
 256

An Asynchronous Matrix-Vector Multiplier for Discrete
Cosine Transform

Kyeounsoo Kim
Ilryung Telesys, Inc.

7F, Hanmi Bldg., Sungnae3-dong
Kangdong-gu, Seoul 134-033, Korea

TEL: +82-2-2194-1570

kyskim@ilryung.co.kr

Peter A. Beerel
EE-Systems Dept., USC
3740 McClintock Avenue
Los Angeles, CA 90089
TEL: +1-213-740-4481

pabeerel@eiger.usc.edu

Youpyo Hong
Electronic Engr. Dept., Dongguk Univ.

26, 3-Ga, Pil-dong, Jung-gu
Seoul 100-715, Korea
TEL: +82-2-2260-3818

yhong@dgu.ac.kr

ABSTRACT
This paper proposes an efficient asynchronous hardwired matrix-
vector multiplier for the two-dimensional discrete cosine
transform and inverse discrete cosine transform (DCT/IDCT). The
design achieves low power and high performance by taking
advantage of the typically large fraction of zero and small-valued
data in DCT and IDCT applications. In particular, it skips
multiplication by zero and dynamically activates/deactivates
required bit-slices of fine-grain bit-partitioned adders using
simplified, static-logic-based speculative completion sensing. The
results extracted by both bit-level analysis and HSPICE
simulations indicate significant improvements compared to
traditional designs.

Keywords
Asynchronous matrix-vector multiplier, discrete cosine transform.

1. INTRODUCTION
The 2-D DCT and IDCT are essential tasks in several

standards for data compression and decompression, such as
CCITT Recommendation H.261, JPEG, and MPEG [1]. With the
simultaneous increase in demand for faster data rates and longer
battery-lifetime in portable multimedia devices, low-power and
high-performance implementations of the DCT and IDCT are
increasingly important. A core operation within both of these
applications is the multiplication of a constant matrix by an input
vector, i.e., a matrix-vector multiplier, typically implemented with
a set of multiply-accumulators [2], [3], [4], [5].

Many synchronous DCT/IDCT designs have been explored
targeting high-performance [3], [4] and low-power [7]. In [7],
Xanthopoulos et. al. observed that typically a significant fraction
of IDCT input data is zero-valued, as illustrated in Figure 1. Thus
motivated, they developed a data-driven IDCT that skips

operations involving zero-valued data, thereby saving power.
Notice that their focus was on IDCT because DCT has a lower
fraction of zero-valued data. Moreover, note that the 2-D IDCT is
broken up into two 1-D IDCTs and that the input data of the
second 1-D IDCT has much fewer zeros. Thus their architecture is
less advantageous for the second 1-D IDCT.

Our work is also motivated by these data statistics and in
particular the observation that an even larger fraction of the data is
small-valued (e.g., in the second 1-D IDCT). We note that one of
the key benefits of asynchronous circuits is its ability to take
advantage of small-valued data [6], [7]. The general idea is to
deactivate bit-slices that contain only sign extension bits (SEBs).
If the control overhead is minimized and/or hidden, this can lead
to both high average performance and low power. This advantage
coupled with the fact that asynchronous circuits by their nature
adapt to voltage supply and chip temperature [8] whereas
synchronous circuits are clocked assuming the worst-case,
suggests asynchronous circuits may be advantageous in these
applications.

To achieve these potential advantages, however, one must
statistically optimize the matrix-vector multiplier for the data-
statistics and build efficient completion sensing circuitry that
indicates when it has completed its operation. The most naïve
completion detection scheme is a bundled delay line matched to
the worst case delay of the functional unit [9], such as a matrix-
vector multiplier. Such a delay line facilitates the use of robust
static logic and, while does adapt to chip temperature and supply
voltage, fails to take advantage of input data statistics.
Alternatively, dual-rail signaling schemes can be used to sense
completion [7], [9], [10], [11], [12]. For example, Nielsen et. al.
used dual-rail signaling to develop a break-point data-path
divided into two precharged bit-slices in which the most
significant bit-slice is only activated when it contains bits other
than SEBs [7]. Compared to bundled data techniques, the
disadvantage of such pre-charged dual-rail techniques is that they
often require more area, can consume relatively high power, and
require careful design to avoid problems with charge-sharing and
crosstalk. A more recently developed technique that combines the
benefits of static logic and average-case performance is
speculative completion detection. The basic idea is to create
multiple matched delay lines, e.g., one matched to fast
computations and one slow computations, and MUX selection
logic to select which delay line to use [6], [13]. To minimize the
overhead associated with the design, the MUX delay can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED ’00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007…$5.00.

 257

hidden within the delay lines. Numerous implementation studies
have demonstrated the potential advantages of this scheme in
asynchronous adders and barrel shifters, but its application to
hardwired multipliers has not yet been fully explored.

This paper explores the application of speculative completion
detection in matrix-vector multiplication to take advantage of the
large fraction of zero and small-valued processed data. The
proposed architecture is partitioned into fine-grain bit-slices to
better take advantage of the data statistics than previously
developed two-way partitioning [7]. The key to the efficiency of
this fine-grain bit-partitioned architecture is a simplified version
of speculative completion in which Nowick’s complex abort logic
that controls the MUXes is replaced with a fast and efficient
MASK unit that identifies and activates only those bit-slices that
contain non-SEBs. The design includes fully static mask and an
efficient carry-save multiplier array. The key to its low power
operation is novel input ANDing logic and associated control
circuitry that deactivated unneeded bit-slices. This bit-slice
deactivation yields significant power savings compared to [14]
that was based on dynamic logic and naïve ripple-carry-based
array multipliers without input ANDing logic.

Detailed HSPICE simulations in addition to analytical full-
adder-based delay estimates are presented. They show that,
compared to a traditional synchronous hardwired multiplier, our
DCT/IDCT design is more than 1.4 times / 4.0 times faster, while
consumes 17.2% / 52% less energy.

The remainder of the paper is organized as follows. Section 2
presents the details of our asynchronous matrix-vector multiplier.
Section 3 presents our bit-slice analysis and HSPICE simulation

results. Section 4 concludes the work and outlines possible future
work.

2. ASYNCHRONOUS MATRIX-VECTOR
MULTIPLIER

Our proposed asynchronous matrix-vector multiplier
architecture is shown in Figure 2. The data-path is organized
similarly to its synchronous counterpart (highlighted in gray) but
it is controlled by four-phase handshaking signals rather than a
global clock. In addition, the multipliers and accumulators in the
asynchronous data-path consist of fine-grain partitioned bit-slices
that are selectively activated by mask control signals. In
particular, the MASK unit identifies bit-slices of input data that
contains non-SEBs as well as the special case in which the data is

13%
Non-zero

87%

Zero Probability (DCT) Probability of
Being an Effective

(non-SEB) Bit

0

0.2

0.4

0.6

0.8

1

Bit Index

1
-

P
ro

b
(S

E
B

)

11 13 151 3 5 7 92 4 6 8 10 12 14 160

Zero

Zero Probability (IDCT)

Zero
77%

Non-zero

Bit Index

Probability of
Being an Effective

(non-SEB) Bit

0

0.05

0.1

0.15

0.2

0.25

1
-

P
ro

b
(S

E
B

)

10 12 140 2 4 6 81 3 5 7 9 11 13 15

23%

Figure 1. Input data statistics for 2-D DCT and IDCT (averaged over 10 frames of three image sequences: flower garden, football,

and table tennis).

c0-mult

c1-mult

c2-mult

R

R

c3-mult

sel

Input

s ign: Asynchronous Contro l

zero_detect

Output

I_ack

D O N E 1

Input
ANDing

O_req
O_ack

I_req

xL

x'

m

R

R

R

R

R R

D O N E 2

R

R

+/-

+/-

+/-

+/-

LSBs MSBs

x

req
ack

req

ack

latch latch

P
S
B
R

4

4
to
1

M
U
X
e
s

R

R

R

R

y0

y1

y2

y3

R

Pipel ine
Control

Delay

req

ack

m'

m''

F
S
B
R

MASK Mult.
Control

Accu.
Control

R

Equivalent to synchronous data-path
Figure 2. Proposed asynchronous 4×4 matrix-vector multiplier architecture.

zero_detectm(3) m(2) m(1)

M S B L S B

151413121110 9 5 4 3 2 1 0

Input (x)

Bit Index : 8 7 6 8 6715 1314 12 1011 9

Figure 3. Mask and zero detection signals generation unit

based on static logic.

 258

zero. The mask signals are ORed with their previously registered
versions to identify the bit-slices of the accumulators that contain
non-SEBs. The resulting control signals identify those bit-slices
of the multiplier results that are needed in the accumulators. These
control signals are used to deactivate non-required input bits by
forcing them to zero via the Input ANDing logic and to control the
DONE logic (containing the matched delay lines associated with
speculative completion sensing) for both the multiplier and,
subsequently, the accumulator.

Notice that because the input data is fed into multiple
multipliers, the DONE logic is shared over multiple multipliers
and accumulators, thereby making its overhead a small percentage
of the overall design. In the special case that the data is zero-
valued, the MASK unit asserts a zero_detect signal to disable the
entire computation and the registration of any new result. Lastly,
notice that the Partial Sign Bit Recovery (PSBR) logic extends the
sign bit of newly activated bit-slices in the accumulator to ensure
that the inputs to the accumulator have the same number of
activated bit-slices.

2.1 Bit-slice Partitioning and Mask Detection
Ideally, we might like to selectively activate only the

effective bits. However, this would require control logic for every
bit whose overhead would be difficult to overcome. Thus, it is
important to organize the activated bits into bit-slices and
optimize the number of bit-slices that can be activated taking into
account the overhead of the control logic. To this end, we
performed bit-level simulations of well-known image sequences
that showed that a zero_detect flag along with 3-bit mask signals
(m(3), m(2), and m(1)) for DCT and 2-bit (m(3) and m(1)) for
IDCT yielded reductions in bit-activity within 10% from the
optimal.

In a previous design [14], we used an aggressive dynamic
design style to improve circuit speed and thereby minimize the
performance impact of the MASK logic. In this design, we

demonstrate that static logic based MASK logic, which is easier to
design, can also be used with little performance impact. The
proposed design, shown in Figure 3, processes much of the mask
signal generation in parallel, yielding a longest path of about 4
gate delays.

2.2 Fine-grain Controlled Hardwired
Multiplier

Our fine-grain controlled hardwired multiplier is based on a
bit-partitioned carry-save multiplier, illustrated in Figure 4, in
contrast to our previously proposed naïve ripple-carry based
multiplier [14]. The carry-save multiplier’s critical path is mainly
along the final, vector-merging adder, which we propose to
implement as a bit-partitioned ripple carry adder for two reasons.
First, ripple-carry adders consume significantly lower power than
faster (e.g., carry select or bypass) adders [15]. Secondly, while
ripple-carry adders have relatively long worst-case delay, the bit-
partitioning of the multiplier array (including the ripple-carry
adder) leads to very good average case delay for this application.

2.2.1 Staircase-patterned bit-slices
The staircase-patterned bit-slices, as illustrated by the dotted

lines in Figure 4, allow the adders to be dynamically configured
for different input bit-widths. For example, if the first two bit-
slices are activated, the multiplier behaves exactly as a typical
multiplier that handles 9-bit inputs.

There are two key aspects of the architecture that enable this
type of reconfigurable bit-widths. The first is that when only the
first two bit-slices are activated, the inputs to the second input bit-
slice that emanate from the third input slice (i.e., that cross the
dotted line) are forced to zero by the input ANDing logic. The
second feature is the sign extension of the most right shifted input
to the bit-slice boundary. Figure 5 illustrates an example of the
issue and our proposed solution. In particular, it illustrates the
case when x’ >> 9 is added to x’ >> 7 when two bit-slices of x are

M S B LSB
Input (x1')

: Half Adder

4567891011121314 012315

12345678910111213141516

23456789101112131415161718

4 35678910111213141516171819

0

2

4

>>5
>>7
>>9

1

3

5

2

4

6

3

5

7

4

6

8

5

7

9

6

8

10

7

9

11

8

10

12

9

11

13

10

12

14

11

13

15

12

14

13

15

1415

0123456789101112131415

01234567891112131415 10

>>4

>>2

m(1)m(2)m(3)

: Full Adder

M U X:

1 bi t-s l ice act ivated

2 bi t -s l ices act ivated

3 bi t -s l ices act ivated

ALL bi t -s l ices act ivated

:Bit
Index

s

a
b

: Critical Path

Figure 4. Proposed asynchronous fine-grained carry-save hardwired multiplier for 0. 35352 × x′′′′1, where 0.35352 is expressed as

 (2-9× x′′′′1) + (2-7× x′′′′1) + (2-5× x′′′′1) + (2-4× x′′′′1) + (2-2× x′′′′1).

 259

activated, i.e., when bits b13 through b15 are forced to zero. The
further right shifted input in this case is the x’ >> 9 input and it
must be sign extended two bits to the bit-slice boundary. Our
solution is to add two MUXes that are controlled by the MASK
logic. The MUXes output the x’ input bit except in the case when
exactly three bit-slices are activated, in which case the MUXes
output the sign extension bit (which in this case is the b12 bit of
x’). As illustrated in Figure 5, the number of MUXes needed is
relatively small and they are typically not in the critical path.

Alternatively, a naïve solution to this problem is to have a
dedicated input ANDing logic for each row. This solution,
however, has high area overhead and some power and
performance penalties. One can also avoid this overhead entirely
by removing the input ANDing logic altogether if the deactivated
output bits which may not meet setup times are not latched, [14],
at the cost of loosing most of the power-saving advantages.

2.2.2 Speculative completion sensing circuit
Let us focus on the completion-sensing unit for our proposed

hardwired multiplier. The critical path of the array depends on the
carry chain of the ripple carry adder highlighted in Figure 4. This
path is partitioned into four bit-slices, as illustrated in Figure 6.
To sense the completion of this adder, we use a simplified
speculative completion-sensing unit, as shown in Figure 7. The
completion-sensing unit is composed of four delay lines, matched
to the four different sizes of adders activated, that are MUXed
into a Done signal. The mask signals are fed into the select lines
of the MUX and they act as abort signals. Note that in IDCT case,
the middle two bit-slices are merged into one slice.

Note that the delays for each size of adder are less than one
might expect from simple static delay analysis. This is because the
hardwired multiplier has many false paths associated with the fact
that it has a single input source, x. To determine the actual critical
path for each possible bit-slice activation pattern, we used
exhaustive software simulation.

2.3 Accumulator Design
Our 4×4 matrix-vector multiplier has four accumulators each

responsible for summing up the multiplication results for a
different matrix row. Notice that their bit-widths are set by the
registered mask signals. This means that no new MASK logic is
needed and that these mask signals can directly control a second
completion-sensing unit for these accumulators. This completion-
sensing unit is made up of delays that match the various sizes of
activated bit-slices (unlike the completion-sensing unit for the

multiplier) and is not shown. Also notice that the previous
accumulator result is partially sign extended in order to ensure
that both input operands have the same number of activated bit-
slices.

2.4 Sign Bit Recovery Logic
The partial sign bit recovery (PSBR), illustrated in Figure 8,

first extracts the sign bit using the mask signal m” for the current
accumulation result t. It then sign extends any newly activated
bit-slices using a bank of MUXes that either pass the current bit
or the extracted sign bit depending on the AND of the stored and
current mask signals. Notice that the least significant 10 bits needs
no sign extension since they are never forced to zero.

The FSBR block for full sign bit recovery that sign extends
the result for use by any successive traditional logic is
implemented similarly. Note, however, if the next logic block,
(e.g., a matrix transposer), is similarly bit-slice partitioned, the
FSBR block is not needed.

3. PERFORMANCE AND POWER
ESTIMATION
3.1 Full-Adder-Based Delay and Energy
Analysis

We estimate average performance in terms of the number of
full adder delays, where one full/half adder delay is assumed to be
δ. We ignore any performance overhead associated with the

b 1 2

891011

b 9b 1 0b 1 1

b 1 2 b 1 1'0''0'

b 11 b 10 b 9 b 8 b7 b 6 b 5 b4 b 3 b 2 b1 b 0'0''0''0'

sign data bits

Original Data (x) b12 b 11 b 10 b 9 b 8 b7 b 6 b 5 b4 b 3 b 2 b1 b 0b 13b 14b15

Input ANDing (x') b12

s ign

x' >> 9

x' >> 7b 1 2

891011

b 9b 1 0b 1 1

b 1 2 b 1 1

m
M U X

Implementat ion

Figure 5. Example of the proposed mechanism for sign bit

extension in the multiplier array.

C 0
4FA

C 1C 2

4

4

Output

10

10

6FA+2HA+2FA

Input

4FA

4

4

M S B LSB

C out

3FA

3

3

Figure 6. Static fine-grain partitioned adder architecture.

I_req
Matched Delays

Done

m(3:1)

M
U
X

= 000

= 001

= 011

= 111

m

6FA+2HA

3FA

2FA

7FA
Figure 7. Speculative completion sensing using mask signals

instead of abort logic.

M S B L S B

m''(3)

t(21)-t(17)

m' ' (3)

S IGN

t(16)-t(13)

m'(3)
m' ' (2)
m'(2)

t(12)-t(10)

m' ' (1)
m'(1)

M U X M U X M U X

345 10

t(9)-t(0)

m' ' (2) m' ' (1) t(16) m' ' (3) m' ' (2) m' ' (1) t(12) m' ' (3) m' ' (2) m' ' (1) t(9)

Figure 8. Partial sign bit recovery logic.

 260

MASK, input ANDing, and PSBR circuits that we will later show
are mostly hidden using HSPICE simulations.

As already mentioned, the worst case delay of our matrix-
vector multipliers is 20δ, which is the sum of adder delays as
shown in Figure 7. From the input data statistics, however, the
average number of activated bits on the critical path adders is less
than 10δ for DCT data and 5δ for IDCT data, as shown in Table
2. Recall that the MASK logic operates in parallel with the
processing of the first 6 least significant bits and thus is typically
not in the critical path. The principal exception is the case of zero
detection, for which we conservatively estimate its delay to be 3δ.
Note again that we assume the delays of the MUXes in Figure 4
are hidden and thus do not affect the delay calculations.

The ripple-carry-based accumulators are 21 bits wide and
have a worst-case delay of 21δ. We estimate the average number
of bits activated in the accumulators by taking the results obtained
in Table 2 and adding 1δ to account for a 1-bit increase in
dynamic range that accounts for the fact that the accumulator are
adding/subtracting four multiplication results. This yields an
average delay of 11δ for DCT data and 6δ for IDCT data. Because
the accumulators are a bit slower than the multipliers, they will,
roughly speaking, dictate the throughput of the pipeline. This
suggests that, compared to its traditional synchronous counterpart,
our design is about 1.9 (=21/11) times faster for DCT data and 3.5
(=21/6) times faster for IDCT data.

To estimate energy consumption, we extract the transition
activities of all adder cells (in both the multiplier and
accumulators) using bit-level 2-D DCT/IDCT software models.
Note that for the zero-valued data, the result of accumulator is not
latched and, therefore, we average in zero for this case. The
results indicate that, compared to the traditional synchronous
architecture, our architecture consumes 17.5% less energy for the
DCT and 60% less energy for the IDCT.

3.2 HSPICE Simulation Results
We also simulated the transistor-level design (pre floor

planning) of the data-path components using HP 0.35µm
technology to verify our timing assumptions and obtain more
reliable power and delay estimates.

First, we used HSPICE simulations to validate our 3δ delay
estimate of the MASK logic. In fact, HSPICE indicates that the

delay for zero detection is 0.81ns, which is less than the 0.85ns
delay of our 3-bit adder design.

Second, we simulated the multiplier and accumulator for the
worst-case input vectors for each possible bit-width, as
summarized in Table 3. Combining these results with the
activation probabilities of each bit-slice obtained in Table 2,
provides more reliable average delays. In particular, for the DCT
we obtain an average delay for the multiplier of 3.5ns, which is
about 1.7 times faster than the worst-case delay. Similarly, for the
IDCT we obtain an average delay of 1.45ns, which is 4.0 times
faster than the worst-case delay. Similarly, for the case of
accumulator, our proposed accumulator is about 4.23ns of delay
for the DCT and 1.62ns for the IDCT, which are 1.86 and 4.7
times faster than the worst-case delays, respectively.

Thirdly, we calculated the cycle time of the asynchronous
pipeline taking into account the control overhead, illustrated in
Figure 9. We adopted the optimized 4-phase micropipeline
control circuit in [16] and extracted the cycle time using the
method in [17] using reasonable output loads (4× inverters). The
delay from Rin+ to Rout+ can be broken-down into Rin+ -> Ain+,
Ain+ -> Rin-, Rin- -> Rout+. Because these operations are
executed simultaneously with the rising delays of DONE1 (or
DONE2) they can be for the most part hidden from the cycle time.
Consequently, the control overhead in cycle time is approximately
1.3ns. Currently the throughput of the system is determined by the
cycle time of the slower accumulation stage, however, further
speed-up is possible by modifying the accumulator’s adder.
Consequently the maximum cycle times for the stages in Figure 2

Table 2. Estimated average number of full/half adders
activated on the multiplier’s critical path (P: Probability, B:
Assigned number of bits for each bit-slice, A: Activated
number of bits; A=(P×B)/100).

DCT IDCT Activated
Bit Slices P(%) B A P(%) B A
0 bit-slice 13 3 0.39 76.8 3 2.30
1 bit-slice 21.36 8 1.71 16.8 8 1.34
2 bit-slices 46.76 11 5.14 - - -
3 bit-slices 17.48 13 2.27 5.73 13 0.75

All bit-slices 1.34 20 0.27 0.63 20 0.13
Average Bits 9.78 4.52

Table 3. HSPICE simulation results for delay and power
consumption of the multiplier and accumulator. (D: Delay
(ns), E: Energy (pJ)).

Multiplier Accumulator Activated
Bit Slices

D E D E
0 bit-slice 0.81 2.51 0.81 0.00
1 bit-slice 3.25 27.0 3.62 11.1
2 bit-slices 3.99 40.3 4.67 13.3
3 bit-slices 4.31 62.5 6.07 16.9

All bit-slices 5.84 82.7 7.68 23.3

Ain

(a)

Aout

RoutR in

Din Dout

R in+
Operat ions Delays (ns)

Rout+
Rout+ Aout+
Aout+ Ain-
Ain- R in+

N A
0.49
0.58
0.23

(b)

Mult . Accu.R R R

Mult .
Contro l

Accu.
Contro l

Figure 9. Adoption of 4-phase handshaking control scheme

by Day and Woods; (a) pipeline stages and (b) control
overhead analysis.

 261

are 5.4 and 1.9ns for DCT and IDCT, respectively. These results
suggest the proposed architecture is about 1.4 and 4 times faster
than synchronous design as shown in Table 4.

Lastly, we compute and compare energy consumption for a
set of 10 randomly selected input vectors for each possible bit-
width and average the results using the probabilities summarized
in Table 2. For the multiplier, we obtain an average energy
consumption of 37.0pJ for the DCT and 10.6pJ for the IDCT. For
the accumulator, we obtain an average energy consumption of
11.9pJ for the DCT and 3.0pJ for the IDCT. For the control
circuitry, we obtain an average energy consumption of 16.2pJ,
which, while not small, is amortized over 4 sets of multiply-
accumulators. For the synchronous counterparts, the multiplier
consumes energy of 47.4/32.2pJ for DCT/IDCT, and accumulator
consumes 17.8/10.4pJ for DCT/IDCT. These numbers imply our
asynchronous design yields over 17.2% average energy savings
for the DCT and 52% average energy savings for the IDCT, as
summarized in Table 4.

4. CONCLUSIONS
We developed an asynchronous low-power matrix-vector

multiplier while maintaining high-performance using fine-grain
data-path partitioning optimized for typical input data statistics.
Compared to traditional synchronous counterparts, our simulation
results suggest that our design yields significant savings in both
power and delay. The key power-saving feature is novel input
ANDing logic and associated control circuitry. The key
performance feature is the efficient adaptation of speculative
completion sensing to matrix-vector multiplication. This allows
the design to be completed using only static logic, which is easier
to use and validate than its dynamic logic counterparts. It also
shows that speculative completion sensing combined with bit-
slice partitioning can be an effective means of taking advantage of
data statistics that have a high fraction of small valued data.

Lastly this paper shows that the design of image-processing
algorithms such as the 2-D DCT/IDCT can benefit from
asynchronous techniques. In particular, while the input ANDing
logic can be used in synchronous designs, synchronous designs
cannot easily achieve the average-case delay gains derived from
the fine-grain bit-slice partitioning.

Our future work includes demonstrating these advantages in
silicon and exploring application of these techniques to other
domains.

5. ACKNOWLEDGEMENTS
This Research has been partially supported by NSF Grant

CCR-9812164, and was carried out while the first author was on
leave from Korea Telecom and he has been partially supported by
KOSEF. The third author was supported by KOSEF under the
ERC program through the MINT at Dongguk University.

6. REFERENCES
[1] ISO/IEC JTC1/SC29/WG11, MPEG IS13818-2, (1996).
[2] K. Rao and P. Yip, Discrete Cosine Transform, Algorithms,

Advantages, Applications, Academic Press, (1990).
[3] A. Madisetti and A. N. Willson Jr., “A 100 MHz 2-D

DCT/IDCT Processor for HDTV Applications,” IEEE
Transactions on CAS for Video Tech., 5(2), 158-165 (1995).

[4] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y.
Yamashita, M. Terane, and M. Yoshimoto, “A 100 MHz 2-D
Discrete Cosine Transform Core Processor,” IEEE Journal
of Solid-State Circuits, 36, 492-499 (April 1992).

[5] T. Xanthopoulos, and A. P. Chandrakasan, “A Low-Power
IDCT Macrocell for MPEG-2 MP@ML Exploiting Data
Distribution Properties for Minimal Activity,” IEEE Journal
of Solid-State Circuits, 34, 693-703 (1999).

[6] S. M. Nowick, K. Y. Yun, P. A. Beerel, and A. E. Dooply,
“Speculative Completion for the Design of High-
Performance Asynchronous Dynamic Adders,” in
Proceedings of the ASYNC’97, 210-223 (1997).

[7] L. S. Nielsen, and J. Sparsφ, “Designing Asynchronous
Circuits for Low Power: An IFIR Filter Bank for a Digital
Hearing Aid,” Proceedings of the IEEE, 87(2), 268-281 (Feb.
1999).

[8] C. H. van Berkel, M. B. Josephs, and S. M. Nowick,
“Applications of Asynchronous Circuits,” Proceedings of the
IEEE, 87(2), 223-233 (Feb. 1999).

[9] C. L. Seitz, “System timing,” in Introduction to VLSI
Systems, C. A. Mead and L. A. Conway, Eds. Readings, MA:
Addition-Wesley, Chapter 7 (1980).

[10] D. Johnson, V. Akella, and B. Stott, “Micropipelined
Asynchronous Discrete Cosine Transform (DCT/IDCT)
Processor,” IEEE Transactions on VLSI Systems, 6(4), 731-
740 (1998).

[11] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K.
Yun, R. Kol, C. Dike, M. Roncken, and B. Agapiev,
“RAPPID: An Asynchronous Instruction Length Decoder,”
in Proceedings of the ASYNC’99, 60-70 (April 1999).

[12] J. D. Garside, “A CMOS VLSI implementation of an
asynchronous ALU,” IFIP Transactions on Asynchronous
Design Methodologies, A-28, 181-207 (1993).

[13] S. M. Nowick, “Design of a Low-Latency Asynchronous
Adder Using Speculative Completion,” IEE Proceedings –
Computers and Digital Techniques, 143(5), 301-307 (Sept.
1996).

[14] K. Kim and P. A. Beerel, “A High-Performance Low-Power
Asynchronous Matrix-Vector Multiplier for Discrete Cosine
Transform,” in Proceedings of the first IEEE Asia Pacific
Conference on ASICs, 135-138 (August 1999).

[15] A. P. Chandrakasan and R. W. Brodersen, Low Power
Digital CMOS Design, Kluwer Academic Publishers, (1995).

[16] P. Day and J. V. Woods, “Investigation into Micropipeline
Latch Design Styles,” IEEE Transactions on VLSI Systems,
32, 264-272 (June 1995).

[17] K. Y. Yun, P. A. Beerel, and J. Arceo, “High-Performance
Asynchronous Pipeline Circuits,” in Proceedings of the
ASYNC’96, 17-28 (1996).

Table 4. Delay and energy comparison.
Cycle Time(ns) Energy(pJ) Designs DCT IDCT DCT IDCT

Proposed 5.4 1.9 234.7 93.4
Synchronous 7.7 7.7 283.6 193.4

	Main Page
	ISLPED'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

