cache idle cycles, instead of the traditional sin-
gle cache, in our approach two caches consume idle power.
However, since the main memory accesses are much more
power hungry than thecache control, this overhead is small
compared to the savings obtained by reducing the main mem-
ory bandwidth. The overhead due to the extra idle power con-
sumed by the additional cache in this example is:

cache ctrl overhead = 0:0025W

Therefore the power consumed in our approach, including
the cache control power overhead is:

PaLM power = PaLM mem power + cache ctrl overhead

= 0:6725W

The total power saving between our approach and the tradi-
tional cache, considering the overhead due to the extra cache
control is:

PaLM power saving = Trad power � PaLM power

= 0:16W

The power reduction for our approach represents a 23%
saving over the best traditional configuration, while the hit
ratio is unchanged (in fact marginally better). Thus, by cus-
tomizing the local memory architecture to better fit the varied
types of locality in the application, it is possible to manage
more judiciously the memory bandwidth, and generate signif-
icant power savings without sacrificing performance.

5 Pattern Based Local Memory Customization
Algorithm

We present in the following our Pattern Based Local Mem-
ory Customization for Low Power (PaLM) algorithm, which
customizes the local memory architecture to match the local-
ity needs of the different access patterns in the application,
and generate substantial power savings. The PaLM algorithm
receives as input the C application, along with the available
local memory space, and generates as output the customized
local memory architecture along with the mapping of the vari-
ables to different local memory modules.

Algorithm: Access Pattern based Local Memory Customization for Low Power
Input: The C Application and the amount of available local memory,
Output: Local Memory Organization and variables mapping
Begin PaLM
1. Compute the access patterns and locality types in the application.
2. Cluster the variables according to the locality types.
3. Choose the Local Memory Architecture Template.
4. Selecte the Local Memory Modules Characteristics.
5. Map the variables to the Local Memory Modules.

End PaLM

Figure 3. The Access Pattern based Local Memory Cus-
tomization (PaLM) Algorithm.

Figure 3 presents the Local Memory Customization algo-
rithm, composed of 5 steps. The first step computes the access
patterns and locality types in the input application. The sec-
ond step clusters the variables according to the similarity in
the access patterns. The third step chooses the local mem-
ory architecture template, while the fourth step chooses the
characteristics of each local memory module. The last step
performs mapping of the variables to specific local memory
modules.

The first step extracts information about theaccess patterns
and locality types for the different variables in the application.
Along with variable sizes, this information will be used to cus-
tomize the local memory architecture, and map the variables
to specific local memory modules. Foreach variable we deter-
mine a set of metrics which characterize the locality type of
the variable, and suitability to differentcaching approaches.
The metrics we determine at this level are symbolic, with-
out considering physical characteristics of the local memory
modules. The later steps of the algorithm will introduce more
physical characteristics of the memory organization, and will
refine the decisions based on profiling.

In order to characterize suitability for temporal locality,
for each variable (scalar or array) we determine the average
number of accesses per value. as well as the average reuse
distance. The reuse distance [14] represents the distance be-
tween two consecutive accesses to a particular value. The av-
erage reuse distance represents the average over all reuses of
a value, and over all values in the variable (an array may be
composed of multiple values).

avg accesses per value(var) =
no of accesses(var)

no of values accessed(var)

avg reuse distance(var) =
SUM(reuse distance(var))

no of reuses(var)

To characterize spatial locality, we determine the percent-
age of neighboring values which areaccessed in the future.
We define the term neighboring by using a spatial locality
function F, and a block sizeBs, where F(addr) represents the
set of values in the same spatial locality block as addr, and
Bs represents the spatial locality block size. For instance, in
the traditional cache, the blocks translate into cache lines, and
the locality function represents thecache line holding the par-
ticular address. Spatial density of the accesses represents the

average number of values accessed in a block, over the block
size (we consider only the blocks where at least one value is
accessed).

spatial density(var) =
avg no values accessed(block; var)

Bs

The second step of the PaLM algorithm clusters the vari-
ables according to the locality metrics computed in the previ-
ous step. We use a set of heuristics, to categorize the variables
according to their spatial and temporal locality. Variables with
high number of accesses per value and low reuse distance, are
good candidates to store in a temporalcache. Similarly, val-
ues with moderate accesses per value and low reuse distance
run a high chance to benefit from temporal locality. On the
other hand, variables with high reuse distance, are likely to be
thrown out of the cache before being reused. Variables with
low accesses per value, profit less from temporal locality.

The spatial density is a number between 0 and 1. Variables
with a large spatial density are likely to profit from spatial
locality caches. On the other hand variables with low spatial
density, when mapped to spatial caches will result in useless
fetches from the main memory, generating useless memory
traffic, and wasting bandwidth.

The third step chooses the local memory architecture tem-
plate, in terms of the number of modules, and their type (spa-
tial, temporal) according to the prevalent types of locality present
in the application. The amount of locality of a certain type is
determined both by the total size of the variables exhibiting
that locality, and the intensity of the locality prediction. For
instance if the spatial locality cluster contains large arrays,
with high spatial density, it is beneficial to include a local
memory module exploiting spatial locality.

The fourth step chooses the characteristics of the memory
modules selected in the previous step. Since the total amount
of local memory space is limited, we vary the relative sizes of
the different memory modules, and the characteristics ofeach
module such as line size, to trade-off hit ratio against memory
bandwidth requirement.

The last step maps the variables to the local memory mod-
ules. The local memory modules cover mutually exclusive
memory areas. Therefore, each variable will be serviced by
only one local memory module, determined statically. We
start from the initial mapping of the variables to local mem-
ory modulesaccording to the clusters from Step 2. Since the
original clustering in Step 2 is performed based on symbolic
information only, without knowledge of the physical charac-
teristics of the memory modules, we use profiling to fine-tune
the mapping.

Due to the customized local memory architecture targeting
separately the different types of locality in the application, the
memory bandwidth is managed more judiciously, resulting in
significant power savings, without sacrificing hit ratio. For
more details on the PaLM algorithm and the customized cache
architecture, please refer to [9].

6 Experiments

We present a set of experiments demonstrating the memory
bandwidth and power reductions obtained by our Access Pat-
tern based Local Memory Customization (PaLM) algorithm.

6.1 Experimental setup

In our experiments we use a processor architecture based
on the SUN SPARC, with 8KB of local memory space. The
applications have been compiled using gcc. The hit ratio and
bandwidth have been computed using a version of our mem-
ory subsystem simulator based on shade [28] and SIMPRESS
[16]. The power figures have been obtained with the WATTCH
power simulator [2], assuming a technology of 0.35 micron.

The benchmarks are a combination of large applications,
and smaller kernels from the multimedia, general purpose,
and scientific domains. Vocoder is a GSM voice coding ap-
plication (15K lines of code). Go, compress, and li are from
the SPECINT95 benchmark suite (2K to 30K lines of code),
while sor and madd are scientific kernels.

6.2 Results

Table 2 presents the traditional and customized local mem-
ory architectures, obtained using our Pattern Based Local Mem-
ory Customization for Low Power (PaLM) algorithm, along
with the resulting hit ratios. In order to separate out the benefit
of using specific local memory modules to target the different
types of locality in the application, we compare our approach
to the best traditional cache configuration for the given local
memory size. The first column in Table 2 shows the bench-
marks, the second column shows the best cache configuration
for the traditional approach, and the third column shows the
hit ratio for this architecture. The three numbers representing
the cache architecture are the cache size in bytes, the cache
line size in words (a word is 4 bytes), and the cache associa-
tivity. The fourth column shows the local memory configu-
ration for out customized architecture, while the last column
presents the corresponding hit ratio.

bench Traditional cache arch PaLM
organization hit ratio organization hit ratio

go 8K/8/2 95 2K/4/2, 6K/8/2 95
compress 8K/128/2 99 2K/8/2, 6K/128/2 99

li 8K/32/2 99.9 2K/4/2, 6K/128/2 99.9
madd 512/8/2 83 256/4/2, 256/8/2 94
sor 8K/64/2 99 2K/32/2, 6K/64/2 99

vocoder 512/8/2 99 256/4/2, 256/8/2 99

Table 2. The traditional and customized local memory ar-
chitectures and hit ratios.

For most of the applications, the hit ratios in our approach
are similar, or marginally better than in the traditional ap-
proach. For madd, the hit ratio is substantially improved, due
to the fact that it contains a large number of stream accesses,

and can benefit from the inclusion of the spatial cache to han-
dle them, while keeping variables without spatial locality in
the temporal cache.

Table 3 presents the bandwidth and power decrease gener-
ated by our approach. The second and third columns show the
bandwidth and memory/interconnect power for the traditional
cache architecture. The fourth column shows the bandwidth
for our customized memory organization, while the fifth col-
umn presents the memory and interconnect power consump-
tion for our customized architecture, including the cache con-
trol overhead due to the extra logic. The last column shows the
percentile decrease in power generated by our customized lo-
cal memory, compared to the traditional approach. The power
reduction varies between -33% (representing a power over-
head, for the li benchmark, where there where no opportuni-
ties for the customized memory to improve the locality match),
and 77% (for madd, where the local memory customization
could substantially reduce the memory bandwidth requirement).
The power savings for the large benchmarks, while not as rad-
ical as for the kernels, are significant (18% to 31%). The av-
erage memory power reduction is 30%.

The large power savings are due to the customization of
the local memory architecture, which separately targets the
different locality types in the application, generating a better
match between the application and the local memory. This
effect is particularly significant in large applications contain-
ing variables with many different types of access patterns and
locality, or after locality improving optimizations, which ex-
acerbate the particular type of locality, and increase the need
for a more focused local memory architecture.

bench traditional cache arch customized cache arch % power
bandwidth power bandwidth power decrease

go 0.32 0.832 0.26 0.67 23
compress 3.67 9.54 3.11 8.08 18

li 0.0156 0.04 0.0224 0.06 -33
madd 2.5 6.5 1.41 3.66 77
sor 0.31 0.806 0.19 0.49 63

vocoder 0.024 0.062 0.018 0.047 31
average 30

Table 3. The bandwidth and power reductions obtained by
our Local Memory Customization Algorithm.

7 Summary

We presented an approach for customization of the local
memory architecture, to target the different types of locality in
the application, and substantially reduce memory bandwidth
and power consumption, without sacrificing performance.

Traditionally, the local memory architecture relied on a
large cache to store all the variables in the application. How-
ever, especially in large real-life applications, different types
of data exhibit different types of locality andaccess patterns,
with different locality and bandwidth needs. The best the tra-
ditional architecture could do was to compromise the needs of

the different variables, by trading off temporal versus spatial
properties of the cache. By using a temporal cache to store
the variables with high temporal and low spatial locality, and
a spatial cache to store the variables with high spatial local-
ity, it is possible to finetune the local memory architecture to
the locality needs of theaccess patterns in the application, and
substantially reduce the main memory bandwidth and power
consumption, without sacrificing performance.

We presented a set of experiments which show the band-
width and power reduction obtained by our Local Memory
Customization approach. The average power reduction was
30% (with similar or better cache hit ratios), over the best tra-
ditional configuration, for a set of large multimedia and gen-
eral purpose applications, and scientific kernels.

Currently our work applies to temporal and spatial caches.
Our on-going work evaluates this technique in the presence of
other forms of caching, such as compiler-controlled on-chip
memories, and prefetching.

8 Acknowledgments
We would like to acknowledge and thank Ashok Halambi,

Nick Savoiu, Radu Cornea, Prabhat Mishra, Srikanth Srini-
vasan, Partha Biswas and Aviral Shrivastava for their contri-
butions to the EXPRESS/EXPRESSION project.

References

[1] L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi. Ar-
chitectures and synthesis algorithms for power-efficient bus in-
terfaces.TCAD, 19(9), 2000.

[2] D. Brooks, V. Tiwary, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimizations.
In ISCA, 2000.

[3] D. Callahan, K. Kennedy, and A. Porterfield. Software
prefetching. InASPLOS, 1991.

[4] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachter-
gaele, and A. Vandecappelle.Custom Memory Management
Methodology. Kluwer, 1998.

[5] T-F. Chen and J-L. Baer. A performance study of software and
hardware data prefetching schemes. InISCA, 1994.

[6] K. Diefendorff and P. Dubey. How multimedia workloads will
change processor design. InMicro, 1997.

[7] S. Rixner et. al. Memory access scheduling. InISCA, 2000.

[8] A. Gonzales, C. Aliagas, and M. Valero. A data cache with
multiple caching strategies tuned to different types of locality.
In International Conference on Supercomputing (ICS), 1995.

[9] P. Grun, N. Dutt, and A. Nicolau. Early local memory explo-
ration for low power. Technical report, University of California,
Irvine, 2000.

[10] P. Grun, N. Dutt, and A. Nicolau. Memory aware compilation
through accurate timing extraction. InDAC, 2000.

[11] P. Grun, N. Dutt, and A. Nicolau. Mist: An algorithm for mem-
ory miss traffic management. InTo Appear in ICCAD, San Jose,
2000.

[12] P. Grun, A. Halambi, N. Dutt, and A. Nicolau. RTGEN: An
algorithm for automatic generation of reservation tables from
architectural descriptions. InISSS, 1999.

[13] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau. EXPRESSION: A language for architecture ex-
ploration through compiler/simulator retargetability. In Proc.
DATE, March 1999.

[14] A. Huang and J. Shen. A limit study of local memory require-
ments using value reuse profile. InAnnual Symposium of Mi-
croarchitecture, 1995.

[15] IBM Microelectronics, Data Sheets for Synchronous DRAM
IBM0316409C.
www.chips.ibm.com/products/memory/08J3348/.

[16] A. Khare, N. Savoiu, A. Halambi, P. Grun, N. Dutt, and
A. Nicolau. V-SAT: A visual specification and analysis tool
for system-on-chip exploration. InProc. EUROMICRO, Octo-
ber 1999.

[17] C. Kulkarni, F. Catthoor, and H. de Man. Code transforma-
tions for low power caching in embedded multimedia proces-
sors. InIntnl. Parallel Processing Symposium (IPPS), Orlando,
FL, 1998.

[18] D. Lee, P. Crowley, J-L. Baer, T. Anderson, and B. Bershad.
Execution characteristics of desktop applications on windows
nt. In ISCA, 1998.

[19] C. Luk and T. Mowry. Memory forwarding: Enabling aggres-
sive layout optimizations by guaranteeing the safety of data re-
location. InISCA, 1999.

[20] P. Mishra, P. Grun, N. Dutt, and A. Nicolau. Processor-memory
co-explotation driven by a memory-aware architecture descrip-
tion language. InTo Appear in International Conference on
VLSI Design, Bangalore, India, 2001.

[21] S. Palacharla and R. Kessler. Evaluating stream buffers as a
secondary cache replacement. InISCA, 1994.

[22] P. Panda, N. Dutt, and N. Nicolau.Memory Issues in Embedded
Systems-on-Chip. Kluwer, 1999.

[23] P. R. Panda, N. D. Dutt, and A. Nicolau. Low power mem-
ory mapping through reducing address bus activity. InIEEE
Transactions on VLSI.

[24] Betty Prince.High Performance Memories, New Architecture
DRAMs and SRAMs evolution and function. Wiley, West Sus-
sex, 1996.

[25] S. Przybylski. Sorting out the new DRAMs. InHot Chips
Tutorial, Stanford, CA, 1997.

[26] P. Ranganathan, S. Adve, and N. Jouppi. Performance of im-
age and video processing with general-purpose processors and
media isa extensions. InISCA, 1999.

[27] P. Ranganathan,S. Adve, and N. Jouppi. Reconfigurablecaches
and their application to media processing. InISCA, 2000.

[28] Sun Microsystems, The Shade Simulator.sw.sun.com/shade.

[29] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji.
Adapting cache line size to application behavior. InICS, 1999.

[30] M. Wolf and M. Lam. A data locality optimizing algorithm. In
PLDI, 1991.

[31] S. Wuytack, F. Catthoor, G. de Jong, B. Lin, and H. De Man.
Flow graph balancing for minimizing the required memory
bandwith. InISSS, La Jolla, CA, 1996.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

