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ABSTRACT 
This paper proposes an efficient asynchronous hardwired matrix-
vector multiplier for the two-dimensional discrete cosine 
transform and inverse discrete cosine transform (DCT/IDCT). The 
design achieves low power and high performance by taking 
advantage of the typically large fraction of zero and small-valued 
data in DCT and IDCT applications. In particular, it skips 
multiplication by zero and dynamically activates/deactivates 
required bit-slices of fine-grain bit-partitioned adders using 
simplified, static-logic-based speculative completion sensing. The 
results extracted by both bit-level analysis and HSPICE 
simulations indicate significant improvements compared to 
traditional designs. 
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1. INTRODUCTION 
The 2-D DCT and IDCT are essential tasks in several 

standards for data compression and decompression, such as 
CCITT Recommendation H.261, JPEG, and MPEG [1]. With the 
simultaneous increase in demand for faster data rates and longer 
battery-lifetime in portable multimedia devices, low-power and 
high-performance implementations of the DCT and IDCT are 
increasingly important.  A core operation within both of these 
applications is the multiplication of a constant matrix by an input 
vector, i.e., a matrix-vector multiplier, typically implemented with 
a set of multiply-accumulators [2], [3], [4], [5]. 

Many synchronous DCT/IDCT designs have been explored 
targeting high-performance [3], [4] and low-power [7]. In [7], 
Xanthopoulos et. al. observed that typically a significant fraction 
of IDCT input data is zero-valued, as illustrated in Figure 1. Thus 
motivated, they developed a data-driven IDCT that skips 

operations involving zero-valued data, thereby saving power. 
Notice that their focus was on IDCT because DCT has a lower 
fraction of zero-valued data. Moreover, note that the 2-D IDCT is 
broken up into two 1-D IDCTs and that the input data of the 
second 1-D IDCT has much fewer zeros. Thus their architecture is 
less advantageous for the second 1-D IDCT. 

Our work is also motivated by these data statistics and in 
particular the observation that an even larger fraction of the data is 
small-valued (e.g., in the second 1-D IDCT). We note that one of 
the key benefits of asynchronous circuits is its ability to take 
advantage of small-valued data [6], [7]. The general idea is to 
deactivate bit-slices that contain only sign extension bits (SEBs). 
If the control overhead is minimized and/or hidden, this can lead 
to both high average performance and low power. This advantage 
coupled with the fact that asynchronous circuits by their nature 
adapt to voltage supply and chip temperature [8] whereas 
synchronous circuits are clocked assuming the worst-case, 
suggests asynchronous circuits may be advantageous in these 
applications. 

To achieve these potential advantages, however, one must 
statistically optimize the matrix-vector multiplier for the data-
statistics and build efficient completion sensing circuitry that 
indicates when it has completed its operation. The most naïve 
completion detection scheme is a bundled delay line matched to 
the worst case delay of the functional unit [9], such as a matrix-
vector multiplier. Such a delay line facilitates the use of robust 
static logic and, while does adapt to chip temperature and supply 
voltage, fails to take advantage of input data statistics. 
Alternatively, dual-rail signaling schemes can be used to sense 
completion [7], [9], [10], [11], [12]. For example, Nielsen et. al. 
used dual-rail signaling to develop a break-point data-path 
divided into two precharged bit-slices in which the most 
significant bit-slice is only activated when it contains bits other 
than SEBs [7]. Compared to bundled data techniques, the 
disadvantage of such pre-charged dual-rail techniques is that they 
often require more area, can consume relatively high power, and 
require careful design to avoid problems with charge-sharing and 
crosstalk. A more recently developed technique that combines the 
benefits of static logic and average-case performance is 
speculative completion detection. The basic idea is to create 
multiple matched delay lines, e.g., one matched to fast 
computations and one slow computations, and MUX selection 
logic to select which delay line to use [6], [13]. To minimize the 
overhead associated with the design, the MUX delay can be 
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hidden within the delay lines. Numerous implementation studies 
have demonstrated the potential advantages of this scheme in 
asynchronous adders and barrel shifters, but its application to 
hardwired multipliers has not yet been fully explored. 

This paper explores the application of speculative completion 
detection in matrix-vector multiplication to take advantage of the 
large fraction of zero and small-valued processed data. The 
proposed architecture is partitioned into fine-grain bit-slices to 
better take advantage of the data statistics than previously 
developed two-way partitioning [7]. The key to the efficiency of 
this fine-grain bit-partitioned architecture is a simplified version 
of speculative completion in which Nowick’s complex abort logic 
that controls the MUXes is replaced with a fast and efficient 
MASK unit that identifies and activates only those bit-slices that 
contain non-SEBs. The design includes fully static mask and an 
efficient carry-save multiplier array. The key to its low power 
operation is novel input ANDing logic and associated control 
circuitry that deactivated unneeded bit-slices. This bit-slice 
deactivation yields significant power savings compared to [14] 
that was based on dynamic logic and naïve ripple-carry-based 
array multipliers without input ANDing logic. 

Detailed HSPICE simulations in addition to analytical full-
adder-based delay estimates are presented. They show that, 
compared to a traditional synchronous hardwired multiplier, our 
DCT/IDCT design is more than 1.4 times / 4.0 times faster, while 
consumes 17.2% / 52% less energy. 

The remainder of the paper is organized as follows. Section 2 
presents the details of our asynchronous matrix-vector multiplier. 
Section 3 presents our bit-slice analysis and HSPICE simulation 

results. Section 4 concludes the work and outlines possible future 
work. 

2. ASYNCHRONOUS MATRIX-VECTOR 
MULTIPLIER 

Our proposed asynchronous matrix-vector multiplier 
architecture is shown in Figure 2. The data-path is organized 
similarly to its synchronous counterpart (highlighted in gray) but 
it is controlled by four-phase handshaking signals rather than a 
global clock. In addition, the multipliers and accumulators in the 
asynchronous data-path consist of fine-grain partitioned bit-slices 
that are selectively activated by mask control signals. In 
particular, the MASK unit identifies bit-slices of input data that 
contains non-SEBs as well as the special case in which the data is 
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Figure 1. Input data statistics for 2-D DCT and IDCT (averaged over 10 frames of three image sequences: flower garden, football, 

and table tennis). 
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Figure 2. Proposed asynchronous 4×4 matrix-vector multiplier architecture. 
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zero. The mask signals are ORed with their previously registered 
versions to identify the bit-slices of the accumulators that contain 
non-SEBs. The resulting control signals identify those bit-slices 
of the multiplier results that are needed in the accumulators. These 
control signals are used to deactivate non-required input bits by 
forcing them to zero via the Input ANDing logic and to control the 
DONE logic (containing the matched delay lines associated with 
speculative completion sensing) for both the multiplier and, 
subsequently, the accumulator. 

Notice that because the input data is fed into multiple 
multipliers, the DONE logic is shared over multiple multipliers 
and accumulators, thereby making its overhead a small percentage 
of the overall design. In the special case that the data is zero-
valued, the MASK unit asserts a zero_detect signal to disable the 
entire computation and the registration of any new result. Lastly, 
notice that the Partial Sign Bit Recovery (PSBR) logic extends the 
sign bit of newly activated bit-slices in the accumulator to ensure 
that the inputs to the accumulator have the same number of 
activated bit-slices. 

2.1 Bit-slice Partitioning and Mask Detection 
Ideally, we might like to selectively activate only the 

effective bits. However, this would require control logic for every 
bit whose overhead would be difficult to overcome. Thus, it is 
important to organize the activated bits into bit-slices and 
optimize the number of bit-slices that can be activated taking into 
account the overhead of the control logic. To this end, we 
performed bit-level simulations of well-known image sequences 
that showed that a zero_detect flag along with 3-bit mask signals 
(m(3), m(2), and m(1)) for DCT and 2-bit (m(3) and m(1)) for 
IDCT yielded reductions in bit-activity within 10% from the 
optimal. 

In a previous design [14], we used an aggressive dynamic 
design style to improve circuit speed and thereby minimize the 
performance impact of the MASK logic. In this design, we 

demonstrate that static logic based MASK logic, which is easier to 
design, can also be used with little performance impact. The 
proposed design, shown in Figure 3, processes much of the mask 
signal generation in parallel, yielding a longest path of about 4 
gate delays. 

2.2 Fine-grain Controlled Hardwired 
Multiplier 

Our fine-grain controlled hardwired multiplier is based on a 
bit-partitioned carry-save multiplier, illustrated in Figure 4, in 
contrast to our previously proposed naïve ripple-carry based 
multiplier [14]. The carry-save multiplier’s critical path is mainly 
along the final, vector-merging adder, which we propose to 
implement as a bit-partitioned ripple carry adder for two reasons. 
First, ripple-carry adders consume significantly lower power than 
faster (e.g., carry select or bypass) adders [15]. Secondly, while 
ripple-carry adders have relatively long worst-case delay, the bit-
partitioning of the multiplier array (including the ripple-carry 
adder) leads to very good average case delay for this application. 

2.2.1 Staircase-patterned bit-slices 
The staircase-patterned bit-slices, as illustrated by the dotted 

lines in Figure 4, allow the adders to be dynamically configured 
for different input bit-widths. For example, if the first two bit-
slices are activated, the multiplier behaves exactly as a typical 
multiplier that handles 9-bit inputs. 

There are two key aspects of the architecture that enable this 
type of reconfigurable bit-widths. The first is that when only the 
first two bit-slices are activated, the inputs to the second input bit-
slice that emanate from the third input slice  (i.e., that cross the 
dotted line) are forced to zero by the input ANDing logic. The 
second feature is the sign extension of the most right shifted input 
to the bit-slice boundary. Figure 5 illustrates an example of the 
issue and our proposed solution. In particular, it illustrates the 
case when x’ >> 9 is added to x’ >> 7 when two bit-slices of x are 
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activated, i.e., when bits b13 through b15 are forced to zero. The 
further right shifted input in this case is the x’ >> 9 input and it 
must be sign extended two bits to the bit-slice boundary. Our 
solution is to add two MUXes that are controlled by the MASK 
logic. The MUXes output the x’ input bit except in the case when 
exactly three bit-slices are activated, in which case the MUXes 
output the sign extension bit (which in this case is the b12 bit of 
x’).  As illustrated in Figure 5, the number of MUXes needed is 
relatively small and they are typically not in the critical path. 

Alternatively, a naïve solution to this problem is to have a 
dedicated input ANDing logic for each row. This solution, 
however, has high area overhead and some power and 
performance penalties. One can also avoid this overhead entirely 
by removing the input ANDing logic altogether if the deactivated 
output bits which may not meet setup times are not latched, [14], 
at the cost of loosing most of the power-saving advantages. 

2.2.2 Speculative completion sensing circuit 
Let us focus on the completion-sensing unit for our proposed 

hardwired multiplier. The critical path of the array depends on the 
carry chain of the ripple carry adder highlighted in Figure 4. This 
path is partitioned into four bit-slices, as illustrated in Figure 6. 
To sense the completion of this adder, we use a simplified 
speculative completion-sensing unit, as shown in Figure 7. The 
completion-sensing unit is composed of four delay lines, matched 
to the four different sizes of adders activated, that are MUXed 
into a Done signal. The mask signals are fed into the select lines 
of the MUX and they act as abort signals. Note that in IDCT case, 
the middle two bit-slices are merged into one slice. 

Note that the delays for each size of adder are less than one 
might expect from simple static delay analysis. This is because the 
hardwired multiplier has many false paths associated with the fact 
that it has a single input source, x.  To determine the actual critical 
path for each possible bit-slice activation pattern, we used 
exhaustive software simulation. 

2.3 Accumulator Design 
Our 4×4 matrix-vector multiplier has four accumulators each 

responsible for summing up the multiplication results for a 
different matrix row. Notice that their bit-widths are set by the 
registered mask signals. This means that no new MASK logic is 
needed and that these mask signals can directly control a second 
completion-sensing unit for these accumulators. This completion-
sensing unit is made up of delays that match the various sizes of 
activated bit-slices (unlike the completion-sensing unit for the 

multiplier) and is not shown. Also notice that the previous 
accumulator result is partially sign extended in order to ensure 
that both input operands have the same number of activated bit-
slices. 

2.4 Sign Bit Recovery Logic 
The partial sign bit recovery (PSBR), illustrated in Figure 8, 

first extracts the sign bit using the mask signal m” for the current 
accumulation result t.  It then sign extends any newly activated 
bit-slices using a bank of MUXes that either pass the current bit 
or the extracted sign bit depending on the AND of the stored and 
current mask signals. Notice that the least significant 10 bits needs 
no sign extension since they are never forced to zero. 

The FSBR block for full sign bit recovery that sign extends 
the result for use by any successive traditional logic is 
implemented similarly. Note, however, if the next logic block, 
(e.g., a matrix transposer), is similarly bit-slice partitioned, the 
FSBR block is not needed. 

3. PERFORMANCE AND POWER 
ESTIMATION 
3.1 Full-Adder-Based Delay and Energy 
Analysis 

We estimate average performance in terms of the number of 
full adder delays, where one full/half adder delay is assumed to be 
δ. We ignore any performance overhead associated with the 

b 1 2

891011

b 9b 1 0b 1 1

b 1 2 b 1 1'0''0'

b 11 b 10 b 9 b 8 b7 b 6 b 5 b4 b 3 b 2 b1 b 0'0''0''0'

sign data bits

Original Data ( x ) b12 b 11 b 10 b 9 b 8 b7 b 6 b 5 b4 b 3 b 2 b1 b 0b 13b 14b15

Input ANDing ( x' ) b12

s ign

x' >> 9

x' >> 7b 1 2

891011

b 9b 1 0b 1 1

b 1 2 b 1 1

m
M U X

Implementat ion

 
Figure 5. Example of the proposed mechanism for sign bit 

extension in the multiplier array. 

C 0
4FA

C 1C 2

4

4

Output

10

10

6FA+2HA+2FA

Input

4FA

4

4

M S B LSB

C out

3FA

3

3

 
Figure 6. Static fine-grain partitioned adder architecture. 

I_req
Matched Delays

Done

m(3:1)

M
U
X

= 000

= 001

= 011

= 111

m

6FA+2HA

3FA

2FA

7FA  
Figure 7. Speculative completion sensing using mask signals 

instead of abort logic. 

M S B L S B

m''(3)

t(21)-t(17)

m' ' (3)

S IGN

t(16)-t(13)

m'(3)
m' ' (2)
m'(2)

t(12)-t(10)

m' ' (1)
m'(1)

M U X M U X M U X

345 10

t(9)-t(0)

m' ' (2) m' ' (1) t(16) m' ' (3) m' ' (2) m' ' (1) t(12) m' ' (3) m' ' (2) m' ' (1) t(9)

Figure 8. Partial sign bit recovery logic. 



 260 

MASK, input ANDing, and PSBR circuits that we will later show 
are mostly hidden using HSPICE simulations. 

As already mentioned, the worst case delay of our matrix-
vector multipliers is 20δ, which is the sum of adder delays as 
shown in Figure 7. From the input data statistics, however, the 
average number of activated bits on the critical path adders is less 
than 10δ for DCT data and 5δ for IDCT data, as shown in Table 
2. Recall that the MASK logic operates in parallel with the 
processing of the first 6 least significant bits and thus is typically 
not in the critical path. The principal exception is the case of zero 
detection, for which we conservatively estimate its delay to be 3δ. 
Note again that we assume the delays of the MUXes in Figure 4 
are hidden and thus do not affect the delay calculations. 

The ripple-carry-based accumulators are 21 bits wide and 
have a worst-case delay of 21δ. We estimate the average number 
of bits activated in the accumulators by taking the results obtained 
in Table 2 and adding 1δ to account for a 1-bit increase in 
dynamic range that accounts for the fact that the accumulator are 
adding/subtracting four multiplication results. This yields an 
average delay of 11δ for DCT data and 6δ for IDCT data. Because 
the accumulators are a bit slower than the multipliers, they will, 
roughly speaking, dictate the throughput of the pipeline. This 
suggests that, compared to its traditional synchronous counterpart, 
our design is about 1.9 (=21/11) times faster for DCT data and 3.5 
(=21/6) times faster for IDCT data. 

To estimate energy consumption, we extract the transition 
activities of all adder cells (in both the multiplier and 
accumulators) using bit-level 2-D DCT/IDCT software models. 
Note that for the zero-valued data, the result of accumulator is not 
latched and, therefore, we average in zero for this case. The 
results indicate that, compared to the traditional synchronous 
architecture, our architecture consumes 17.5% less energy for the 
DCT and 60% less energy for the IDCT. 

3.2 HSPICE Simulation Results 
We also simulated the transistor-level design (pre floor 

planning) of the data-path components using HP 0.35µm 
technology to verify our timing assumptions and obtain more 
reliable power and delay estimates. 

First, we used HSPICE simulations to validate our 3δ delay 
estimate of the MASK logic. In fact, HSPICE indicates that the 

delay for zero detection is 0.81ns, which is less than the 0.85ns 
delay of our 3-bit adder design. 

Second, we simulated the multiplier and accumulator for the 
worst-case input vectors for each possible bit-width, as 
summarized in Table 3. Combining these results with the 
activation probabilities of each bit-slice obtained in Table 2, 
provides more reliable average delays. In particular, for the DCT 
we obtain an average delay for the multiplier of 3.5ns, which is 
about 1.7 times faster than the worst-case delay. Similarly, for the 
IDCT we obtain an average delay of 1.45ns, which is 4.0 times 
faster than the worst-case delay. Similarly, for the case of 
accumulator, our proposed accumulator is about 4.23ns of delay 
for the DCT and 1.62ns for the IDCT, which are 1.86 and 4.7 
times faster than the worst-case delays, respectively. 

Thirdly, we calculated the cycle time of the asynchronous 
pipeline taking into account the control overhead, illustrated in 
Figure 9. We adopted the optimized 4-phase micropipeline 
control circuit in [16] and extracted the cycle time using the 
method in [17] using reasonable output loads (4× inverters). The 
delay from Rin+ to Rout+ can be broken-down into Rin+ -> Ain+, 
Ain+ -> Rin-, Rin- -> Rout+. Because these operations are 
executed simultaneously with the rising delays of DONE1 (or 
DONE2) they can be for the most part hidden from the cycle time. 
Consequently, the control overhead in cycle time is approximately 
1.3ns. Currently the throughput of the system is determined by the 
cycle time of the slower accumulation stage, however, further 
speed-up is possible by modifying the accumulator’s adder. 
Consequently the maximum cycle times for the stages in Figure 2 

Table 2. Estimated average number of full/half adders 
activated on the multiplier’s critical path (P: Probability, B: 
Assigned number of bits for each bit-slice, A: Activated 
number of bits; A=(P×B)/100). 

DCT IDCT Activated 
Bit Slices P(%) B A P(%) B A 
0 bit-slice 13 3 0.39 76.8 3 2.30 
1 bit-slice 21.36 8 1.71 16.8 8 1.34 
2 bit-slices 46.76 11 5.14 - - - 
3 bit-slices 17.48 13 2.27 5.73 13 0.75 

All bit-slices 1.34 20 0.27 0.63 20 0.13 
Average Bits 9.78 4.52 

 

Table 3. HSPICE simulation results for delay and power 
consumption of the multiplier and accumulator. (D: Delay 
(ns), E: Energy (pJ)). 

Multiplier Accumulator Activated 
Bit Slices

 

D E D E 
0 bit-slice 0.81 2.51 0.81 0.00 
1 bit-slice 3.25 27.0 3.62 11.1 
2 bit-slices 3.99 40.3 4.67 13.3 
3 bit-slices 4.31 62.5 6.07 16.9 

All bit-slices 5.84 82.7 7.68 23.3 
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are 5.4 and 1.9ns for DCT and IDCT, respectively. These results 
suggest the proposed architecture is about 1.4 and 4 times faster 
than synchronous design as shown in Table 4. 

Lastly, we compute and compare energy consumption for a 
set of 10 randomly selected input vectors for each possible bit-
width and average the results using the probabilities summarized 
in Table 2. For the multiplier, we obtain an average energy 
consumption of 37.0pJ for the DCT and 10.6pJ for the IDCT. For 
the accumulator, we obtain an average energy consumption of 
11.9pJ for the DCT and 3.0pJ for the IDCT. For the control 
circuitry, we obtain an average energy consumption of 16.2pJ, 
which, while not small, is amortized over 4 sets of multiply-
accumulators. For the synchronous counterparts, the multiplier 
consumes energy of 47.4/32.2pJ for DCT/IDCT, and accumulator 
consumes 17.8/10.4pJ for DCT/IDCT. These numbers imply our 
asynchronous design yields over 17.2% average energy savings 
for the DCT and 52% average energy savings for the IDCT, as 
summarized in Table 4. 

4. CONCLUSIONS 
We developed an asynchronous low-power matrix-vector 

multiplier while maintaining high-performance using fine-grain 
data-path partitioning optimized for typical input data statistics. 
Compared to traditional synchronous counterparts, our simulation 
results suggest that our design yields significant savings in both 
power and delay. The key power-saving feature is novel input 
ANDing logic and associated control circuitry. The key 
performance feature is the efficient adaptation of speculative 
completion sensing to matrix-vector multiplication. This allows 
the design to be completed using only static logic, which is easier 
to use and validate than its dynamic logic counterparts. It also 
shows that speculative completion sensing combined with bit-
slice partitioning can be an effective means of taking advantage of 
data statistics that have a high fraction of small valued data. 

Lastly this paper shows that the design of image-processing 
algorithms such as the 2-D DCT/IDCT can benefit from 
asynchronous techniques. In particular, while the input ANDing 
logic can be used in synchronous designs, synchronous designs 
cannot easily achieve the average-case delay gains derived from 
the fine-grain bit-slice partitioning. 

Our future work includes demonstrating these advantages in 
silicon and exploring application of these techniques to other 
domains.  

5. ACKNOWLEDGEMENTS 
This Research has been partially supported by NSF Grant 

CCR-9812164, and was carried out while the first author was on 
leave from Korea Telecom and he has been partially supported by 
KOSEF. The third author was supported by KOSEF under the 
ERC program through the MINT at Dongguk University. 

6. REFERENCES 
[1] ISO/IEC JTC1/SC29/WG11, MPEG IS13818-2, (1996). 
[2] K. Rao and P. Yip, Discrete Cosine Transform, Algorithms, 

Advantages, Applications, Academic Press, (1990). 
[3] A. Madisetti and A. N. Willson Jr., “A 100 MHz 2-D 

DCT/IDCT Processor for HDTV Applications,” IEEE 
Transactions on CAS for Video Tech., 5(2), 158-165 (1995). 

[4] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. 
Yamashita, M. Terane, and M. Yoshimoto, “A 100 MHz 2-D 
Discrete Cosine Transform Core Processor,” IEEE Journal 
of Solid-State Circuits, 36, 492-499 (April 1992). 

[5] T. Xanthopoulos, and A. P. Chandrakasan, “A Low-Power 
IDCT Macrocell for MPEG-2 MP@ML Exploiting Data 
Distribution Properties for Minimal Activity,” IEEE Journal 
of Solid-State Circuits, 34, 693-703 (1999). 

[6] S. M. Nowick, K. Y. Yun, P. A. Beerel, and A. E. Dooply, 
“Speculative Completion for the Design of High-
Performance Asynchronous Dynamic Adders,” in 
Proceedings of the ASYNC’97, 210-223 (1997). 

[7] L. S. Nielsen, and J. Sparsφ, “Designing Asynchronous 
Circuits for Low Power: An IFIR Filter Bank for a Digital 
Hearing Aid,” Proceedings of the IEEE, 87(2), 268-281 (Feb. 
1999). 

[8] C. H. van Berkel, M. B. Josephs, and S. M. Nowick, 
“Applications of Asynchronous Circuits,” Proceedings of the 
IEEE, 87(2), 223-233 (Feb. 1999). 

[9] C. L. Seitz, “System timing,” in Introduction to VLSI 
Systems, C. A. Mead and L. A. Conway, Eds. Readings, MA: 
Addition-Wesley, Chapter 7 (1980). 

[10] D. Johnson, V. Akella, and B. Stott, “Micropipelined 
Asynchronous Discrete Cosine Transform (DCT/IDCT) 
Processor,” IEEE Transactions on VLSI Systems, 6(4), 731-
740 (1998). 

[11] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. 
Yun, R. Kol, C. Dike, M. Roncken, and B. Agapiev, 
“RAPPID: An Asynchronous Instruction Length Decoder,” 
in Proceedings of the ASYNC’99, 60-70 (April 1999). 

[12] J. D. Garside, “A CMOS VLSI implementation of an 
asynchronous ALU,” IFIP Transactions on Asynchronous 
Design Methodologies, A-28, 181-207 (1993). 

[13] S. M. Nowick, “Design of a Low-Latency Asynchronous 
Adder Using Speculative Completion,” IEE Proceedings – 
Computers and Digital Techniques, 143(5), 301-307 (Sept. 
1996). 

[14] K. Kim and P. A. Beerel, “A High-Performance Low-Power 
Asynchronous Matrix-Vector Multiplier for Discrete Cosine 
Transform,” in Proceedings of the first IEEE Asia Pacific 
Conference on ASICs, 135-138 (August 1999). 

[15] A. P. Chandrakasan and R. W. Brodersen, Low Power 
Digital CMOS Design, Kluwer Academic Publishers, (1995). 

[16] P. Day and J. V. Woods, “Investigation into Micropipeline 
Latch Design Styles,” IEEE Transactions on VLSI Systems, 
32, 264-272 (June 1995). 

[17] K. Y. Yun, P. A. Beerel, and J. Arceo, “High-Performance 
Asynchronous Pipeline Circuits,” in Proceedings of the 
ASYNC’96, 17-28 (1996). 

Table 4. Delay and energy comparison. 
Cycle Time(ns) Energy(pJ) Designs DCT IDCT DCT IDCT 

Proposed 5.4 1.9 234.7 93.4 
Synchronous 7.7 7.7 283.6 193.4 
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