
ply
ting
en

m
ri-
w-
of
up-
er
ors
ergy
o
e
ble
s.
en-

II
ed.
ge
s
w
nd
n-
red

ral
n-
is

f the
on-
we
irst,
pro-
the

LEneS: Task Scheduling for Low-Energy Systems
Using Variable Supply Voltage Processors

Flavius Gruian

Department of Computer Science
Lund University

Box 118, SE-221 00 Lund, Sweden
Tel: +46 46 222 0000
Fax: +46 46 13 1021

e-mail: Flavius.Gruian@cs.lth.se

Krzysztof Kuchcinski

Department of Computer Science
Lund University

Box 118, SE-221 00 Lund, Sweden
Tel: +46 46 222 3414
Fax: +46 46 13 1021

e-mail: Krzysztof.Kuchcinski@cs.lth.se
Abstract  The work presented in this paper addresses mini-
mization of the energy consumption of a system during system-
level design. The paper focuses on scheduling techniques for
architectures containing variable supply voltage processors, run-
ning dependent tasks. We introduce our new approach for Low-
Energy Scheduling (LEneS) and compare it to two other schedul-
ing methods. LEneS is based on a list-scheduling heuristic with
dynamic recalculation of priorities, and assumes a given alloca-
tion and assignment of tasks to processors. Our approach
minimizes the energy by choosing the best combination of supply
voltages for each task running on its processor. The set of experi-
ments we present shows that, using the LEneS approach, we can
achieve up to 28% energy savings for the tightest deadlines, and
up to 77% energy savings when these deadlines are relaxed by
50%.

I. INTRODUCTION

Mobile computing and communication require careful
design from the energy consumption point of view, since bat-
tery life-span plays an essential role. Targeting low energy and
low power as early as possible in the design process, at high
levels of abstraction, is most prolific [1]. Although there has
been much work in the area of behavioral synthesis for multiple
supply voltages (e.g. [11]), the problem of scheduling supply
voltages at system level is different in principle. At behavioral
level, once a unique supply voltage for a functional unit is
determined during design, it will be constant at runtime. At sys-
tem level, the supply voltage of a dynamic voltage processor
can vary at runtime, which offers more flexibility and better
potential for reducing the energy. For this reason, several
researchers have addressed energy issues as specific problems
at system level [1-9]. Selecting the system architecture and the
distribution of the computations can greatly influence the over-
all energy consumption [5,8,9]. Although shutting down idling
parts is one way to further reduce the energy consumption
[2,3], it is more effective to slow down selected computations
and run the processing units at lower supply voltages [6]. The
most worthwhile configuration to decrease the energy con-

sumption is to have processors able to change their sup
voltage and frequency during execution. Processors opera
at a discrete range of supply voltages have already be
designed [12,13]. An optimal preemptive scheduling algorith
for independent tasks running on a single processor with va
able speed is described in [4]. In [6], the authors present a lo
energy oriented heuristic for non-preemptive scheduling
independent tasks, on a single processor core with variable s
ply voltage. In [7], Ishihara and Yasuura present anoth
scheduling technique, employing variable voltage process
and independent tasks. There, the authors show that the en
can be further reduced by allowing each task to run in tw
phases, at two different supply voltages. In our work, w
address non-preemptive scheduling on processors with varia
supply voltage, overcoming some of the previous limitation
Namely, we propose here an algorithm which handles dep
dent tasks distributed over several processors.

The rest of the paper is organized as follows. Section
briefly describes the low-energy design flow we have adopt
In section III, we give the relation between energy and volta
followed by an illustrative example. Section IV summarize
three scheduling alternatives for low energy, including our ne
approach. Section V describes how we model the problem, a
section VI presents our scheduling approach. Section VII co
tains the experimental results, and the conclusions are gathe
in section VIII.

II. DESIGNFLOW OVERVIEW

We assume a target architecture composed of seve
dynamic supply voltage processors, with local memories, co
nected through buses or/and point to point links. The design
modeled as a task-graph, each task being executed on one o
processors. The total execution time for the task-graph is c
strained by a designer imposed deadline. The design flow
consider is a step-by-step process, as depicted in Fig. 1. F
the processors are allocated and the tasks are assigned to
cessors. These two steps can be performed either by

on-
ose
the
the
d.
wo

p-
is
n
ly
e
sk
n-
e.

wo

as

rgy
-
e
s.

xe-
es a
en
, it
xi-
Fig.
x-
designer or by a design tool. Next, an enhanced task-graph (see
section V) undergoes a low-energy scheduling step, complying
to the already decided allocation and assignment. Then, the
solution is evaluated. If the purpose is design space explora-
tion, all these steps must take little time, to allow fast covering
of as many options as possible. A more detailed description of
our view of a low-energy directed design flow is given in [10].
The work presented in this paper is focused on the scheduling
step, for which we developed a heuristic suitable for the
described design flow.

III. T HE SUPPLY VOLTAGE AND THE ENERGY

Consider that taskT is executing duringN clock cycles on a
processorP, which runs at supply voltageV and frequencyf.
For the given voltageV, processorP will have an average power
consumptionπ. The energy consumed by executing taskT on
processorP, running at supply voltageV, is computed as:

. The average power consumption dependency
on the supply voltage and execution frequency is given by:

, whereKa is a task/processor dependent factor,
determined by the switched capacitance. Combining the above
two formulae, we can rewrite the energy expression as:

. From this, we conclude that lowering the sup-
ply voltage would yield a drastic decrease in energy
consumption. At the same time, the supply voltage affects the
circuit delay, which sets the clock frequency, since

. Formally, , whereV
is the supply voltage,VT is the threshold voltage, andKb is a
constant. Thus, decreasing the voltage leads to lower clock fre-
quencies and to longer execution delays.

Processors operating at a range of voltages and frequencies
are under development [12]. They are able to adjust their sup-
ply voltage, using a fine step, according to the required
operating frequency. Processors supporting several supply
voltages are already available. For such processors, the various
voltages yield different execution delays and energy consump-
tion for the same taskT. When the processor is limited to a
discrete number of supply voltages, the most energy-efficient
scenario is to split the taskT into parts, which will execute at
different available voltages. Fig. 2 depicts an illustrative exam-
ple of scheduling a task-graph (a). In a classic scheduling

technique, such as list-scheduling, voltage selection is not c
sidered (b). In order to obtain energy savings, one must cho
the best supply voltage for each processor, depending on
executing task (c). In practice, this can not be done, since
number of available supply voltages for a processor is limite
In (d) a feasible schedule is depicted, using processors with t
voltages.

In the case of real processors, with a limited number of su
ply voltages, the minimal energy for executing a task
obtained by using only two different supply voltages, as show
in [7]. These voltages are the ones around the “ideal” supp
voltage for the given deadline. The “ideal” supply voltage is th
unique voltage which sets the execution time for that ta
exactly to the deadline. Only “ideal” processors, with a conti
uous range of supply voltages, can use an “ideal” voltag
When the allowed task execution timet is betweent1 (obtained
for V1) andt2 (obtained forV2), the task will execute partly at
V1, and partly atV2. The execution timet can be expressed
depending on the number of processor cycles run at the t
supply voltages, for the resulting clock frequencies,f1 andf2:

, wherex is the number of cycles run at
supply voltageV1. Moreover, task energy can be expressed
a function of clock cycles: . From
the last two equations we can deduce the expression of ene
as a function of time,E(t), which is a linear dependency. A cer
tain execution duration for a task uniquely identifies th
number of cycles needed to execute at the different voltage

The model described above (depicted in Fig. 2.d) is the e
cution model assumed in our approach. A processor execut
task in two phases, at two different supply voltages, chos
from the available voltages. Whenever the processor is idle
is shutdown. In this case, the ideal energy function is appro
mated by segments between the neighboring voltages (see
4). A larger number of available voltages yield a better appro

Allocation&
Assignment

Low-Energy
Scheduling

System Specification
(task-graph)

Generate

try to
improve

satisfactory
solution

Fig. 1. System Design for Low Energy

assigned
task-graph

assigned &

task-graph
scheduled

Evaluate

E N π⋅() f⁄=

π Ka f V
2⋅ ⋅=

E N Ka V
2⋅ ⋅=

f 1 d⁄ elay∼ delay Kb V V VT–()2⁄⋅=

time

time

time

P1

P2

P1

P2

P1

P2

shutdown

bus

bus

bus

b) Classic List-scheduling: no voltage scaling

de
ad

lin
e

c) Ideal scheduling:

d) Real case:

a) The task-graph
to be scheduled

communication

power profile for P1

power profile for P2

P1 runs at V1
P1 runs at V2

task

processor
➊

➊

➊

➊

➋
➋

➋

➋

➌

➌

➌

➌

➍

➍

➍

➍

Fig. 2. Scheduling for low energy on multiple voltage processors.
The area under the power profile reflects the energy consumption.

P1 and P2 can run
 at any supply voltage

only two supply
voltages available

t x f 1 N x–() f 2+=

E x() Ka xV1
2 N x–()V2

2+()=

dif-
ur
k
e,
up-

we
eth-

hs
ig.
nted
of
ing
es-
nt
er
cs
by
hich
, is
ig.
m
of
the
rk-
ks
el,

ion
ck
ges
fine
n-

e
ign-
not
imation of the ideal energy function, leading to a more efficient
design.

IV. SCHEDULING ALTERNATIVES FORLOW ENERGY

There are a number of methods for scheduling the execution
of tasks in order to fulfill the deadline and have a minimal
energy consumption at the same time. Task dependencies and
restrictions imposed by processor implementation complicate
the problem. In this section, we summarize several scheduling
strategies, applicable in different situations. The last of them is
the new scheduling method we introduce in this paper.

A. Ideal Case

Consider first the ideal case, when the tasks are independent,
running on one processor. The processor is also ideal, in the
sense that it can run at any supply voltage and the threshold
voltage is always small enough to be negligible. With all these
assumptions, the energy-optimal schedule can be directly
obtained from the shortest possible schedule by scaling. The
scaling factor is the ratio between the desired deadline and
shortest possible deadline (see Appendix for proof). The new
execution delays of the tasks can be associated with a new sup-
ply voltage. Note that the processor will run at the same, single
supply voltage for all tasks. This method can be directly
extended to several processors executing independent tasks.

B. List-Scheduling with Scaling

One of the simplifying assumptions for the ideal case was
“independent tasks”. One can overcome this by using a sched-
uling strategy that can handle partial ordered tasks or task-
graphs. Therefore, we consider list-scheduling with critical
path as a priority function (later on referred to as ClassicLS).
The scheduling strategy is similar to the one described in sub-
section A. The task graph is scheduled using list-scheduling,
obtaining the tightest possible deadline. Then, the schedule is
scaled to fit the desired deadline. The scaling factor is the ratio
between the desired deadline and the deadline obtained by list-
scheduling. We call this method ScaledLS. The main differ-
ence between this approach and the ideal case arises when one
considers several processors. In the ideal case every processor
had its own scaling factor, while in this case there is a unique
scaling factor, given by the overall deadline.

Using this strategy, the tasks on the critical path are sched-
uled in an optimal way, as in the ideal case. The drawback of
this approach is that the tasks on the non-critical paths do not
take advantage of the available time slack. Yet, this can be
solved by using an appropriate priority function, as described
in this paper.

C. Our Approach to Low-Energy Scheduling

The Low-Energy Scheduling algorithm (LEneS) presented
in this paper is based on list-scheduling with an energy-sensi-

tive priority function. The priority function is constructed in
such way that it handles real processors, able to run at few
ferent supply voltages. The other important feature of o
priority function is that it takes advantage of the time slac
from the non-critical path. Thus, even for the tightest deadlin
there are time moments when the processors run at lower s
ply voltage, saving energy. For more loose deadlines,
assume that we use the same strategy as in the previous m
ods: scaling of the tightest schedule (ScaledLEneS).

V. THE ENHANCED TASK-GRAPH

The LEneS algorithm works on enhanced task-grap
(ETG), which is a data structure derived from task-graphs. F
3.a) depicts an assigned task-graph. The tasks are represe
by the circles annotated by pairs of values. A pair consists
the execution time of the task on the specific processor, runn
at the reference supply voltage, and the identifier of the proc
sor executing the task. The black disks represe
communications annotated with the duration and the identifi
of the bus/link used for that specific communication. The ar
define the partial order of task execution, which is imposed
the various data dependencies. The assigned task-graph, w
is the output of the allocation and assignment steps (Fig. 1)
transformed into an ETG used by the LEneS algorithm. F
3.b) depicts an example of an ETG. The ETG is obtained fro
the initial task-graph by substituting each node with a pair
nodes: a start node (the circles), marking the beginning of
execution of that node, and an end node (the grey disks), ma
ing the completion of the task. The execution times of the tas
are now assigned to the internal edges. In our current mod
only computational tasks are subject to change their execut
delay, while the communication delays remain fixed. The thi
edges in the ETG represent the fixed delays. The other ed
depict modifiable delays, and the associated numbers de
their minimal values. The information regarding the assig
ment of tasks to processors is also transferred to the ETG.

During scheduling with LEneS, each ETG node will b
assigned a time moment, such that the partial order and ass
ment are respected while the delays and the deadline are
violated, and the energy consumption is minimized.

(6,1)

(3,1)

(7,1)

(2,1)

(9,2)

(2,3)

(1,3)

6

0

3

0

7

0

2
0

02

0

9

0
1

(1)

(1)

(1)

(1)

(2)

(3)

Fig. 3. A task-graph (a) is transformed into an enhanced task-graph (b)

a) b) ETGTG

(3)

e a
,
e a
n

e

, the
ar-
if it

per-

in
ne.
ible

ting
ble
the

or
in

e
s

ain
he
rgy,
e
a

the
ling

rity

de
ule
ed
d to
be

fol-
VI. THE LENES APPROACH

LEneS, our low-energy scheduling approach (Fig. 5), is
based on list-scheduling with a energy sensitive priority func-
tion. In every scheduling step, the node priorities change and
have to be recalculated. Moreover, the priority function is tuned
during several scheduling attempts. Whenever a scheduling
attempt fails (the deadline is violated), the priority function is
adjusted and a re-scheduling is attempted.

Next, we give the background necessary for understanding
the priority function, followed by the expression of the priority
function used in our scheduling algorithm. Finally, we present
the method used for tuning the priority function.

A. The Energy of a Schedule

In the ETG, each task is described by the start-end node pair.
By performing As-Soon-As-Possible (ASAP) and As-Late-As-
Possible (ALAP) schedules on the ETG, for the highest supply
voltage, we obtain theASAP andALAP time slots, for both start
and end nodes. Without any resource constraints, the execution
delay of the task can be anywhere between the shortest possible
(t0, determined by the highest supply voltage) and the limit
imposed by the dependencies in the task-graph (ALAPend-ASAP-

start). The energy consumed by the task in this situation is
approximated by a linear dependency on its execution time
(Fig. 4), as discussed in section III. Given the energy function
E(t) (section III), we define theaverage energy of an ETG node.
We consider that the start-nodes have zero energy, while the
average energy of the end-nodes model the task energy. Given
that an end-node can be scheduled anywhere in a certain time
interval [a,b], included in itsASAP-ALAP interval, its average
energy is:

 (Fig. 4)

We consider the average energy over an interval [a, b] for a cer-
tain end-node, as a measure of the quality of the set of solutions
obtained by scheduling that end-node in [a, b]. At limit,

is the energy yielded by scheduling that node
exactly at momentc. For a given node, we are able to compare
different possible time intervals, or sets of solutions, using the
average energy as a measure.

The notion of average energy can be extended to sets of
schedules of an ETG. We consider thata scheduleis an assign-
ment of time moments to all itsN nodes, such that the partial

order is preserved and the given deadline is met. We defin
partial schedule of an ETGas the set of all possible schedules
given that a certain node can be scheduled anywhere insid
certain time interval. More formal, a partial schedule is a
assignment of an interval [ai, bi] to each nodei, where

, and ,
such that is a

schedule. We definethe average energy of a partial schedul
using the average energy of a node as:

Since all the start-nodes are considered to have zero energy
sum given above involves only the end-nodes. Given two p
tial schedules, we consider that one is better than the other
has lower average energy.

We say that a partial schedule S1 coversanother partial
schedule S2 if , whereai andbi have the
same meaning as in the previous paragraph, and the su
scripts identify the partial schedule. In this case, S2 is a subset
of the set of schedules represented by S1.

The idea of the LEneS algorithm consists in choosing,
each scheduling step, a partial schedule covered by the old o
The chosen partial schedule should have the smallest poss
energy compared to all the other partial schedules. The star
partial schedule must be one covering for sure all the possi
schedules. Therefore, for the initial partial schedule we use
[ALAP, ASAP] intervals without resource constraints.

B. The Priority Function

The priority function for a node reflects the energy gain (
loss) induced by a specific scheduling decision. At a certa
time stept, there are nodes (with indexi) which are eligible for
scheduling. If they are delayed, their time intervals will chang
from [t, ei] to [t+1, ei]. This change can propagate to the node
ordered after them. For each of the eligible nodes at a cert
scheduling step, delaying the node with one time unit gives t
new partial schedule, with a corespondent average ene

. We are interested in the partial schedule yielding th
largest energy reduction. Therefore, our priority function for
nodei, about to be scheduled at a certain time stept, is com-
puted as the difference between the average energy of
current partial schedule, and the one obtained by schedu
nodei later. In the special case when the momentt is the latest
possible moment, the node must be scheduled, so its prio
becomes infinite:

A negative priority means that it is better to schedule the no
later, while a positive value means that it is better to sched
the node at that very moment. The priority function present
above considers only the energy aspect, and may fail to lea
feasible schedules, especially when the deadline is tight. To
able to find schedules even for tight deadlines, we used the

ALAPend - ASAPstart

minimal delay maximal energy

minimal
energymaximal delay

Fig. 4. Task energy relative to its execution time on a three voltage processor.

delay

en
er

gy

t1 t2t0
a b

average

interval [a, b]
energy for

E(t)
V0

V1
V2

0

E a b,[]
1

b a–
------------ E t() t ASAP a b< ALAP≤ ≤,d

a

b

∫⋅=

E c c,[] E c()=

ASAPi ai bi ALAPi≤ ≤ ≤ k 1…N∈ tk ak bk[,]∈∧∀
t j j 1…N∈ j k≠ t j aj bj[,]∈, ,{ }∃ ti i 1…N∈{ }

E E ai bi,[]
i 1=

N

∑=

i∀ ai
1

ai
2≤ bi

2
bi

1≤∧,

Et 1+
i

f i t,() Et
i

Et 1+
i

– if ALAPi t>

∞ otherwise



=

ors
tes
hs

d 24
ors
d

10
.
od
n
an

ng

pa-
t-
i-
e
th

we
ain-
d
l

we
ges
be
LS.
),
e
the
at
rve
to

ism
the

. In
er,
ed
en-
d a

In
nce
nd,

s

lowing priority function:

Criticalpath(i) is the delay of the longest path starting in node
i. Each node has an associated coefficientαi, which controls the
emphasis on lowering energy vs. generating a tight schedule.
Having a differentα for each node allows us to treat the nodes
on the critical path in a different manner, focusing, for those
nodes, more on fulfilling the deadline than on lowering the
energy. With the priority given above, if allαi are large enough,
the priority function behaves as a classic, critical-path priority.
Moreover, the set of smallestαi for a given graph and certain
deadline yields the lowest energy consumption for that graph
and deadline. Details about tuning the values in theαi set are
given in the next section.

C. Tuning The Priority Function

Depending on the values for theα coefficients, it can happen
that no schedule is found. In that case, theα’s for the nodes on
the critical path are increased, thus emphasizing the timing
aspect of the priority function. A new scheduling is attempted
with the newα values. In the worst case allα reach their max-
imal value,Maxα, set by the designer, and theg(t, i) priority
function becomes a classic critical-path priority function.

A pseudo-code description of the LEneS algorithm is given
in Fig. 5. The algorithm consist of list-scheduling using our pri-
ority function, wrapped in a tuning algorithm for theαi
coefficients. The complexity analysis of the LEneS algorithm

shows that it has a computational complexity of
, whereN is the number of nodes in

the ETG,M is the number of time steps in the tightest deadline,
V is the highest number of supply voltages supported by a pro-
cessor, andMaxα is the maximal value allowed for theα’s.

VII. EXPERIMENTAL RESULTS

The first experiment evaluates the LEneS algorithm from
the scheduling speed point of view. The results are represented
in Fig. 6. The points in the base plane of the 3D graph depict
the system configuration: number of processors and the distri-
bution of tasks on the processors. For each of the configurations
we generated hundred random task-graphs and then used
LEneS to schedule them, obtaining an average scheduling time.
The average time needed to perform the scheduling is repre-
sented on the vertical axis. Using interpolation, we obtained the
dotted curves on the surface. The curves mark different time
levels, ranging from 1 second to 10 minutes. For example, for

a task-graph of 56 tasks, evenly distributed on eight process
(seven tasks/processors), LEneS will require around 5 minu
to find the schedule. For scheduling the largest type of grap
(hundred nodes on ten processors), LEneS requires aroun
minutes. For this experiment we assumed that the process
can run at three different supply voltages (3.3V, 2.1V, an
0.9V). The reported times were obtained on a Sun Ultra
workstation (440MHz UltraSparcIIi processor, 256MB RAM)

The long execution time for large designs makes our meth
suitable only for final scheduling, and not for fast evaluatio
inside a design-space exploration loop. Yet, this drawback c
be overcome, if LEneS is combined with a simpler scheduli
strategy or a fast estimator, as we point out in [10].

The next set of experiments inspects the energy saving ca
bility of the LEneS algorithm compared to the classic lis
scheduling with critical-path based priority function (Class
cLS). For several system configurations, similarly to th
previous experiment, we scheduled the ETGs using bo
LEneS and ClassicLS. For the tightest schedule length,
compared the energies consumed by the two solutions, obt
ing a surface similar to the one in Fig. 6. For clarity we depicte
in Fig. 7 only the projection of the levels on the horizonta
plane instead of the whole 3D graph. For this experiment,
assumed that we use processors with four supply volta
(3.3V, 2.5V, 1.7V, and 0.9V). Note that the saved energy can
as high as 28% when using LEneS as opposed to Classic
For architectures with two voltage processors (3.3V and 0.9V
we obtained smaller energy savings. In the majority of th
cases, the saved energy was four times smaller compared to
four supply voltage processors. This comes from the fact th
for a two voltage processor, the associated energy-delay cu
(Fig. 4) is a worse approximation of the ideal one, compared
the case of a four voltage processors.

The saved energy increases with the degree of parallel
(more processors or less tasks/processor). This comes from
fact that the percent of tasks on the critical-path decreases
this case, there are potentially more tasks which can run slow
and thus save energy. The critical-path length is also influenc
by the assignment of tasks to processors, not only by the dep
dencies in the task graph. A bad assignment can overloa
processor unnecessary, increasing also the critical-path.
these cases, our LEneS method performs extremely well si
it can take advantage of the idle processors. On the other ha

g i t,() f i t,() αi
f i t,()

deadline t– criticalpath i()–
---⋅+=

procedure LEneS(ETG)
set all {αi}= 0;
while list-scheduling(ETG, g) fails do

let {αk} be the coefficients of the nodes on the critical path
if all {αi} >= Maxα then scheduling fails
else if all {αk} = Maxα then increase all αi by 10%
else increase only {αk} by 10%

end procedure LEneS

Fig. 5. LEneS: the low-energy directed scheduling.

O V M N3 Maxα()log⋅ ⋅ ⋅()

2
4

6
8

10 2
4

6
8

10

processors tasks/processor

1s

10s

1min 5min
10min

24min

sc
he

du
lin

g
tim

e

5ms

Fig. 6. The time required by LEneS to schedule different random task-graph
on various numbers of processors.

7

can
-
as
of
si-
the
ar
gh

nce
cut-

the
he
ger
ll
line

be
et-

the
we
rgy
ng
sks
ses
ic
for
-
ed
that
av-
our
cal-
be
r,
r a
e

list
if the processors are perfectly balanced, LEneS behaves as
ClassicLS. A more detailed analysis of the influence of assign-
ment on scheduling is given in [10].

In the experiments presented until now, we assumed that we
always have to execute the task-graph as fast as possible. In
reality, in most of the cases the deadlines are given as design
requirements. Thus, often there is a time slack which can be
used to further reduce the energy. The third experiment
explores the behavior of LEneS in these cases. We considered
three scheduling methods, based on the observation made in
section IV: ClassicLS, ClassicLS with scaling (ScaledLS), and
LEneS with scaling (ScaledLEneS). For various extensions of
the tightest deadline, allowed by the time slack, we compared
the energy saved by using ScaledLEneS over the other two
approaches for a number of random task-graphs. In Fig. 8 we
depicted the curves obtained by averaging the results for two
sets of thirty random graphs (TG1 and TG2). Both of the two
sets contain task-graphs of thirty nodes, but the degree of par-
allelism differs, representing two extremes. TG1 uses ten
processors (high parallelism) while TG2 uses only three pro-
cessors (low parallelism). The continuous curves show the
energy saved by using ScaledLEneS over ScaledLS. The dotted
curves show the energy saved by ScaledLEneS over ClassicLS.
Note that ScaledLS preforms well, being able to save around
60% energy at 50% deadline extension compared to ClassicLS.
Nevertheless, ScaledLEneS performs best, saving from 7% up
to 28% energy, compared to ScaledLS.

The final experiment explores the energy saving possibility
for a real-life application. The sub-system we are interested in
is an optical flow detection (OFD) algorithm, which is part of a
traffic monitoring system (see [14]). In the current implemen-
tation, the optical flow algorithm consists of 32 tasks, running
on two ADSP-21061L digital signal processors. Limited by
other tasks, OFD can process 78x120 pixels at a rate up to
12.5Hz. The estimated energy consumption for one iteration of
the OFD implementation is 27.2µJ. Depending on car speed or
monitoring altitude, such a high processing rate is a waste of
resources. In many cases, a rate of 2Hz is sufficient, which
means ca. six times deadline extension for one iteration of the
OFD. Important energy savings would be obtained if the design
were to use processors supporting multiple voltages. Moreover,
using the approach we presented here, the schedule can be
dynamically adapted at runtime to fit the desired deadline,

depending on the required processing rate. Assuming we
run the DSPs at 3.3V, 2.5V, 1.7V, or 0.9V, we applied low
energy scheduling method for the OFD. The results show
much as 83% energy saving possibility for a sampling rate
2Hz. For that rate, all the tasks are using the two lowest pos
ble voltages. Overall, the processors have to run 42.48% of
time at 1.7V, and the rest of the time at 0.9V. For this particul
example, the difference between the energy obtained throu
ScaledLEneS and ScaledLS was less than 4%. This differe
is rather small because of the reduced number of tasks exe
ing off the critical path, and which anyway have little freedom
to scale. Note also that as the deadline extension grows,
tasks use lower voltages. For lower supply voltages, t
energy-delay dependency (Fig. 4) has a smaller slope, so lon
delays yield gradually smaller energy savings. At limit, a
tasks execute at the lowest voltage, and any further dead
extension will not bring any energy saving.

VIII. C ONCLUSION

Since processors with dynamic supply voltage start to
available on the market, there is a need for new methods targ
ing reduced energy consumption, while taking advantage of
features of these new types of processors. In this context,
present a number of scheduling techniques targeting ene
consumption reduction. We introduce our new scheduli
approach, LEneS, that handles designs with dependent ta
mapped onto dynamic supply voltage processors. LEneS u
list-scheduling and a special priority function to derive stat
schedules with low energy consumption. Using a method
tuning its priority function, our algorithm is able to find sched
ules that are more energy efficient than the other mention
approaches. The experiments presented in this paper show
even for the tightest possible deadline, up to 28% energy s
ings can be obtained without any performance loss, using
scheduling approach. For loose deadlines we proposed a s
ing method which yields important energy savings and can
applied in principle to any scheduling algorithm. In particula
using this technique, we can obtain 77% energy savings ove
critical-path priority based list-scheduling, for a 50% deadlin
extension.

M
ax

 fo
r

10
x4

, =
 2

8.
4%

2 4 6 8 10
2

4

6

8

10

processors

ta
sk

s/
pr

oc
es

so
r

savings >25%

savings >20%

savings >15%

savings >10%

7
8x7=56 tasks

Fig. 7. The energy savings obtained when using LEneS over ClassicLS for
different designs and configurations.

Fig. 8. The energy saved using LEneS with scaling compared to
scheduling, for different deadline extensions and system configurations.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

en
er

gy
 s

av
ed

 b
y

S
ca

le
dL

E
ne

S
 in

 %

deadline extension in %

TG1 (3tasks x 10procs)

TG2 (10tasks x 3procs)

TG1 (3tasks x 10procs)

TG2 (10tasks x 3procs)

vs. ScaledLS

vs. C
lassicLS

r

ive
ient

r

gn

ed
er

is
ge
98,

,

ly

e-

e

es

e

e,
e
ld-

n
/

APPENDIX

In this part we prove, using the formulae introduced in sec-
tion III, that scaling the tightest schedule to the desired
deadline is the optimal strategy from the energy point of view.
We start from the taski energy expression for two different sup-
ply voltagesV0, the reference voltage, andV, the voltage after
scaling:

, (1)
For a sufficiently small threshold voltage, the clock frequencies
for the two voltages are (section III):

, (2)
From (1), (2): (3)
From section III: (4)
From (3), (4): (5)
If is the task execution delay: , (6)
From (5), (6): (7)
The total energy of the task graph is:

where we know that the tasks
execute during the whole time until the deadline , and
the tightest possible deadline is .

The lower bound for the total energy is , provable
by mathematical induction. This lower bound can be obtained
only when . Thus by scaling the tightest sched-
ule to fit the new deadline. The supply voltage associated with
the new schedule can be easily computed.

ACKNOWLEDGMENT

Special thanks to Petru Eles and Jonas Hallberg for their
insightful comments that helped us to improve this paper. The
work presented here was partially sponsored by ARTES: A net-
work for Real-Time research and graduate Education in
Sweden, http://www.artes.uu.se/, and WITAS [14].

REFERENCES

[1] A. P. Chandrakasan and R. W. Brodersen, “Minimizing powe
consumption in CMOS circuits,”Proc. of the IEEE, Vol. 83, No. 4, pp.
498-523, 1995.

[2] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predict
system shutdown and other architectural techniques for energy effic
programmable pomputation,”IEEE Trans. on VLSI Systems, Vol.4 No.1,
pp. 42-51, 1996.

[3] C. Hwang and A. C. Wu, “A predictive system shutdown method fo
energy saving of event-driven computation,”Digest of Technical Papers
of the IEEE/ACM International Conference on Computer-Aided Desi
1997,pp. 28-32.

[4] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduc
CPU energy,”Proc. of the 36th Symposium on Foundations of Comput
Science,pp. 374-382, 1995.

[5] I. Hong, Gang Qu, M. Potkonjak, and M.B. Srivastava, “Synthes
techniques for low-power hard real-time systems on variable volta
processors,”Proc. of the 19th IEEE Real-Time Systems Symposium 19
pp.178-187.

[6] I. Hong, D. Kirovski, Gang Qu, M. Potkonjak, and M. B. Srivastava
“Power optimization of variable voltage core-based systems,”Proc. of
the 35th Design Automation Conference 1998,pp. 176-181.

[7] T. Ishihara,H. Yasuura, “Voltage scheduling problem for dynamical
variable voltage processors,”Proceedings of the 1998 International
Symposium on Low Power Electronics and Design, 1998, pp 197-202.

[8] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: hardwar
software co-synthesis of embedded systems”,Proc. of the 34th DAC
1997,pp. 703-708.

[9] F. Gruian and K. Kuchcinski, “Low-energy directed architectur
selection and task scheduling for system-level design,”Proceedings of
the 25th Euromicro Conference 1999,pp. 296-302.

[10] F. Gruian, “System-level design methods for low-energy architectur
containing variable voltage processors,” in press.

[11] J.-M. Chang and M. Pedram, “Energy minimization using multipl
supply voltages,”IEEE Trans. on VLSI Systems, Vol. 5, No. 4, 1997.

[12] K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanab
K. Matsuda, T. Maeda, and T. Kuroda, “A 300MIPS/W RISC cor
processor with variable supply-voltage scheme in variable thresho
voltage CMOS,”Proc. of the IEEE Custom Integrated Circuits
Conference 1997,pp. 587-590.

[13] “SH-1:SH7032/SH7034 Product Brief,”HITACHI Semiconductor Inc.
[14] WITAS: The Wallenberg laboratory for research on informatio

technology and autonomous systems, http://www.ida.liu.se/ext/witas

E0i Ni Ka V0
2⋅ ⋅= Ei Ni Ka V

2⋅ ⋅=

f 0 Kb V0⋅= f i Kb V⋅=
Ei E0i f i f 0⁄()2⋅=

E0i Ni π0⋅() f 0⁄=
Ei Ni π⋅

0
f i

2 f 0
3⁄⋅=

δi f 0

Ni

δ0i
-------= f i

Ni

δi
------=

Ei π0 δ0i
3 δi

2⁄⋅=

E Ei∑ π0 δ0i
3 δi

2⁄∑⋅= =
δi∑ d=

δ0i∑ d0=
π0 d0

3 d2⁄⋅

δi δ0i d d0⁄⋅=

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

