


2.1 Incremental and Dynamic Data Structures
and Algorithms

Data structures are the backbone of all CAD tools. E�cient
algorithms must be accompanied with an equally e�cient
data structure. Therefore, to facilitate incremental physical
design, the underlying data structure must accommodate

incremental changes.

Many of the VLSI CAD problems can be modeled as (hy-
per)graph or tree problems (see for example [58; 37; 50; 66;

69; 72; 75; 87].) Various incremental and dynamic algo-
rithms have been proposed for (hyper)graphs and trees [37;
66; 75; 87]. It is therefore, worthwhile to study the incre-
mental graph and tree algorithms and data structures [1; 5;
13; 30; 33; 64] in the context of VLSI CAD tools.

2.2 Partitioning
A chip may contain tens of millions of transistors. Layout

of the entire circuit cannot be handled in a 
at mode due
to the limitation of memory space as well as computation
power available. Even though fabrication technologies have
made great improvements in packing more logic in a smaller
area, the complexity of circuits has also been increasing cor-
respondingly. This necessitates breaking a circuit and dis-

tributing it across several regions in a chip or across several
chips. Thus, the �rst step in the physical design phase is
partitioning. A good partitioning can signi�cantly improve
the circuit performance and reduce layout costs.

Partitioning is a complex and intractable problem that has
been shown to be NP-complete. The nature of the parti-
tioning problem along with the size of the circuit makes it
di�cult to perform an exhaustive search required to �nd an
optimal solution. A number of e�ective heuristics have been

proposed, e.g., [31; 40; 21; 73; 3; 23; 63; 39; 24; 6; 10]. Here,
we focus our attention to incremental partitioning.

Incremental Partitioning: Given a hypergraphH = (N;L),

an incrementally changed hypergraph H 0 = (N 0; L0) can be
constructed by adding/deleting vertices and/or edges from
H. Ndiff = N \ N 0 is the set of di�erent vertices and
Ldiff = L\ L0 is the set of di�erent hyperedges between H
and H 0. In the context of incremental change, jNdiff j and
jLdiff j is much smaller than jN j and jLj. Given the orig-

inal hypergraph H and a good partitioning solution of H,
the problem of partitioning the incrementally changed hy-
pergraph H 0 is called the incremental partitioning problem.

Very little work has been done on incremental partitioning.
Here we present a simple approach to this problem. Since
the incrementally changed hypergraph H 0 is only partially
di�erent than H, it is natural to think the partitioning solu-
tion on H is similar to the partitioning solution on H 0. The
di�erence in solutions of H and H 0 could be just the vertices

in Ndiff and the vertices close to them.

We de�ne the value of topological proximity for each vertex
inH 0 as follows: Vertices in Ndiff and vertices corresponded

to all the hyperedges in Ldiff have a topological proximity
value of 0 and are called 0-proximity vertices. Those remain-
ing vertices which are directly connected to 0-proximity ver-
tices have a proximity value of 1 and are called 1-proximity
vertices. k-proximity vertices are those which are directly
connected to at least one (k � 1)-proximity vertex and no

vertices with lower proximity value than k�1. The proxim-
ity values of all the vertices in N 0 can be quickly found by
performing a breadth-�rst-search on H 0.

A simple approach to solve the incremental partitioning

problem is to �x most vertices with hight proximity val-

ues in their corresponding partitions as in the given good
solution of H. The only active vertices capable of moving
between partitions are those whose topological proximity
value is smaller than a certain threshold. This threshold is
called the proximity threshold. When the proximity thresh-
old decreases, the number of active vertices decreases. Thus

we spend less e�ort to solve the partitioning problem. When
the threshold is zero, only 0-proximity vertices are possible
to be moved around. Thus we can quickly �nd a partition-
ing solution for H 0. However, this quick solution may not be
good. When the threshold is in�nity, all the vertices in H 0

are active. A better partitioning result and a longer running

time are expected.

We tested this approach with di�erent threshold value on
�ve ISPD benchmark circuits [2]. For each benchmark cir-
cuit, we incrementally changed the netlist by 1%, 5%,10%
and 20%, respectively. Table 1{4 shows the experimental

results.

threshold = 0 threshold = 1
Ckt act. vtx cut time act. vtx cut time

ibm01 127 291 .11s 1384 291 .55

ibm02 196 285 .15s 2501 286 1.1

ibm03 231 767 .18s 2421 766 1.5

ibm04 275 617 .24s 2717 615 1.1

ibm05 293 1845 .28s 4269 1841 2.5

threshold = 2 threshold = 1

Ckt act. vtx cut time act. vtx cut time

ibm01 7846 290 5.2s 12752 315 10.8s

ibm02 15261 280 16.4s 19601 276 16.8s

ibm03 15679 819 18.4s 23136 780 24.5s

ibm04 17374 596 15.3s 27507 545 25.4s

ibm05 23962 1846 31.6s 29347 1855 39.3s

Table 1: Incremental partitioning results when the di�er-
ence between H and H 0 is 1%. We only move active vertices

in H 0. With each threshold value, active vertices are those
whose proximity value is less than or equal to the thresh-
old value. The \act. vtx" column is the number of active
vertices. \cut" and \time" shows the net-cut and running
time.

Table 1{4 show that when the di�erence between H and
H 0 is not much (< 10%), our simple approach with thresh-

old of zero actually produces good partitioning results us-
ing only little amount of time. In this scenario, making
more vertices active does not improve the quality of results
substantially. When the di�erence between H and H 0 is
large (> 10%), partitioning results obtained from the zero-

threshold approach are not very good. An alternative ap-
proach should be used here.

2.3 Floorplanning
In the 
oorplanning phase, the macro cells have to be posi-
tioned on the layout surface in such a manner that no blocks

overlap and that there is enough space left to complete the
interconnections. The input to the 
oorplanning is a set of
modules, a list of terminals (pins for interconnections) for
each module and a netlist, which describes the connections
between the terminals.

There exist many di�erent approaches to the 
oorplanning



threshold = 0 threshold = 1
Ckt act. vtx cut time act. vtx cut time

ibm01 637 495 .42s 5024 489 2.8

ibm02 980 293 .57s 8777 294 8.1

ibm03 1156 884 2.1s 8826 917 9.7

ibm04 1375 1015 0.96s 10291 1008 7.3

ibm05 1467 2260 1.1s 13706 2249 16.3

threshold = 2 threshold = 1

Ckt act. vtx cut time act. vtx cut time

ibm01 11669 486 9.5s 12752 392 12.2s

ibm02 18902 289 19.8s 19601 284 19.1s

ibm03 21864 849 25.5s 23136 807 23.6s

ibm04 25487 1011 31.4s 27507 1040 28.2s

ibm05 28124 2232 43.4s 29347 2227 43.8s

Table 2: Incremental partitioning results when the di�erence
between H and H 0 is 5%.

threshold = 0 threshold = 1

Ckt act. vtx cut time act. vtx cut time

ibm01 1275 714 .82s 7570 715 5.9
ibm02 1960 299 1.4s 12238 302 14.7
ibm03 2313 824 4.8s 13399 832 17.7

ibm04 2750 1453 1.8s 15406 1443 13.9
ibm05 2934 2744 1.9s 19297 2692 28.9

threshold = 2 threshold = 1

Ckt act. vtx cut time act. vtx cut time

ibm01 12350 684 12.5s 12752 463 11.7s

ibm02 19320 296 24.0s 19601 287 21.5s

ibm03 22664 743 27.0s 23136 748 23.5s

ibm04 26755 1408 29.9s 27507 1196 34.1s

ibm05 28828 2730 52.0s 29347 2683 59.5s

Table 3: Incremental partitioning results when the di�erence

between H and H 0 is 10%.

threshold = 0 threshold = 1
Ckt act. vtx cut time act. vtx cut time

ibm01 2550 1104 1.3s 9755 1069 10.6

ibm02 3920 369 4.1s 15702 310 19.4

ibm03 4627 1115 7.4s 17549 891 24.8

ibm04 5501 2320 7.1s 20793 2242 31.9

ibm05 5869 3432 3.8s 23907 3299 41.4

threshold = 2 threshold = 1

Ckt act. vtx cut time act. vtx cut time

ibm01 12551 701 11.9s 12752 647 12.4s

ibm02 19472 292 21.7s 19601 294 21.7s

ibm03 22923 782 27.5s 23136 793 27.4s

ibm04 27225 1383 40.2s 27507 1339 41.2s

ibm05 29074 3246 63.3s 29347 3262 65.6s

Table 4: Incremental partitioning results when the di�erence
between H and H 0 is 20%.

problem. When the area of the 
oorplan is considered, the

problem of choosing for each module the implementation
which optimizes a given evaluation function is referred to as
the Floorplan Area Optimization Problem [67]. Wimer et al.
[83] describe a branch and bound approach for the 
oorplan
sizing problem, i.e. �nding an optimal combination of all
possible layout-alternatives for all modules after �nding the

topological order of modules. While their algorithm is able
to �nd the best solution for this problem, it is very time
consuming, especially for real problem instances. Cohoon
et al. [38] implemented a genetic algorithm for the whole

oorplanning problem. Their algorithm makes use of esti-
mates for the required routing space to ensure completion

of the interconnections. Another more often used heuristic
solution method for placement is Simulated Annealing [84;
46].

As designs get larger and more complex, the 
oorplanning
process becomes slower. However, having a good 
oorplan
is essential both to the later stages of the design and for
estimating the quality metrics of the product. Furthermore,
in the design process of a chip, there are lots of changes
to the netlist and/or module sizes due to changes at di�er-

ent levels of the design (e.g., changes in the module library,
synthesis moves, timing optimization, etc.), that require ob-
taining a new 
oorplan which re
ects the updated netlist.
For example, when a module in the library of the modules
is debugged or redesigned for quality improvements, its area

changes. Or, when we perform logic changes (gate dupli-
cation, bu�er insertion, etc.), the netlist and modules' area
change. These changes can be signi�cant compared to the
original netlist and module sizes.

Due to time-to-market constraints, it is no longer a�ord-
able to redo the time-consuming process of 
oorplanning
and associated top-level routing after each of these changes.
Hence, we should take new approaches to these problems.
One such approach is incremental 
oorplanning.

Incremental Floorplanning: Given a slicing (or non-
slicing) 
oorplan F and some small changes in the module
sizes and/or netlist, generate a new 
oorplan F 0 by applying

small changes to F . The process needs to be much faster
than generating F 0 from scratch. Ideally, we would like F 0

to be as good as a 
oorplan F 00 generated using the modi-
�ed netlist by a complete traditional 
oorplanning method
(e.g., Simulate Annealing). In practice though, F 0 would be
inferior to F 00, and the quality loss will increase as the in-

cremental changes build up. To remedy the quality loss, we
should use some criteria to estimate how far F 0 is from F 00,
and if the di�erence is more than a certain threshold, gener-
ate a new 
oorplan using the updated netlist from scratch.

To minimize the frequency of invoking a traditional 
oor-
planning process, the initial 
oorplan should be \tolerant"
to incremental changes. A tolerant 
oorplan is able to ac-
commodate the most likely changes1 without signi�cant in-

crease in area or other design quality metrics. Also, the
incremental changes in the 
oorplan should be applied in a
way that minimizes the need for repeating the 
oorplanning
from scratch.

Bazargan et. al. [7] propose a method for generating \tol-
erant" 
oorplans to accommodate changes in the module
library. The proposed method gets as input a list of module

1Research e�ort should also be put in �nding ways to predict
netlist and module area changes and how likely they are to
occur.



Vec3 Vec4 Vec5 Vec6

Bres 3 6 8 11

Heap 443 9 392 501

Clip 49 15 15 19

Table 5: Floorplanning invocation count ratio

dimensions and the probability that each dimension is used
in the �nal design, and generates a 
oorplan and the prob-
ability distribution function (PDF) of its dimensions. The
output 
oorplan is picked in a way that its width/height
variance is minimum (intuitively, changes in the module di-

mensions would not change the �nal area of the 
oorplan
dramatically).

Crenshaw [25] uses a greedy method to apply local changes
on a slicing 
oorplan tree. The algorithm is applied to a
high-level synthesis framework. It uses an area-only criteria
to assess the need for invoking a traditional 
oorplanner.
Table 5 illustrates the speedup gained by this method over
a traditional method (applying the 
oorplanning algorithm

after each synthesis move). The columns are di�erent sets
of incremental changes in the netlist (Vec3 through Vec6).
Each entry shows speed-ups for di�erent 
oorplan results.

2.4 Placement
The placement problem can be de�ned as follows. Given an
electrical circuit consisting of modules with prede�ned in-
put and output terminals that are interconnected in a pre-
de�ned way, construct a layout indicating the positions of
the modules so the estimated wire length and layout area
are minimized. The inputs to the problem are the module

description, consisting of the shapes, sizes, and terminal lo-
cations, and the netlist, describing the interconnections be-
tween the terminals of the modules. The output is a list of x-
and y-coordinates for all modules. The main objectives of a
placement algorithm are to minimize the total chip area and

the total estimated wire length for all the nets, possibly un-
der timing and other constraints. We need to optimize chip
area usage in order to �t more functionality into a given chip
area. We need to minimize wire length in order to reduce
the capacitive delays associated with longer nets and speed
up the operation of the chip.

Placement algorithms are typically divided into two major
classes: constructive placement and iterative improvement.

In constructive placement, a method is used to build up
a placement from scratch; in iterative improvement, algo-
rithms start with an initial placement and repeatedly mod-
ify it in search of a cost reduction. If a modi�cation results
in a reduction in cost, the modi�cation is accepted; other-

wise it is rejected. Constructive placement algorithms are
generally faster, but at the risk of resulting in poor lay-
outs (with the exception of recent algorithms in analytical
placement). Since they take a negligible amount of compu-
tation time compared to iterative improvement algorithms,
they are usually used to generate an initial placement for

iterative improvement algorithms. More recent construc-
tive placement algorithms, such as numerical optimization
techniques [45; 28] and integer programming formulation
[51] yield better layouts but require signi�cantly more CPU
time. One of the biggest challenge for placement tools is the
rapid growing circuit size. A good placement algorithm has

to �nd a good layout as quickly as possible.

Incremental Placement: Given an existing good place-

ment with respect to a given metric (e.g., wirelength), mod-
ify the placement to improve it in other metrics (e.g., con-
gestion or timing). It is also possible that we would want
to improve the original metric in reaction to netlist changes
(cell and net addition/deletion). Incremental placement is
usually caused by adding cells/nets, reducing congestion or

meeting timing constraints.

A congestion reduction technique is proposed in [54] as a
post processing stage after traditional wirelength minimiza-
tion stage. Congestion that accounts for routability is min-

imized in this process without perturbing other placement
objectives, e.g., wirelength. Generally it is extremely hard
to modify a given \good" placement to meet particular con-
straints without degrading previously minimized objectives.
For instance, given a placement produced by wirelength op-
timization tool, it is unlikely that a timing improvement

process can work without increasing total wirelength. Thus,
heuristics that achieve trade-o� between several objectives
should be studied/designed.

Some preliminary studies will be discussed next. Two cells

are in topological proximity if there exists a short path from
one cell to another. If two cells are closely located on place-
ment we say they are in geometrical proximity. In a wire-
length optimized placement topological proximity and geo-
metrical proximity correlate well, i.e., usually two cells are
topologically proximate if they are geometrically proximate

and vice versa.

Table 6 shows a simple timing related experiment of incre-
mental placement on MCNC benchmark circuits. A post-
processing algorithm takes a good placement produced by a

wirelength optimization engine as the input, �nds a subset
of long nets (in terms of bounding box), reduces it to a given
threshold value, e.g., to 90% of its original length. If there
exist other nets with bounding box length larger than this
threshold value, they will be also reduced. The algorithm
we have implemented is greedy because it only accepts cell

moves which do not increase the length of long nets. The
changes of total wirelength are reported by the percentage
increment on the original wirelength. Running time of the
algorithm is negligible compared with a fresh placement run.
The results show that it is not di�cult to reduce the longest
net by up to 20% without considerably increasing the total

wirelength. However, it gets very di�cult to increase the
wirelength beyond that. It should be noted that the imple-
mented algorithm is greedy and very simple in nature. More
e�ective algorithms are needed to tackle this problem.

2.5 Routing
The routing problem can be de�ned as follows. Given 
oor-

planning and placement results, �nd out an exact implemen-
tation of all nets using conductive wires so that all the pins
in each net are electrically connected. The connection wires
have certain width and wire-to-wire clearance constraints,
called design rules, determined by both processing technolo-
gies and performance optimization methods such as wire siz-

ing and wire spacing [19; 18]. In general, the routing prob-
lem are handled in a two-level hierarchy: global routing and
detailed routing. In global routing, the entire routing region
is partitioned into tiles or channels and a rough route for
each net is determined in terms of the tiles or channels that
the route passes through. The objective of global routing is

typically to minimize the routing congestion and the total



bounding box length reduced

circuit #cells 5% 10%
#nets �WL #nets �WL

Primary2 2907 1 0.06% 3 0.37%
industry2 12142 2 0.06% 6 0.48%
industry3 15059 1 0.01% 1 0.04%
avqs 21854 1 0.03% 3 0.16%
avql 25114 1 0.06% 2 0.14%

bounding box length reduced

circuit #cells 20% 30%
#nets �WL #nets �WL

Primary2 2907 7 2.48% 13 N/A

industry2 12142 17 N/A 39 N/A
industry3 15059 1 0.06% 5 N/A
avqs 21854 5 0.78% 6 1.67%
avql 25114 10 1.85% 13 N/A

Table 6: Number of long nets and total wirelength in-
crease in reducing bounding boxes length of long nets in
a good placement, N/A means this can not be done by this
greedy approach. Initial placements are produced by Tim-

berWolf(without timing constraints)

wirelength. The global routing results are used to guide de-
tailed routing to compute the exact routing implementation
in each tile.
The incremental routing problem can be formulated as
follows: Given an existing layout and a set of nets to be

added or rerouted, �nd a new layout to accommodate these
incremental routing changes with the minimal modi�cation
of the original layout. There many scenarios that such an
incremental routing problem may occur. For example, the
netlist might be incrementally updated by the designer or
synthesis tools, and some nets might be determined to have

timing/noise violation after parasitic extraction and timing
analysis. In this case, obviously, re-do the routing for all the
nets is too time-consuming. Moreover, an entirely di�erent
layout may will completely invalidate the existing extraction
and detailed timing analysis results. Thus, the key prob-
lem in incremental routing is to preserve as much previous

routing results as possible, while accommodating the new
routing requests.
We partition the incremental routing problem into three re-
lated sub-problems.

� Single Net Routing. The �rst goal of incremental
routing is to route the new nets without removing any
of existing routed nets. This requires us to determine
quickly for a given net, if it can be routed in the ex-
isting layout.

� Rip-up and Reroute. If the net can not be routed
with existing nets, a rip-up and reroute operation will
be carried out to free out more routing space and so
that all nets can be routed. The challenge of the rip-
up and reroute problem is how to complete all the

nets with minimal changes on exiting routes (without
changing the 
oorplan and placement results).

� Incremental Floorplan and Placement Update.
If rip-up and reroute fails to complete all the nets, the

oorplan and placement of the design need to be up-

dated to add more routing resources. The problem of

incremental 
oorplanning and placement update is to

minimize and localize the 
oorplan/placement changes
while allowing all nets to be routed.

The solutions to these three sub-problems in fact form a nat-
ural three-stage bottom-up 
ow for the incremental routing
problem. The 
exibility in each stage increases while the

problem complexity also increases. In the following subsec-
tions, we shall �rst brie
y review related results and then
present some of our initial solutions in each of the three
problems. Open problems in each of the three stages are
also presented to motivate future research on this topic.

Single Net Routing
The single net routing problem (SNRP) is the easiest yet
most fundamental one among the three problems. There
are many methods to check whether a net is routable or not

in a given layout. This is usually accomplished by actually
�nding a connection using a path searching algorithm in an
abstracted routing graph, which is the kernel problem for
all routing problems. The incremental routing problem is
di�cult in two aspects: First, the routing region is usually
heavily congested with the existing routes; Second, the new

route may not localize in a small routing region, which makes
most path searching algorithms used by typical detailing
routing system (work well for a tile or channel) ine�cient or
incapable to handle such problem.
For single net routing, the routing region is normally reduced

to a connection graph and the routing problem is mapped to
a path searching problem in the graph. There are two ways
to map the routing region to a graph: a tile-based approach
and a point-based approach. In the tile-based approach,
the routing area is partitioned into regions, tiles, where the
center-line of a path can pass through [70; 56; 53]. These

tiles are de�ned by the boundary of the obstacles and stored
using a corner-stitching data structure [62]. In the point-
based approach, the routing area is populated with points
where the center-line of a path can pass through [85; 59; 86].
A maze searching algorithm [48; 34; 74] is used to search a
path on these graphs. In general, tiles are more complex to

manage: tile-to-tile path needs post-processing to obtain a
�nal design-rule correct route and there are some di�culties
in using the tile-based algorithm for multi-layer routing with
more complex design rules (see discussions in [16]). Thus,
we turn our attention to point-based connection graphs for
routing.

In early point-based routing algorithms, a uniform grid graph
is used as the underlying routing graph. An explicit rep-
resentation of the graph is used, that is, the graph is pre-
computed and stored. This approach is ine�cient in current
high-performance designs because the variable width and

variable spacing design rules impose very �ne grids on a uni-
form grid graph approach. Moreover, it is very ine�cient to
compute the routing graph for the entire layout while maybe
only a small portion of it will be a�ected by incremental
routing. Two approaches are proposed to improve the ex-
plicit graph: One is to �nd a minimal graph that guarantees

to contain at least one shortest path if any such path ex-
ists [85; 82]. The drawback of the minimal graph approach is
that it requires very expensive pre-construction. The other
approach is to use compressed or implicit representation of
the graph. A compressed representation of uniform grid-
graph using segments is presented in [36]. Zheng, etc. al.,

presented an implicit representation of the routing graph,



Ex. Uniform Non-Uniform Grid Iroute
Expl. Runtime Impl. Runtime Mem
(MB) (sec.) (MB) (sec.) (MB)

eco-1 160.2 19.1 10.9 42.15 32.7

eco-2 160.2 6.3 10.9 26.58 32.7

eco-3 160.2 34.5 7.2 68.70 32.6

eco-4 161.7 24.0 10.9 57.39 32.6

eco-5 191.0 12.3 12.7 43.14 35.2

eco-6 359.4 24.7 15.9 74.29 52.6

eco-7 641.1 38.2 43.6 79.79 84.7

Table 7: ECO test results: experimental results comparing
implicit representation of non-uniform graph with explicit
uniform grid graph and Iroute using seven ECO examples.

that is, their graph nodes are computed on-the-
y [86]. The
underlying graph in their approach is an extension to the
Track Graph [85]. Their implicit approach, although very
e�cient in representation, is costly in computing the graph
nodes.

We propose a non-uniform grid graph (NUGG) with its im-
plicit representation for the single net routing problem [15].
The graph is an orthogonal grid graph constructed based

on the expansion of rectangular obstacles in the routing re-
gion according to wire/via width and spacing rules. The
non-uniform grid graph, comparing with uniform gridded
approach, is much smaller. What is more, the gridded na-
ture of such a graph makes it very easy to come up with an
implicit representations | instead of pre-compute and store

the graph, the graph is represented by two sorted array of its
X and Y grid positions. To e�ciently answer maze related
queries, a two-level data structure using a �rst level \slit-
tree" [42; 47] plus a second level interval tree [27] is applied.
The query data structure is further enhanced with a cache

structure that exploits the locality of the maze expansion.

The e�ective of this approach is validated as we apply this
graph and the auxiliary data structures to the incremen-
tal routing routing problem [15] (called the ECO problem

in that paper). The paper compares the implicit graph and
the query data structure with explicit uniform grid approach
and Iroute, a well-known tile-based router for gridless rout-
ing, as shown in Table 7. The results show that not only this
graph representation is very e�cient in memory usage |
14� smaller than explicit representation and 2�3� smaller

than Iroute. The queries into the data structure is also very
fast. The run time of our maze routing algorithm is 2� 4�
faster than Iroute.

Rip-up and Reroute Problem

When some nets can not be routed, a rip-up and re-route
procedure is required to free out more routing resources and
re-do the routing for the newly added nets and the nets that
have been ripped up. Many algorithms have been proposed
for rip-up and reroute [52; 43; 57]. However, most of them

assume that there exists a underlying uniform routing grid
and all net segments can be simpli�ed as a zero width lines
centered on the grid. This makes it easy to model the re-
sources in the routing region and simpli�es the operation to
exchange the resources between nets. However, this assump-
tion does not hold anymore in variable width and variable

spacing routing. An accurate model of available routing re-

source in each local region and the 
exibility to pick the

re-routes globally are both needed to �nd the rerouting in a
gridless environment.

Existing rip-up and re-route algorithms can be broadly cat-
egorized into the following two types:

� Those always maintain design rule correctness, such as
the Path�nder [57] and Silk [52];

� Those allows temporary design-rule violation, such as
the \cross-and-touch" router [43]

There are some limitations if we strictly enforce design rule
correctness in every step during routing. First, the result
will rely heavily on the ordering of nets, as previously routed
nets become obstacles for later ones. The rip-up and reroute
algorithm has to be smart, or at least fair in selecting proper

net orders. However, there is no obvious solutions other
than simple heuristics and trial-and-error methods. Second,
selecting nets to be ripped up is di�cult, especially in incre-
mental routing when the original routing algorithm used to
generate the layout may not be available. The second type

of rip-up and reroute algorithm is more 
exible since by al-
lowing design-rule incorrect routes, one can at least attempt
to route all the nets and obtain a global picture of where the
congested areas and free spaces are. Thus, many practical
routing systems use this approach.

The key problem in rip-up and reroute for incremental rout-
ing is to �nd the solution with minimal changes in the pre-
vious nets. In a gridless routing environment, this prob-
lem is di�cult in that the routing resources and previous
routed wire can not be simpli�ed as grids or tracks. We

feel that the best solution to this problem is to develop a
global control structure for the overall routing system that
enables both the high-level planning prior to detailed routing
and the rip-up and reroute after detailed routing. There-
fore, we proposed an wire planning algorithm which e�ec-
tively takes exact gridless design rules, models the avail-

able routing resources accurately, plans for the incremen-
tal routes prior to single net routing and also re-plans in
rip-up and reroute. Such a framework gives the rip-up and
re-route algorithms global 
exibility to evaluate the alterna-
tives yet with detailed knowledge about the available routing
resources in each region. Such an algorithm was successfully

implemented in [17]. The results, as shown in Table 8, show
that the detailed routing system, compares to a net-by-net
approach using an e�cient gridless detailed router, is 3 {
17 times faster while the completion rate is also improved.
These improvements are critical for applying the gridless

detailed routing system in current and future VLSI designs
where a true variable width and variable spacing router is
needed.

Incremental Floorplan and Placement Update
When rip-up and reroute fail to route all the nets, we need
to consider modifying the given placement and/or 
oorplan

con�gurations. This is closely related the incremental 
oor-
plan and placement problems formulated in Sections 2.3 and
2.4. There is, however, usually additional degree of 
exibil-
ity in the context of incremental routing { the rip-up and
re-route engine may suggest several alternatives for increas-
ing routing sources to complete the routing. In this case,

the incremental 
oorplan and placement algorithms need



Example Routed Nets Run Time
n.b.n w.p. total n.b.n. w.p. �

Block 489 496 496 4500.6 270.0 16.7

Mcc1 3939 3998 4004 9499.6 1365.1 7.0
Mcc1c 3931 3978 4004 5621.0 1508.5 3.7
Ray 409 418 430 518.8 172.0 3.0

Table 8: Routing results with wire planning: four examples
are used to compare the completion ratio and run time for
two approaches | net-by-net (shown as \n.b.n") and wire
planning (shown as \w.p.").

to choose the right combination of routing regions to in-
crease the routing resources yet minimize the modi�cation
of the current 
oorplan/placement solution. Incremental

oorplanning and placement update is a vital part of a in-
cremental routing system because it provides the link be-
tween routing and 
oorplanning/placement. However, little

progress has been reported for this problem, and we rank it
as a high priority problem that needs more studies.

3. CONCLUSION
In this paper, we formulated the incremental physical design
problems and surveyed existing solutions. After discussing
some preliminary results, a number of fundamental open

problems were suggested. We highlight the importance of
incremental modi�cation and optimization in VLSI CAD. It
was argued that comprehensive study of incremental algo-
rithms and solutions in the context of CAD tool develop-
ment is an open area of research with a great deal of poten-
tial. Full understanding and e�cient solutions in this area

would help us signi�cantly in coping with the rapid increase
in design complexity of current and future VLSI systems
and facilitates concurrent optimization.

4. ACKNOWLEDGEMENT
The authors wish to thank graduate students at Northwest-

ern and UCLA who have contributed to this paper: Kiarash
Barzagan, Jie Fang, Maogang Wang, and Xioajian Yang.

This project was supported in part by grants from NSF
(MIP-95-27389 and MIP-9357582) and grants from Fujitsu
Laboratories at America under the California MICRO Pro-
gram.

5. REFERENCES
[1] P.K. Agarwal, D. Eppstein, and J. Matousek. \Dy-

namic Half-Space Reporting, Geometric Optimization,
and Minimum Spanning Trees". In Annual Symposium
on Foundations of Computer Science, 1992.

[2] C. Alpert. \The ISPD98 Circuit Benchmark Suite". In
International Symposium on Physical Design, pages 18{
25. ACM, April 1998.

[3] C. J. Alpert, L. W. Hagen, and A. B. Kahng. \A
General Framework For Vertex Orderings, With Appli-
cations to Netlist Clustering". IEEE Transactions on
VLSI Systems, 4(2):240{246, 1996.

[4] M. Bae, G.T. Dong, S.W. Yang, and H. Chang. \An
Optimization Technique for BDD Based on Bidirec-
tional Incremental Sifting". Korean Information Sci-
ence Society, Comput. Syst. Theory, 25(9):1058{1066,
September 1998.

[5] M. Barbehenn and S. Hutshinson. \E�cient search and
Hierarchical Motion Planning by Dynamically Main-
taining Single-Source Shortest Paths Trees". IEEE
Transactions on Robotics and Automation, 11(2):198{
214, April 1995.

[6] S. T. Barnard and H. D. Simon. \A Fast Multilevel Im-
plementation of recursive Spectral Bisection For Par-
titioning Unstructured Problem". In SIAM Conference
on Parallel Processing for Scienti�c Computing, pages
711{718, 1993.

[7] K. Bazargan, S. Kim, and M. Sarrafzadeh. \Nos-
tradamus: A Floorplanner of Uncertain Designs". IEEE
Transactions on Computer Aided Design, 18(4):389{
397, April 1999.

[8] D. Brand, A. Drumm, S. Mundu, and P. Narain. \In-
cremental Synthesis". In International Conference on
Computer-Aided Design, pages 14{18. IEEE, Novem-
ber 1994.

[9] R.G. Bushroe, S. DasGupta, A. Dengi, P. Fisher,
S. Grout, G. Ledenbach, N. Nagaraj, and R. Steele.
\Chip Hierarchical Design System (CHDS): A Founda-
tion for Timing-Driven Physical Design into the 21st
Century". In International Symposium on Physical De-
sign, pages 212{217, 1997.

[10] A. E. Caldwell, A. B. Kahng, and I. L. Markov. \Im-
proved Algorithms For Hypergraph Bipartitioning". In
Asia and South Paci�c Design Automation Conference.
IEEE/ACM, 2000.

[11] R. Camposano. \The Quarter-Micron Challenge: In-
tegrating Physical and Logic Design". In International
Symposium on Physical Design, page 211, 1998.

[12] A. Chandrakasan and R. Brodersen. \Minimizing
Power Consumption in Digital CMOS Circuits". Pro-
ceedings of the IEEE, pages 498{523, April 1995.

[13] Y.-J. Chiang and R. Tamassia. \Dynamic Algorithms
in Computational Geometry". Proceedings of the IEEE,
80(9):1412{1434, September 1992.

[14] C.-S. Choy, T.-S. Cheung, and K.-K. Wong. \Incremen-
tal Layout Placement Modi�cation Algorithms". IEEE
Transactions on Computer Aided Design, 15(4):437{
445, April 1996.

[15] J. Cong, J. Fang, and K.Y. Khoo. An implicit connec-
tion graph maze routing algorithm for ECO routing. In
Proc. ACM/IEEE International Conference on Com-
puter Aided Design, pages 163{167, Nov 1999.

[16] J. Cong, J. Fang, and K.Y. Khoo. Via design rule
consideration in multi-layer maze routing algorithms.
In Proc. International Symposium on Physical Design,
pages 214{220, Apr 1999.

[17] J. Cong, J. Fang, and K.Y. Khoo. DUNE: A multi-layer
gridless routing system with wire planning. In Proc. In-
ternational Symposium on Physical Design, Apr 2000.
to be appeared.

[18] J. Cong and L. He. Theory and algorithm of local-
re�nement-based optimization with application to de-
vice and interconnect sizing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 18(4):406{420, Apr 1999.

[19] J. Cong, L. He, C.-K. Koh, and P. Madden. Perfor-
mance optimization of VLSI interconnect layout. Inter-
gration, the VLSI Journal, 21(1-2):1{94, 1996.

[20] J. Cong and H. Huang. Technology mapping for �eld
programmable gate arrays with incremental changes. In
Proc. 37th Design Automation Conference, page to be
appeared, Jun 2000.



[21] J. Cong, P. Li, L. Sung, T. Shibuya, and D. Xu. Large
scale circuit partitioning with loose/stable net removal
and signal 
ow based clustering. In Proc. IEEE Inter-
national Conference on Computer-Aided Design, pages
441{446, Nov 1997.

[22] J. Cong and D.Z. Pan. \Interconnect Estimation and
Planning for Deep Submicron Designs". In Design Au-
tomation Conference, pages 507{510, 1999.

[23] J. Cong and M. L. Smith. \A Parallel Bottom-up Clus-
tering Algorithm With Applications to Circuit Parti-
tioning in VLSI Design". In IEEE-ACM Design Au-
tomation Conference, pages 755{760, 1993.

[24] J. Cong and L. Sung. Multiway partitioning with pair-
wise movement. In Proc. IEEE International Confer-
ence on Computer-Aided Design, pages 512{516, Nov
1998.

[25] J. Crenshaw, M. Sarrafzadeh, P. Banerjee, and P. Prab-
hakaran. \An Incremental Floorplanner". In Great
Lakes Symposium on VLSI, March 1999.

[26] A. Deutsch, G.V. Kopcsay, P.J. Restle, H.H. Smith,
G. Katopis, W.D. Becker, P.V. Coteus, C.W. Surovic,
B.J. Rubin, R.P. Dunne Jr., T. Gallo, K.A. Jenkins,
L.M. Terman, R.H. Dennard, G.A. Sai-Halasz, B.L.
Krauter, and D.R. Knebel. \When are Transmission-
Line E�ects Important for On-Chip Interconnections?".
IEEE Transactions on Microwave Theory and Tech-
niques, 45(10):1836{1846, October 1997.

[27] H. Edelsbrunner. A new approach to rectangle inter-
sections. Intl. Journal of Computer Mathematics, 13(3-
4):209{229, 1983.

[28] H. Eisenmann and F. Johannes. Generic global place-
ment and 
oorplanning. In Proc. 35th Design Automa-
tion Conference, pages 269{274, Jun 1998.

[29] J.M. Emmert and D. Bhatia. \Incremental Routing in
FPGAs". In IEEE International ASIC Conference and
Exhibit, 1998.

[30] D. Eppstein. \Sparsi�cation - A Technique for Speeding
up Dynamic Graph Algorithms". In Annual Symposium
on Foundations of Computer Science, 1992.

[31] C. M. Fiduccia and R. M. Matteyses. \A Linear Time
Heuristic for Improving Network Partitions". In Design
Automation Conference, pages 175{181, 1982.

[32] J.-Y. Fourniols, M. Rocca, F. Caignet, and E. Sicard.
\Characterization of Crosstalk Noise in Submicron
CMOS Integrated Circuits". IEEE Transactions on
Electromagnetic Compatibility, pages 271{280, August
1998.

[33] M. Goodrich and R. Tamassia. \Dynamic Trees and Dy-
namic Point Locations". SIAM Journal on Computing,
28(2), February 1998.

[34] F.O. Hadlock. A shortest path algorithm for grid
graphs. Networks, 7(4):323{334, 1977.

[35] S. Hassoun. \Fine Grain Incremental Rescheduling via
Architectural Retiming". In International Symposium
on System Synthesis, pages 158{163. IEEE, 1998.

[36] A Hetzel. A sequential detailed router for huge grid
graphs. In Proc. Design Automation and Test in Eu-
rope, pages 332{338, Feb 1998.

[37] K.C. Ho and S.B.K. Vridhula. \Interval Graph Algo-
rithms for Two-Dimensional Multiple Folding of Array-
Based VLSI Layouts". IEEE Transactions on Com-
puter Aided Design, 13(10):1201{1222, October 1994.

[38] J.P.Cohoon. \Distributed Genetic Algorithms for the
Floorplan Design Problem". IEEE Transactions on
Computer Aided Design, 10(4):483{492, April 1991.

[39] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
\Multilevel Hypergraph Partitioning: Application in
VLSI Domain". In IEEE-ACM Design Automation
Conference, pages 526{529. IEEE/ACM, 1997.

[40] G. Karypis and V. Kumar. \METIS 3.0: Unstructured
Graph Partitioning and Sparse Matrix Ordering Sys-
tem". In Technical Report 97-061. Department of Com-
puter Science, University of Minnesota, 1997.

[41] G. Karypis and V. Kumar. \Multilevel k-way Hyper-
graph Partitioning". In IEEE-ACM Design Automation
Conference, pages 343{348, 1999.

[42] I. Kato, S. Ohhira, and Y. Hisatomi. A method of pat-
tern data management of PWB layout system. In Proc.
35th Annual Convention IPS Japan, pages 2429{2430,
1987.

[43] K. Kawamura, T. Shindo, T. Shibuya, H. Miwatari,
and Y. Ohki. Touch and cross router. In Proc. of IEEE
Conference on Computer-Aided Design, pages 56{59,
Nov 1990.

[44] K. Keutzer, A. R. Newton, and N. Shenoy. \The Future
of Logic Synthesis and Physical Design in Deep Sub-
micron Process Technologies". In International Sympo-
sium on Physical Design, pages 218{224, 1997.

[45] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J.
Antreich. \GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization". IEEE Trans-
actions on Computer Aided Design, 10(3):365{365,
1991.

[46] R. M. Kling and P. Banerjee. \Optimization by Sim-
ulated Evolution with Applications to Standard Cell
Placement". In Design Automation Conference, pages
20{25, 1990.

[47] E.S. Kuh and T. Ohtsuki. Recent advances in VLSI
layout. Proc. of the IEEE, 78(2):237{263, Feb 1990.

[48] C.Y. Lee. An algorithm for path connections and its
applications. IRE Trans Electronic Computers, EC-
10:346{365, 1961.

[49] J.-F. Lee and D.T. Tang. \An Algorithm for Incremen-
tal Timing Analysis". In Design Automation Confer-
ence, pages 696{701. ACM/IEEE, 1995.

[50] T. Lengauer. Combinatorial Algorithms for Integrated
Circuit Layout. John Wiley & Sons, 1990.

[51] T. Lengauer and M. Lugering. \Integer Programming
Formulation of Global Routing and Placement Prob-
lems". World Sceinti�c, 1993. Special volume on Algo-
rithm Aspects of VLSI Layout, (M. Sarrafzadeh and D.
T. Lee eds.).

[52] Y.-L. Lin, Y.-C. Hsu, and F.-S. Tsai. Silk: a simulated
evolution router. IEEE Transactions on Computer-
Aided Design, 8(10), Oct 1989.

[53] L.-C. Liu, H.-P. Tseng, and C. Sechen. Chip-level area
routing. In Proc. of Interational Symposium on Physical
Design, pages 197{204, Apr 1998.

[54] K. Eguro M. Wang, X. Yang and M. Sarrafzadeh.
\Multi-center Congestion Estimation and Minimiza-
tion During Placement". In International Symposium
on Physical Design, 2000.

[55] E. Macii, M. Pedram, and F. Somenzi. \High-Level
Power Modeling, Estimation, and Optimization". IEEE
Transactions on Computer Aided Design, pages 1061{
1079, November 1998.

[56] A. Margarino, A. Romano, A. De Gloria, F. Cu-
ratelli, and P. Antognetti. A tile-expansion router.
IEEE Trans. Computer-Aided Design, CAD-6(4):507{
517, Jul 1987.



[57] L. McMurchie and C. Ebeling. Path�nder: a
negotiation-based performance-driven router for FP-
GAs. In Proc. of ACM Symposium on Field-
Programmable Gate Array, pages 111{117, Feb 1995.

[58] G. De Micheli. \Synthesis and Optimization of Digital
Circuits". McGraw-Hill, New York, 1994.

[59] T. Ohtsuki. Gridless routers | new wire routing algo-
rithms based on computational geometry. In Proc. In-
ternational Conference of Circuits and Systems, 1985.

[60] R.H.J.M. Otten. \Global Wires Harmful?". In Interna-
tional Symposium on Physical Design, pages 104{109,
1998.

[61] R.H.J.M. Otten and R.K. Brayton. \Planning for Per-
formance". In Design Automation Conference, pages
122{127, 1998.

[62] J.K. Ousterhout. Corner stitching: a data-structuring
technique for VLSI layout tools. IEEE Trans.
Computer-Aided Design, CAD-3(1):87{100, Jan 1984.

[63] A. Pothen, H. D. Simon, and K. P. Liou. \Partition-
ing Sparse Matrices With Eigenventors of Graphs".
SIAM Journal of Matrix Analysis and Applications,
11(3):430{452, 1990.

[64] G. Ramalingam. \Bounded Incremental Computation,
Lecture Notes in Computer Science, Volume 1089".
Springer, 1996.

[65] S. Raman, C.L. Liu, and L.G. Jones. \A Timing Con-
strained Incremental Routing Algorithm for Symmetri-
cal FPGAs". In European Design and Test Conference,
1996.

[66] C.P. Ravikumar, R. Aggarwal, and C. Sharma. \A
Graph Theoretic Approach for Register-File Based De-
signs". In International Conference on VLSI Design,
1979.

[67] M. Rebaudengo and M. S. Reorda. \GALLO: A Genetic
Algorithm for Floorplan Area Optimization". IEEE
Transactions on Computer Aided Design, 15, 1996.

[68] P.J. Restle, K.A. Jenkins, A. Deutsch, and P.W. Cook.
\Measurement and Modeling of On-Chip Transmission
Line E�ects in a 400 Mhz Microprocessor". IEEE Jour-
nal of Solid-State Circuits, pages 662{665, April 1998.

[69] M. Sarrafzadeh and C.K. Wong. \An Introduction to
VLSI Physical Design". McGraw-Hill Book Company,
1996.

[70] M. Sato, J. Sakanaka, and T. Ohtsuki. A fast line-search
method based on a tile plane. In IEEE International
Symposium on Circuits and Systems, pages 588{591,
May 1987.

[71] H.-F. S.Chen and D.T. Lee. \On Crossing Minimiza-
tion Problem". IEEE Transactions on Computer Aided
Design, pages 406{418, May 1998.

[72] N. Sherwani. \Algorithms for VLSI Physical Design
Automation". Kluwer Academic Publishers, 1997.

[73] H. Shin and C. Kim. \A Simple Yet E�ective Tech-
nique For Partitioning". IEEE Transactions on VLSI
Systems, 1(3), 1993.

[74] J. Soukup. Fast maze router. In Proc. 15th Design Au-
tomation Conference, pages 100{102, 1978.

[75] D.L. Springer and D.E. Thomas. \Exploiting the Spe-
cial Structure Con
ict and Compatibility Graphs in
high-Level Synthesis". IEEE Transactions on Com-
puter Aided Design, 13(7):843{856, July 1994.

[76] L. Stok, D.S. Kung, D. Brand, A.D. Drumm, A.J. Sulli-
van, L.N. Reddy, N. Hieter, D.J. Geiger, H. Chao, and
P.J. Osler. \BooleDozer: Logic Synthesis for ASICs".
IBM Journal of Research and Development, 40(4):407{
430, July 1996.

[77] G. Swamy, S. Rajamani, C. Lennard, and R.K.
Brayton. \Minimal Logic Resynthesis for Engineering
Change". In International Symposium on Circuits and
Systems, pages i1596{1599. IEEE, 1997.

[78] G.M. Swamy, R.K. Brayton, and V. Singhal. \Incre-
mental Methods for FSM Traversal". In International
Conference on Computer Design, pages 590{595, 1995.

[79] K.T. Tang and E.G. Friedman. \Interconnect Coupling
Noise in CMOS VLSI Circuits". In International Sym-
posium on Physical Design, pages 48{53, 1999.

[80] A. Vittal and M. Marek-Sadowska. \Crosstalk Reduc-
tion for VLSI". IEEE Transactions on Computer Aided
Design, pages 290{298, March 1997.

[81] M. Wang and M. Sarrafzadeh. \Behavior of Conges-
tion Minimization During Placement". In International
Symposium on Physical Design, pages 145{150. ACM,
April 1999.

[82] P. Widmayer. On graphs preserving rectilinear shortest
paths in the presence of obstacles. Annals of Operations
Research, 33(1-4):557{75, Dec 1991.

[83] S. Wimer, I. Koren, and I. Cederbaum. \Optimal As-
pect Ratios of Building Blocks in VLSI". IEEE Trans-
actions on Computer Aided Design, 8(2):139{145, 1989.

[84] D. F. Wong, H. W. Leong, and C. L. Liu. Simulated
Annealing for VLSI Design. Kluwer Academic, 1988.

[85] Y.F. Wu, P. Widmayer, M.D.F Schlag, and C.K. Wong.
Rectilinear shortest paths and minimum spanning trees
in the presence of rectilinear obstacles. IEEE Trans.
Computers, C-36(3):321{331, Mar 1987.

[86] S.Q. Zheng, Joon Shink Lim, and S.S. Iyengar. Find-
ing obstacle-avoiding shortest paths using implicit con-
nection graphs. IEEE Trans. Computer-Aided Design,
15(1):103{110, Jan 1996.

[87] J. Zhu and M. Abd-El-Barr. \On the Optimization
of CMOS Circuits". IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications,
40(6):412{422, June 1993.


	Main Page
	ISPD'00
	Front Matter
	Table of Contents
	Session Index
	Author Index


