LEneS: Task Scheduling for Low-Energy Systems
Using Variable Supply Voltage Processors

Flavius Gruian Krzysztof Kuchcinski
Department of Computer Science Department of Computer Science
Lund University Lund University
Box 118, SE-221 00 Lund, Sweden Box 118, SE-221 00 Lund, Sweden
Tel: +46 46 222 0000 Tel: +46 46 222 3414
Fax: +46 46 13 1021 Fax: +46 46 13 1021
e-mail: Flavius.Gruian@cs.Ith.se e-mail: Krzysztof.Kuchcinski@cs.Ith.se

Abstract 0 The work presented in this paper addresses mini- sumption is to have processors able to change their supply
mization of the energy consumption of a system during system- voltage and frequency during execution. Processors operating
level design. The paper focuses on SChedUling teChniqUeS for at a discrete range of Supp'y Vo|tages have a“ready been
a_rchitectures containing vafiable supply voltage processors, run- designed [12,13]. An optimal preemptive scheduling algorithm
ning dependent tasks. We introduce our new approach for Low- ¢, inqenendent tasks running on a single processor with vari-
Energy Scheduling (LEneS) and compare it to two other schedul- able speed is described in [4]. In [6], the authors present a low-
ing methods. LEneS is based on a list-scheduling heuristic with . L ’ ! . .
dynamic recalculation of priorities, and assumes a given alloca- Qnergy oriented heu”StK_: for non-preemptive _SChed_u“ng of
tion and assignment of tasks to processors. Our approach independent tasks, on a_smgle processor core with variable sup-
minimizes the energy by choosing the best combination of supply Ply voltage. In [7], Ishihara and Yasuura present another
voltages for each task running on its processor. The set of experi- Scheduling technique, employing variable voltage processors
ments we present shows that, using the LEneS approach, we can and independent tasks. There, the authors show that the energy
achieve up to 28% energy savings for the tightest deadlines, and can be further reduced by allowing each task to run in two
up to 77% energy savings when these deadlines are relaxed by phases, at two different supply voltages. In our work, we
50%. address non-preemptive scheduling on processors with variable
supply voltage, overcoming some of the previous limitations.
Namely, we propose here an algorithm which handles depen-

Mobile computing and communication require carefuper%thtaSkStd'sftr;EUted over several_pr%cess;)rﬁ) Section I
design from the energy consumption point of view, since bat- € rest of the paper Is organized as Tollows. Section

tery life-span plays an essential role. Targeting low energy a &|efly _descnbes the Iow—energy design flow we have adopted.
Ehsectlon I1l, we give the relation between energy and voltage

low power as early as possible in the design process, at hi | db (lustrat le. Section IV)
levels of abstraction, is most prolific [1]. Although there ha: oflowed Dy an flustrative example. Section [V summarizes
been much work in the area of behavioral synthesis for multipfgree schedulmg alternatlvgs for low energy, including our new
supply voltages (e.g. [11]), the problem of scheduling suppl ppr_oach. Section V describes how we model the p_roblem, and
ection VI presents our scheduling approach. Section VII con-

voltages at system level is different in principle. At behavioral™ :)
level, once a unique supply voltage for a functional unit i ains the experimental results, and the conclusions are gathered

determined during design, it will be constant at runtime. At syén section VIII.
tem level, the supply voltage of a dynamic voltage processor

can vary at runtime, which offers more flexibility and better

potential for reducing the energy. For this reason, several \\ie assume a target architecture composed of several
researchers have addressed energy issues as specific prob@%s&mic supply voltage processors, with local memories, con-
at system level [1-9]. Selecting the system architecture and thgcted through buses or/and point to point links. The design is
distribution of the computations can greatly influence the ovefgdeled as atask-graph, each task being executed on one of the
all energy consumption [5,8,9]. Although shutting down idlingsrocessors. The total execution time for the task-graph is con-
parts is one way to further reduce the energy consumptiQfrained by a designer imposed deadline. The design flow we
[2,3], it is more effective to slow down selected computationggnsider is a step-by-step process, as depicted in Fig. 1. First,
and run the processing units at lower supply voltages [6]. Thee processors are allocated and the tasks are assigned to pro-
most worthwhile configuration to decrease the energy CoRessors. These two steps can be performed either by the

|. INTRODUCTION

Il. DESIGN FLOW OVERVIEW

communication

System Specification bu
(task-graph) @

processor
shutdown

Generate
Allocation&

Assignment 0
',’ P2]
assigned ime
O b) Classic List-scheduling: no voltage scaling
a) The task-graph
obescheduled - 45— — — — M _ __ _ m,__

M Low-Energy
Scheduling ower profile for P1
P1 lcl
\ satisfactory S Q __________ |

@ solution c) Ideal scheduling: power profile for P2
assigned & P1and P2 canrun P2 |
scheduled atany supply voltage 0 time

task-graph

Fig. 1. System Design for Low Energy

designer or by a design tool. Next, an enhanced task-graph (see bus, __ __ _
section V) undergoes a low-energy scheduling step, complying d)Realcase: ~ P1
to the already decided allocation and assignment. Then, thesgl'égmé‘;saggﬁ%le | —
solution is evaluated. If the purpose is design space explora- -

tion, all these steps must take little time, to allow fast covering

of as many options as possible. A more detailed description of
our view of a low-energy directed design flow is given in [10]. Fig. 2. Scheduling for low energy on multiple voltage processors.

The work presented in this paper is focused on the schedulingThe area under the power profile reflects the energy consumption.

step, for which we developed a heuristic suitable for théchnique, such as list-scheduling, voltage selection is not con-

described design flow. sidered (b). In order to obtain energy savings, one must choose
the best supply voltage for each processor, depending on the
IIl. THE SUPPLY VOLTAGE AND THE ENERGY executing task (c). In practice, this can not be done, since the

number of available supply voltages for a processor is limited.
In (d) a feasible schedule is depicted, using processors with two
voltages.

In the case of real processors, with a limited number of sup-

Consider that task is executing duringN clock cycles on a
processolP, which runs at supply voltage and frequency.
For the given voltag¥, processoP will have an average power

consumptionTt. The energy consumed by executing tasen ply voltages, the minimal energy for executing a task is

processorP, running at supply voltage/, is computed as: obtained by using only two different supply voltages, as shown

E = (NOy/f. The average power consumption dependen% [7]. These voltages are the ones around the “ideal” supply

on the supplg/ voltage and execution frequency is given b)(/oltage for the given deadline. The “ideal” supply voltage is the

n= Ka.Df v ,whereKa |satask/p_rocessor dep_en_dent f"J‘Ctorunique voltage which sets the execution time for that task
determined by the switched capacitance. Combining the abogg

. . actly to the deadline. Only “ideal” processors, with a contin-
two formulae, we can rewrite the energy expression ag;

E - NOK.DOVZ. F thi lude that | a th ous range of supply voltages, can use an “ideal” voltage.
- a V- FTOM IS, we conclude that Iowering e SUByyp o the allowed task execution tirnis betweert; (obtained

ply voltage would " yield a drastic decrease in ENeTgYor V,) andt, (obtained forVs), the task will execute partly at
c_ons_umptlon. AL th_e same time, the supply voltage affec'Fs ﬂ{ﬁ, and partly atV,. The execution timé can be expressed
circuit delay, which sets the clock freqzuency, SlnC'?depending on the number of processor cycles run at the two

f 01/delay . Formally, delay = K, OV/(V-V;)" , whereV ; .
. _ . supply voltages, for the resulting clock frequencigsandf,:
is the supply voltageyy is the threshold voltage, arit}, is a t = xf,+(N—x)f,, wherex is the number of cycles run at

constgnt. Th(tjjst, dlecreasmg th? voléa?e leads to lower clock fF&]pply voltagev;. Moreover, task energy can be expressed as
quencies and to fonger execution delays. a function of clock cyclesE(x) = K (xVZ+(N-x)V3) .From

Processors operating at a range of voltages af‘d freql_Jen 8 last two equations we can deduce the expression of energy
are under development [12]. They are able to adjust their sug?-

I it) p ¢ ding to th --8s a function of timek:(t), which is a linear dependency. A cer-
ply vottage, using a fine step, according 1o he TequireR,;, oyecytion duration for a task uniquely identifies the

operating frequency. Processors supporting several SUPRY mber of cycles needed to execute at the different voltages.
voltages are already available. For such processors, the variouspy . o el described above (depicted in Fig. 2.d) is the exe-

voltages yield different execution delays and energy CONSUMBGion model assumed in our approach. A processor executes a

tion for the same tasi. When the processor is limited t(_) 3task in two phases, at two different supply voltages, chosen

0 is t lit the taskint s which wil ¢ t%m the available voltages. Whenever the processor is idle, it
scenario 1 1o spiit the taskinto parts, Which Will EXeCUte at o o yown. In this case, the ideal energy function is approxi-

d:ﬁerint ar\]/aclllall_)le volttagis. F'g'h2 depllcts an I|Ilus_trat|vE eo)l(al%ated by segments between the neighboring voltages (see Fig.
ple of scheduling a task-graph (a). In a classic scheduling |, er number of available voltages yield a better approx-

imation of the ideal energy function, leading to a more efficientive priority function. The priority function is constructed in

design. such way that it handles real processors, able to run at few dif-
ferent supply voltages. The other important feature of our
IV. SCHEDULING ALTERNATIVES FORLOW ENERGY priority function is that it takes advantage of the time slack

) _from the non-critical path. Thus, even for the tightest deadline,
There are a number of methods for scheduling the executigflure are time moments when the Processors run at lower sup-

of tasks in order to fulfill the deadline and have a minimab|y voltage, saving energy. For more loose deadlines, we
energy consumption at the same time. Task dependencies add,;me that we use the same strategy as in the previous meth-

restrictions imposed by processor implementation complicafgy. scaling of the tightest schedule (ScaledLEneS).
the problem. In this section, we summarize several scheduling

strategies, applicable in different situations. The last of them is V. THE ENHANCED TASK-GRAPH
the new scheduling method we introduce in this paper.
The LEneS algorithm works on enhanced task-graphs
A.ldeal Case (ETG), which is a data structure derived from task-graphs. Fig.
,) ,) 3.a) depicts an assigned task-graph. The tasks are represented
Consider first the ideal case, when the tasks are independgfif.ihe circles annotated by pairs of values. A pair consists of
running on one processor. The processor is also ideal, in the, execution time of the task on the specific processor, running
sense that it can run at any supply voltage and the thresholfh e reference supply voltage, and the identifier of the proces-
voltage is always small enough to be negligible. With all thesg,, executing the task. The black disks represent
assumptions, the energy-optimal schedule can be direcflyyymynications annotated with the duration and the identifier
obtained from the shortest possible schedule by scaling. TBeihe pus/link used for that specific communication. The arcs
scaling factor is the ratio between the desired deadline anglfine the partial order of task execution, which is imposed by
shortest possible deadline (see Appendix for proof). The néye yarious data dependencies. The assigned task-graph, which
execution delays of the tasks can be qssomated with a NeW Sehe output of the allocation and assignment steps (Fig. 1), is
ply voltage. Note that the processor will run at the same, singlg; nstormed into an ETG used by the LEneS algorithm. Fig.
supply voltage for all tasks. This method can be directly 1) qepicts an example of an ETG. The ETG is obtained from
extended to several processors executing independent tasks,q initial task-graph by substituting each node with a pair of
nodes: a start node (the circles), marking the beginning of the
execution of that node, and an end node (the grey disks), mark-

One of the simplifying assumptions for the ideal case wa8g the completion of the task. The execution times of the tasks

“independent tasks”. One can overcome this by using a schetl€ NOW assig_ned to the internal _edges. In our current moc_iel,
uling strategy that can handle partial ordered tasks or tasRnly computational tasks are subject to change their execution

graphs. Therefore, we consider list-scheduling with criticf€!ay, while the communication delays remain fixed. The thick

path as a priority function (later on referred to as ClassicLS§d9€s in the ETG represent the fixed delays. The other edges

The scheduling strategy is similar to the one described in sui€PIct modifiable delays, and the associated numbers define

section A. The task graph is scheduled using list-schedulinfi€ir minimal values. The information regarding the assign-

obtaining the tightest possible deadline. Then, the schedule €Nt Of tasks to processors is also transferred to the ETG.

scaled to fit the desired deadline. The scaling factor is the ratio PUring scheduling with LEnesS, each ETG node will be

between the desired deadline and the deadline obtained by 1@8Signed a time moment, such that the partial order and assign-

scheduling. We call this method ScaledLS. The main diffefl€nt are respected while the delays and the deadline are not

ence between this approach and the ideal case arises when YRE€d, and the energy consumption is minimized.

considers several processors. In the ideal case every processor

had its own scaling factor, while in this case there is a unique

scaling factor, given by the overall deadline. a) 16 ~ (61
Using this strategy, the tasks on the critical path are sched-

uled in an optimal way, as in the ideal case. The drawback of 3.1

this approach is that the tasks on the non-critical paths do not %(9,2)

take advantage of the available time slack. Yet, this can be

solved by using an appropriate priority function, as described 7.1)

in this paper. €3 '

B. List-Scheduling with Scaling

C. Our Approach to Low-Energy Scheduling (2.1

The Low-Energy Scheduling algorithm (LEneS) presentedF_ 3 Atask b (a) is transformed int hanced task h b
in this paper is based on list-scheduling with an energy-sensit 9 3 A task-graph (a) is transformed into an enhanced task-graph (b)

VI. THE LENES APPROACH order is preserved and the given deadline is met. We define a
partial schedule of an ET@s the set of all possible schedules,
LEneS, our low-energy scheduling approach (Fig. 5), igiven that a certain node can be scheduled anywhere inside a
based on list-scheduling with a energy sensitive priority funceertain time interval. More formal, a partial schedule is an
tion. In every scheduling step, the node priorities change ar@signment of an intervalaf bj] to each nodei, where
have to be recalculated. Moreover, the priority function is tuneg{SARS a;<b < ALAP, and OkO1..NOt O[a,b] ,
during several scheduling attempts. Whenever a scheduling |j01...N, j #k,t; O[a;b]} such that{t|i01...N} is a
attempt fails (the deadline is violated), the priority function isschedule. We definthe average energy of a partial schedule

adjusted and a re-scheduling is attempted. using the average energy of a node as:
Next, we give the background necessary for understanding 3 N

the priority function, followed by the expression of the priority E= Z Bla, b

function used in our scheduling algorithm. Finally, we present i=1

Since all the start-nodes are considered to have zero energy, the
sum given above involves only the end-nodes. Given two par-
A. The Energy of a Schedule tial schedules, we consider that one is better than the other if it
has lower average energy.

Inthe ETG, each task is described by the start-end node pair. We say that a Partial schedulé Soversanother partial
By performing As-Soon-As-Possiblegar) and As-Late-As- schedule Sif oi, a < ai2 Dbizs bil, whereg, andb; have the
Possible £LAP) schedules on the ETG, for the highest supplpame meaning as in the previous paragraph, and the super-
voltage, we obtain thesap andALAP time slots, for both start scripts identify the partial schedule. In this casejsa subset
and end nodes. Without any resource constraints, the executifrthe set of schedules represented by s
delay of the task can be anywhere between the shortest possibleThe idea of the LEneS algorithm consists in choosing, in
(tp, determined by the highest supply voltage) and the limiach scheduling step, a partial schedule covered by the old one.
imposed by the dependencies in the task-graphd.,yASAP- The chosen partial schedule should have the smallest possible
star)- The energy consumed by the task in this situation isnergy compared to all the other partial schedules. The starting
approximated by a linear dependency on its execution tingartial schedule must be one covering for sure all the possible
(Fig. 4), as discussed in section Ill. Given the energy functioschedules. Therefore, for the initial partial schedule we use the
E(t) (section 1), we define thaverage energy of an ETG nade [ALAP, ASAF] intervals without resource constraints.
We consider that the start-nodes have zero energy, while the
average energy of the end-nodes model the task energy. GiénT he Priority Function

that an end-node can be scheduled anywhere in a certain time o _ .
interval [a,b], included in itsASAP-ALAP interval, its average ~ 1h€ Priority function for a node reflects the energy gain (or

o loss) induced by a specific scheduling decision. At a certain
energy is: y asp g

time stet, there are nodes (with indéxwhich are eligible for
scheduling. If they are delayed, their time intervals will change
from [t, ¢] to [t+1,]. This change can propagate to the nodes

We consider the average energy over an inteevaif[for a cer- ordered after them. For each of the eligible nodes at a certain
tain end-node, as a measure of the quality of the set of solutiofig1eduling step, delaying the node with one time unit gives the
obtained by scheduling that end-node & . At limit, new partial schedule, wth a cores_pondent average energy,
Epe g = E(9) is the energy yielded by scheduling that nodeEt + 1 We are |ntere§ted in the partial sch_ed_ule ylel_dlng the
exéctly at moment. For a given node, we are able to comparéarge_St energy reduction. Therefore, our_prlprlty fu_nctlon fora
different possible time intervals, or sets of solutions, using tH&?d€i, about to be scheduled at a certain time step com-
average energy as a measure. puted as the difference between the average energy of the
The notion of average energy can be extended to sets qrrent partial schedule, and the one obtained by scheduling

schedules of an ETG. We consider thatchedulés an assign- nodei later. In the special case when the montdgatthe latest
ment of time moments to all ity nodes, such that the partial possible moment, the node must be scheduled, so its priority
becomes infinite:

the method used for tuning the priority function.

b
l .
Elan = 55 JE(Mdt ASAPs a< b< ALAP (Fig. 4)
a

average i i .
energy for f(it) = BE{—EIHJ_ if ALAP, >t
interval [a, b] ! 0 o otherwise
minimal A negative priority means that it is better to schedule the node
energy later, while a positive value means that it is better to schedule
delay the node at that very moment. The priority function presented

above considers only the energy aspect, and may fail to lead to
feasible schedules, especially when the deadline is tight. To be
Fig. 4. Task energy relative to its execution time on a three voltage processoable to find schedules even for tight deadlines, we used the fol-

a o h A
Bt L ALAPgyq - ASAPga

lowing priority function:
. . f(i, t

g(i) = 1(i.0) + Ddeadline—‘t—(cri)t‘icalpath(i)
Criticalpath(i) is the delay of the longest path starting in node
i. Each node has an associated coeffigignihich controls the
emphasis on lowering energy vs. generating a tight scheduleqs
Having a differentx for each node allows us to treat the nodes
on the critical path in a different manner, focusing, for those ,
nodes, more on fulfilling the deadline than on lowering the
energy. With the priority given above, if al} are large enough,
the priority function behaves as a Cla.SSIC’ critical-path pno.”tyFig. 6. The time required by LEneS to schedule different random task-graphs
Moreover, the set of smalleet for a given graph and certain ,'arious numbers of processors.
deadline yields the lowest energy consumption for that graph
and deadline. Details about tuning the values indheet are a task-graph of 56 tasks, evenly distributed on eight processors

N
N
2
5

scheduling time

=

0

given in the next section. (seven tasks/processors), LEneS will require around 5 minutes
to find the schedule. For scheduling the largest type of graphs
C. Tuning The Priority Function (hundred nodes on ten processors), LEneS requires around 24

) o) minutes. For this experiment we assumed that the processors

Depending on the values for thiecoefficients, it can happen -an run at three different supply voltages (3.3V, 2.1V, and
that no schedule is found. In that case, &'®for the nodes on 0.9V). The reported times were obtained on a Sun Ultral0
the critical path are increased, thus emphasizing the timiRgorkstation (440MHz UltraSparclli processor, 256MB RAM).
a§pect of the priority function. A new scheduling is gttempted The long execution time for large designs makes our method
with the newn values. In the worst case allreach their max- - gyjitable only for final scheduling, and not for fast evaluation
imal value,Maxa, set by the designer, and tlgét, i) priority inside a design-space exploration loop. Yet, this drawback can
function becomes a classic critical-path priority function. pe overcome, if LEneS is combined with a simpler scheduling
~ Apseudo-code description of the LEneS algorithm is giveBtrategy or a fast estimator, as we point out in [10].
in _F|g. 5. Tr_\e algorithm con3|st of I|§t—schedu!|ng using our pri- - The next set of experiments inspects the energy saving capa-
ority function, wrapped in a tuning algorithm for th@ pjjity of the LEneS algorithm compared to the classic list-
coefficients. The complexity analysis of the LEneS algorithracheduling with critical-path based priority function (Classi-

procedure LEneS(ETG) cLS). For several system configurations, similarly to the
setall {aj}=0; previous experiment, we scheduled the ETGs using both
while list-scheduling(ETG, g) fails do . .
let {0} be the coefficients of the nodes on the critical path LEneS and CIaSSICI.-S' For the tlghteSt SChedL”e. |ength- VYG
if all {0} >= Maxa then scheduling fails compared the energies consumed by the two solutions, obtain-
else if all {o,} = Maxa then increase all a; by 10% ing a surface similar to the one in Fig. 6. For clarity we depicted

else increase only {o} by 10%

end procedure LEneS in Fig. 7 only the projection of the levels on the horizontal

plane instead of the whole 3D graph. For this experiment, we
assumed that we use processors with four supply voltages
] .) (3.3V, 2.5V, 1.7V, and 0.9V). Note that the saved energy can be
shows that it has a computational complexity ofys high as 28% when using LEneS as opposed to ClassicLS.
O(V OM ON° og(Maxa)) , whereN is the number of nodes in For architectures with two voltage processors (3.3V and 0.9V),
thg ETG,M is the number of time steps in the tightest deadlingye optained smaller energy savings. In the majority of the
Vis the highest number of supply voltages supported by a preases;, the saved energy was four times smaller compared to the
cessor, anflaxa is the maximal value allowed for thes. four supply voltage processors. This comes from the fact that
for a two voltage processor, the associated energy-delay curve
(Fig. 4) is a worse approximation of the ideal one, compared to
The first experiment evaluates the LEneS algorithm frorH1e case of a four voltgge processors. .
dThe saved energy increases with the degree of parallelism

the scheduling speed point of view. The results are represent)
g ore processors or less tasks/processor). This comes from the

Fig. 5. LEneS: the low-energy directed scheduling.

VIl. EXPERIMENTAL RESULTS

in Fig. 6. The points in the base plane of the 3D graph depitt’
n g poIN'S | 5€ b drap P! \ct that the percent of tasks on the critical-path decreases. In

the system configuration: number of processors and the dis h all ks which |
bution of tasks on the processors. For each of the configuratioﬁl{'éS case, there are potentially more tasks which can run slower,

rigﬂj thus save energy. The critical-path length is also influenced
4

we generated hundred random task-graphs and then u h . f task v by the d
LEneS to schedule them, obtaining an average scheduling ti the assignment of tasks to processors, not only by the depen-

The average time needed to perform the scheduling is reprqe(?nc'es in the task graph_. A ba(.j assngnmt;nt can olverlo;tdla
sented on the vertical axis. Using interpolation, we obtained tocessor unnecessary, increasing also the critical-path. In

dotted curves on the surface. The curves mark different tin{gese cases, our LEneS mthOd performs extremely well since
levels, ranging from 1 second to 10 minutes. For example, sdf.can take advantage of the idle processors. On the other hand,

if the processors are perfectly balanced, LEneS behaves as 90 TG (3msKS X T0BTocS)

ClassicLS. A more detailed analysis of the influence of assign- _ so mmmas===nIITIEIRLR]
. . . . = _-=%%"" TG2 (10tasks x 3procs)
ment on scheduling is given in [10]. £ 70 LA
In the experiments presented until now, we assumed that we £ o Jesac- e
always have to execute the task-graph as fast as possible. Ing R
reality, in most of the cases the deadlines are given as designg or

requirements. Thus, often there is a time slack which can be z 4°f .*
used to further reduce the energy. The third experiment ¢ 30§

o
(5]
>
. . .]
explores the behavior of LEneS in these cases. We considered, o} .’ TG1 (Stasks x 10procs)
5
(3]

. . . , . ScaledL
three scheduling methods, based on the observation made irg¢ Ve poae G2 (10tasks x 3procs
section IV: ClassicLS, ClassicLS with scaling (ScaledLS), and deadline extension in %
LEneS with scaling (ScaledLEneS). For various extensions of 0 10 20 30 40 50 60 70 80 90 100

the tightest deadline, allowed by the time slack, we comparedg. 8. The energy saved using LEneS with scaling compared to list
the energy saved by using ScaledLEneS over the other twagheduling, for different deadline extensions and system configurations.
approaches for a number of random task-graphs. In Fig. 8 we
depicted the curves obtained by averaging the results for tv¢pending on the required processing rate. Assuming we can
sets of thirty random graphs (TG1 and TG2). Both of the twéUn the DSPs at 3.3V, 2.5V, 1.7V, or 0.9V, we applied low-
sets contain task-graphs of thirty nodes, but the degree of pgRergy scheduling method for the OFD. The results show as
allelism differs, representing two extremes. TG1 uses teRuch as 83% energy saving possibility for a sampling rate of
processors (high para”eiism) while TG2 uses Oniy three pré)_HZ. For that rate, all the tasks are USing the two lowest pOSSi'
cessors (|OW para"e“sm)‘ The continuous curves show tih."le voltages. Overall, the processors have to run 42.48% of the
energy saved by using ScaledLEneS over ScaledLS. The dotfgﬂe at 1.7V, and the rest of the time at 0.9V. For this particular
curves show the energy saved by ScaledLEneS over Classiclesample, the difference between the energy obtained through
Note that ScaledLS preforms well, being able to save arourﬁp&'@dLEneS and ScaledLS was less than 4%. This difference
60% energy at 50% deadline extension compared to ClassicliSather small because of the reduced number of tasks execut-
Nevertheless, ScaledLEneS performs best, saving from 7% g off the critical path, and which anyway have little freedom
to 28% energy, compared to ScaledLS. to scale. Note also that as the deadline extension grows, the
The final experiment explores the energy saving possibilifiasks use lower voltages. For lower supply voltages, the
for a real-life application. The sub-system we are interested fnergy-delay dependency (Fig. 4) has a smaller slope, so longer
is an optical flow detection (OFD) algorithm, which is part of delays yield gradually smaller energy savings. At limit, all
traffic monitoring system (See [14]) In the current imp|ementaSkS execute at the lowest voltage, and any further deadline
tation, the optical flow algorithm consists of 32 tasks, runnin§xtension will not bring any energy saving.
on two ADSP-21061L digital signal processors. Limited by
other tasks, OFD can process 78x120 pixels at a rate up to

12.5Hz. The estimated energy consumption for one iteration of Since processors with dynamic supply voltage start to be

the OFD |mplgmentat|on Is 2]."lz' Depending on car speed orai/ailable on the market, there is a need for new methods target-
monitoring altitude, such a high processing rate is a waste Q .) .
g reduced energy consumption, while taking advantage of the

resources. In many cases, a rate of 2Hz is sufficient, whi :
s :) .) eatures of these new types of processors. In this context, we
means ca. six times deadline extension for one iteration of the : . i
: . . . present a number of scheduling techniques targeting energy
OFD. Important energy savings would be obtained if the design
. : onsumption reduction. We introduce our new scheduling
were to use processors supporting multiple voltages. Moreover

. aggroach, LEneS, that handles designs with dependent tasks
using the approach we presented here, the schedule Canmapped onto dynamic supply voltage processors. LEneS uses
dynamically adapted at runtime to fit the desired deadlin .

%St-scheduling and a special priority function to derive static

VIIl. CONCLUSION

op . . . schedules with low energy consumption. Using a method for
. ' ; © tuning its priority function, our algorithm is able to find sched-
savings >10% ' 3 s .
58 [- § 56 tasks | @ ules that are more energy efficient than the other mentioned
2 savings >15% " approaches. The experiments presented in this paper show that
€6 |- S~ — 7 | X even for the tightest possible deadline, up to 28% energy sav-
g savings >20% z ings can be obtained without any performance loss, using our
£ R I . S I = scheduling approach. For loose deadlines we proposed a scal-
. l 2 ing method which yields important energy savings and can be
5 \ I I applied in principle to any scheduling algorithm. In particular,
y

8 10 using this technique, we can obtain 77% energy savings over a

. . . . _ critical-path priority based list-scheduling, for a 50% deadline
Fig. 7. The energy savings obtained when using LEneS over ClassicLS for

different designs and configurations. extension.

6
processors

APPENDIX

In this part we prove, using the formulae introduced in sed]
tion 1ll, that scaling the tightest schedule to the desired
deadline is the optimal strategy from the energy point of viesz]
We start from the taskenergy expression for two different sup-
ply voltagesV, the reference voltage, andithe voltage after
scaling:

Eoi = Nj (Ky DVo", E; = N; (K, OV 1) 31
For a sufficiently small threshold voltage, the clock frequencies
for the two voltages are (section Ill):

fo = Ky Vg, fj = K, IV 2 (4]
From (1), (2):E; = Eq [,/)2 3
From section lll:Ey; = (N; O1)/ f, 4)
From (3), (4):E = N, Oy OF2/ 13 O (5]
If 3, is the task execution delay; = 6—'_ fi,= E_I (6)
From (5), (6):E; = m, [/ 5? 0i)

The total energy of the task graph is: [6]
E=YE =m0y 83/52 where we know that the tasks
execute during the whole time until the deadl@e:‘)i =d ,anfln

the tightest possible deadline¥ss, = d, .
The lower bound for the total energyg [d3/d? , provable
by mathematical induction. This lower bound can be obtaindél
only whensg, = 3, [d/d, . Thus by scaling the tightest sched-
ule to fit the new deadline. The supply voltage associated wigﬁ

the new schedule can be easily computed.

[10]
ACKNOWLEDGMENT
Special thanks to Petru Eles and Jonas Hallberg for thdf!
insightful comments that helped us to improve this paper. They
work presented here was partially sponsored by ARTES: A net-
work for Real-Time research and graduate Education in
Sweden, http://www.artes.uu.se/, and WITAS [14].

[13]
[14]

REFERENCES

A. P. Chandrakasan and R. W. Brodersen, “Minimizing power
consumption in CMOS circuitsProc. of the IEEEVol. 83, No. 4, pp.
498-523, 1995.

M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive
system shutdown and other architectural techniques for energy efficient
programmable pomputatioEEE Trans. on VLSI Systeml.4 No.1,

pp. 42-51, 1996.

C. Hwang and A. C. Wu, “A predictive system shutdown method for
energy saving of event-driven computatioBjgest of Technical Papers

of the IEEE/ACM International Conference on Computer-Aided Design
1997,pp. 28-32.

F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,Proc. of the 36th Symposium on Foundations of Computer
Sciencepp. 374-382, 1995.

I. Hong, Gang Qu, M. Potkonjak, and M.B. Srivastava, “Synthesis
techniques for low-power hard real-time systems on variable voltage
processorsProc. of the 19th IEEE Real-Time Systems Symposium 1998,
pp.178-187.

I. Hong, D. Kirovski, Gang Qu, M. Potkonjak, and M. B. Srivastava,
“Power optimization of variable voltage core-based systef¢. of

the 35th Design Automation Conference 19%8,176-181.

T. Ishihara,H. Yasuura, “Voltage scheduling problem for dynamically
variable voltage processors?roceedings of the 1998 International
Symposium on Low Power Electronics and Desl§98, pp 197-202.

B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: hardware-
software co-synthesis of embedded systerRstc. of the 34th DAC
1997,pp. 703-708.

F. Gruian and K. Kuchcinski, “Low-energy directed architecture
selection and task scheduling for system-level desiBrgteedings of

the 25th Euromicro Conference 199, 296-302.

F. Gruian, “System-level design methods for low-energy architectures
containing variable voltage processors,” in press.

J.-M. Chang and M. Pedram, “Energy minimization using multiple
supply voltages,JEEE Trans. on VLSI Systen\®l. 5, No. 4, 1997.

K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe,
K. Matsuda, T. Maeda, and T. Kuroda, “A 300MIPS/W RISC core
processor with variable supply-voltage scheme in variable threshold-
voltage CMOS,"Proc. of the IEEE Custom Integrated Circuits
Conference 1997%p. 587-590.

“SH-1:SH7032/SH7034 Product BrieKITACHI Semiconductor Inc.
WITAS: The Wallenberg laboratory for research on information
technology and autonomous systems, http://www.ida.liu.se/ext/witas/

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

