
 131

Power Minimization of Functional Units by Partially
Guarded Computation

Junghwan Choi, Jinhwan Jeon, and Kiyoung Choi
School of Electrical Engineering, Seoul National University

Seoul 151-742, Korea
{exotic,jeonjinh,kchoi}@poppy.snu.ac.kr

Abstract
This paper deals with power minimization problem for data-
dominated applications based on a novel concept called partially
guarded computation. We divide a functional unit into two parts –
MSP (Most Significant Part) and LSP (Least Significant Part) -
and allow the functional unit to perform only the LSP
computation if the range of output data can be covered by LSP.
We dynamically disable MSP computation to remove unnecessary
transitions thereby reducing power consumption. We also propose
a systematic approach for determining optimal location of the
boundary between the two parts during high-level synthesis.
Experimental results show about 10∼44% power reduction with
about 30∼36% area overhead and less than 3% delay overhead in
functional units.

Keywords
Low Power, Partially Guarded Computation

1. Introduction
 Recently, electronics systems market has proliferated rapidly
toward portable computing and communication systems thereby
increasing demands for considering low power during VLSI
design [1, 2]. From the viewpoint of long battery life and high
reliability, power dissipation has become one of the major
objectives during synthesis procedure. In CMOS circuits, most of
the power dissipation is caused by charging and discharging load
capacitance of gates. Therefore, it is crucial to minimize the
number of signal transitions in circuits for low power design.
 In high-level synthesis domain, there have been quite a few
studies devoted to minimize transitions in functional units, registers,
multiplexers, and buses [3 - 11]. Many of them focus on minimizing
transition activity in functional units because they are the main
source of power dissipation in data dominated applications [3 - 8].
The most effective method to reduce the number of transitions in
functional units is increasing the correlation of input data.
Therefore, many of the previous work focus on increasing input data
correlation by changing operation binding [3, 8], loop pipelining
[7], loop interchange, operand reordering, operand sharing,
unrolling [5], and guarded evaluation [11].

 In this paper, we propose yet another technique which we call
partially guarded computation. The technique disables a part of a
functional unit based on dynamic range of input operands. We
divide a functional unit into two parts – MSP (Most Significant
Part) and LSP (Least Significant Part) - and allow only the LSP
computation when the range of input operands is covered by the
range of the LSP. For the division of a functional unit, we propose
a systematic method that finds the location of boundary that
maximizes power reduction. We also propose an effective
operation and operand binding algorithm for high level synthesis
in order to maximize the effect of the proposed technique.
 This paper is organized as follows. In section II, we present the
basic concept of partially guarded computation and explain the
application to adders and multipliers. Section III proposes an
algorithm for dividing a functional unit into two parts. In section
IV, we propose an effective operation binding algorithm for
maximizing power reduction by our partially guarded
computation technique. We show experimental results in section
V and conclude our work in section VI.

2. Partially Guarded Computation
2.1 Basic Concept
 In designing signal processing applications, we determine the
word lengths of functional units based on dynamic range of input
data such that maximum range of the data does not exceed the
word length of functional units. However, real data is generally
limited to small range in most cases, and the case of maximum
range rarely occurs. Figure 1 shows our motivational example
which is composed of a short segment of a speech data and
associated range information. As shown in Fig. 1 (b), the
maximum range of the speech data is 14 bits. However, about 60
% of the data do not have range larger than 8 bits. The extra 6 bits
belong to sign extension region of the data. Generally, we don’t
need to perform expensive computation for the sign extension
region because we can compute sign bit by looking at only the
LSB side. If we assume that the speech data is used as one input
of an adder and dynamic range of the other input does not exceed
8 bits at all, we don’t need to perform computation for the sign
extension bits during 60% of total execution cycles. By
performing only 8 bit addition for such cases, we can reduce
unnecessary transitions in the sign extension part of the adder
thereby reducing power consumption. Disabling the computation
of the sign extension part can be achieved by preventing
propagation of input data transition to the sign extension part of a
functional unit.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED ’00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007…$5.00.

 132

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

S
p
e
e
c
h
 D
a
ta
 V
a
lu

0

2

4

6

8

10

12

14

16

N
u
m
b
e
r
O
f
B
it
s

 (a) (b)

Fig. 1. Example speech data and associated range.

Figure 2 illustrates an RTL implementation of our partially
guarded computation and timing diagram for the circuit operation.
We assume that input registers are reserved for each functional
unit, where the registers play the role of guard latches for guarded
evaluation technique [11]. We divide the output data of a
functional unit into two parts - MSP and LSP – such that the
range of the output data does not exceed the maximum range of
LSP in as many cases as possible while keeping large range of
MSP. The bit lengths (or maximum ranges) of MSP and LSP are
denoted as NM and NL, respectively. Corresponding to the division
of the output data, the functional unit is also divided into two
parts: MSP and LSP. The functional unit performs computation in
only the LSP when the detection logic signals that the range of the
output data will not exceed NL. Otherwise, the functional unit
performs computation in both MSP and LSP. To disable the
computation in MSP, we use guarded evaluation technique by
inserting guard latches to the inputs of the MSP. The inputs are
composed of the MSB side of primary inputs and carry inputs
propagated from the LSP. When the functional unit performs only
LSP computation, sign extension logic produces correct output
data by extending sign bit from the output data of LSP.

The output signal of detection logic, which is denoted as
SELA, is connected to the enable signal of guard latches. The
inputs of the detection logic are not connected to the outputs of
input registers but to the inputs of input registers to have SELA
asserted before the next input data is loaded into the guard
latches, which is crucial for correct guarding. However, SELB,
which is connected to the sign extension logic, is asserted after the
rising edge of clock. This is to guarantee the output of the
functional unit to be loaded correctly into the input register of
other functional units. The detection logic asserts zero when both
input1 and input2 generate output data ranges not exceeding NL.
The detection logic can be implemented simply by using NM input
AND gates or NM input NOR gates1 and D-latches.

To reduce unnecessary power dissipation in detection logic,
we implement the circuit such that it is enabled only when the
register load signal is enabled. When the detection logic is
disabled, it holds the previous value of SELA by using internal
latch. Since it takes time for the input1 and input2 to be stable,
there may occur glitches on SELA. There are two types of glitches
(1 → 0 → 1 glitch and 0 → 1 → 0 glitch) according to the initial
state of SELA. The first type glitch (1 → 0 → 1) does not induce
much power dissipation because 1 → 0 and 0 → 1 transitions in
SELA generate no transitions in the already enabled MSP.
However, the second type (0 → 1 → 0) causes unnecessary
transitions in the previously disabled MSP. Therefore, we remove
the second type glitch by delaying SELA until CLK’s rising edge
when the value of SELA is 1. In this case, SELA may be asserted

1 We need to check leading successive one’s and zero’s for both

input1 and input2.

after input data is loaded. However, it does not break our guarding
scheme because SELA needs to be asserted before CLK only when
SELA changes from 1 to 0.

Detection Logic Reg 1 Reg 2CLK
CLK

CLK

SELA

SELB

input1 input2

output

MSP LSP

latch-C

latch-P

Sign Extension Logic

Load

(a) RTL implementation

C L K

L o a d

in p u t1

S E L A

S E L B

in p u t2

o u tp u t

(b) Timing diagram.
Fig. 2. RTL implementation of partially guarded computation

circuitry and timing diagram.

2.2 Implementation of Functional Units
Figure 3 illustrates the implementation of partially guarded

circuitry for ripple carry adder. Since there may occur overflow
when we add two numbers, we set the input bit length of LSP as
NL-1. Sign extension logic can be simply implemented by using
multiplexers.

FAFAFAFA FA FAFA FA

1 0

D
-latch

1 01 0

Input LSPInput MSP

SELB

Sign Extension Logic

Output MSPOutput MSP

NL-1NM+1

NLNM

D-latch D-latch D-latch

Fig. 3. Partially guarded circuitry for ripple carry adder.

Figure 4 illustrates the implementation of partially guarded

circuitry for signed array multiplier. We insert the guard latches
between the MSP and LSP of the full adder array. Let N1

S and
N2

S be the bit length of sign extension region for input1 and
input2, respectively. The bit length of the sign extension region of
the output is computed as N1

S+N2
S. If it exceeds the range of

 133

MSP, then we disable the latches and the MSP and activate only
the LSP. However, dynamically extracting the values of N1

S and
N2

S from the input patterns and computing the values N1
S+N2

S to
see if it exceeds the range of the MSP require too much
computation resulting in high circuit overhead and power
consumption. To avoid such problem we disable the MSP only
when N1

S and N2
S independently exceed their own pre-determined

bounds N1
M and N2

M, respectively. There can be one or more
combinations of bounds N1

M and N2
M such that N1

M+N2
M=NM. In

the next section, we present an algorithm that determines the
values of N1

M and N2
M from the statistics of the inputs such that

the resulting power reduction is maximized. Once the values are
determined, the guard latches are inserted between
(NM=N1

M+N2
M) th bit position and (NM+1) th bit position from the

MSB. The sign extension logic is implemented in the same way as
ripple carry adder. We use two types of multiplier FA’ and FA,
where FA’ is a slightly modified version of FA for correct
computation of sign bit [15].

N1
LN1

M

Input1 LSPInput1 M SP

FAFA’ FA FA

FA’FA’ FA FA

FA’FA’ FA’ FA

FA’FA’ FA’ FA’

FA’FA’ FA’ FA’

Output LSPOutput M SP

D
-latch

D
-latch

D
-latch

D
-latch

NL=N1
L+N2

LNM=N1
M+N2

M

D-latch

D-latch

D-latch

In
pu

t2
 L

SP
In

pu
t2

 M
SP

N
2L

N
2M

0

0 0 0 0

1 01 01 0

SELB

Sign Extension Logic1 0

Fig. 4. Partially guarded circuitry for signed array multiplier.

Due to the overhead of the augmented circuitry, we do not
expect much power reduction in the ripple carry adder. However,
in case of the array multiplier, we can obtain much power
reduction because it contains much more computing elements
than the adder.

3. Boundary Positioning Algorithm
3.1 Problem Formulation

We denote the two inputs of a functional unit as in1 and in2,
respectively and assume they have the same bit length which is
denoted as N. The j th bit of ini is denoted as ini. The MSB and
the LSB of ini correspond to ini

0 and ini
N-1, respectively. We

denote the location of the boundary between the MSP and LSP of
input data ini as Di. Di has a value between 0 and N-1. If j < Di,
ini

j belongs to the MSP. Otherwise, it belongs to the LSP. Note
that, in case of multiplier, there can be one or more combinations
of D1 and D2 satisfying D1 + D2 = NM. We formulate the boundary
positioning problem as follows:

Given streams of input data to a functional unit, determine
the set of boundary location DI’s such that power reduction
by partially guarded computation is maximized.

We obtain the input data streams to the functional unit by
performing behavioral simulation with the simulation vectors
given by the user

3.2 Algorithm
In the case of multiplier, the bit length of output MSP (NM) is

computed as D1 + D2. Therefore, there can be more than one
combinations of boundary points D1 and D2 for the same value of
NM. In this section, we consider the case where only single
combination of D1 and D2 is selected. Extended problem for
finding multiple combinations of D1 and D2 will be treated in the
next section. We solve the single boundary positioning problem
by selecting an optimal combination of D1 and D2 which gives the
largest power reduction among all possible combinations. We
denote the power cost per single operation of the MSP of a
functional unit Ft and the power cost per single operation of
detection logic as P1

t,M(D1, D2) and PDET(D1, D2), respectively.
We denote total power reduction in the MSP of Ft as Pt,M(D1, D2)
which is computed by accumulating P1

t,M(D1, D2) whenever the
MSP is disabled. The total power reduction in Ft, which is
denoted as Pt(D1, D2), is computed as

Pt(D1, D2) = Pt,M(D1, D2) - β⋅I⋅PDET(D1, D2) (1)

where β and I represent weighting factor and the size of input data
stream, respectively. The value of β is determined experimentally.
We compute Pt(D1, D2) for all combinations of D1 and D2. In the
case of adder, D1 and D2 must have the same value because the
range of the output MSP is determined by the minimum of D1 and
D2. Therefore, there are only N combinations. However, in the
case of multiplier, D1 and D2 may have different values because
the range of the output MSP is computed as the sum of D1 and D2.
Therefore, there are N×N combinations of boundary points. We
define the power cost of the MSP as weighted number of full
adder cells in the part.

The power cost PM
ADD(D1, D2) of ripple carry adder is

defined as

2121
1

,),(DDDDP ADDADDMADD ⋅=⋅= αα (2)

where αADD is a weighting factor to reflect the effect of sign bit
transition 2 whose value is obtained experimentally. The power
cost of the detection logic is computed as

PDET(D1, D2) = D1+D2 (3)

The power cost P1

MULT,M(D1, D2) of array multiplier is defined as

P1
MULT,M(D1, D2) =αMULT ⋅(D1+D2-1)⋅(D1+D2)/2

if (D1+D2) ≤ N

P1
MULT,M(D1, D2) = αMULT⋅(N⋅(N-1)-(2N-D1-D2)⋅(2N-D1-D2-1)/2)

otherwise (4)

 134

1. PositionBoundary
2. INP: input data stream;
3. begin
4. Initialize Pt(D1, D2) and Pt,M(D1, D2) to 0;
5. for each input data from INP loop
6. for D1 =0 to N-1 loop
7. for D2 =0 to N-1 loop
8. if both D1 and D2 are sign bits then
9. Pt(D1, D2) += P1

t,M(D1, D2);
10. end if;
11. Pt(D1, D2) -= β⋅PDET(D1, D2);
12. end for;
13. end for;
14. end for;
15. Sel_D1 = Sel_D2 = 0;
16. for D1 =0 to N-1 loop
17. for D2 =0 to N-1 loop
18. if Pt(D1, D2) > Pt(Sel_D1, Sel_D2) then
19. Sel_D1 =D1 ; Sel_D2 = D2 ;
20. end if;
21. end for;
22. end for;
23. end;

Fig. 5. Pseudo code of boundary positioning algorithm.

Figure 5 shows the pseudo code of our boundary positioning
algorithm. In the first loop including the loops nested inside, we
compute Pt(D1, D2) for all combinations of D1 and D2. We
accumulate P1

t,M(D1, D2) to Pt(D1, D2) when both D1 and D2
belong to the sign extension regions of the current input data
whereas β⋅PDET(D1, D2) is subtracted from Pt(D1, D2) for every
input data. After we obtain Pt(D1, D2) in the first loop, we select
D1 and D2 which induce the largest value of Pt(D1, D2) in the
second loop. The complexity of the algorithm is O(N2⋅I) , where I
is the number data in the input data streams.

3.3 Extension to Multiple Boundary
Combinations

If we check multiple combinations of boundary points, we can
increase the duration in which MSP of the multiplier is disabled.
Though checking multiple boundary points helps reducing MSP
power, it increases detection logic overhead. However, overhead
in detection logic is not linearly proportional to the number of
boundary points because there are lots of common components
among detection logics with different boundary points.

The problem of determining multiple boundary points is
formulated as selecting nD combinations of D1,i and D2,i such that
total power reduction is maximized and D1,i+D2,i=NM for i=0, ... ,
nD-1. We adopt the same scheme for positioning multiple
boundary points as proposed in the previous section. We
exhaustively evaluate all the candidate solutions using the cost
function PMULT(D1,i, D2,i) and select the best one. If we assume nD
is given by user, the complexity of the multiple boundary

2 We give more weight when there is signal transition in sign bit.

positioning algorithm can be computed as 





⋅⋅

Dn
N

NM , where

the worst case complexity is O(M⋅N1+N/2) which is almost
intractable. However, from the experimental results, we find that
nD=3 is sufficient in most cases because we cannot obtain
significant power improvement even if we increase the value of nD
larger than 3. The graph in Fig. 6 shows the effect of the number
of boundary points on power improvement. Note that the curves
begin to saturate from the point where nD =3.

0%

5%

10%

15%

20%

25%

30%

0 5 10 15 20 25

of boundary points

%

i
m
p
r
o
v
e
m
e
n
t

fir11

wavelet

nc

lattice

Fig. 6. Effect of multiple boundary points on power

improvement.

4. Operation Binding Algorithm
Since partially guarded computation technique reduces power

consumption based on dynamic range of the input data to a
functional unit, obtainable power improvement strongly depends
on the status of operation and operand binding. In general,
increased input correlation reduces power consumption in a
functional unit. However, it does not always hold when the
functional unit supports partially guarded computation. For
example, let us compare two input data sequences: sequence A
(111101 → 101110) and sequence B (111101 → 000010). From
the viewpoint of input data correlation, sequence A is superior to
B. However, if we use partially guarded computation technique,
sequence B can result in lower power design than sequence A.
Note that the boundary point of sequence A is located at the 4th bit
from the MSB, whereas that of sequence B is located at the 1st bit.
Thus, we need to devise a new operation and operand binding
algorithm that can consider tradeoff between data correlation and
dynamic range.

For this purpose, we propose a greedy algorithm that
incrementally binds an operation to a functional unit while
evaluating the power cost of the current design. After all the
operations are scheduled, we perform operation binding such that
power cost is minimized. We compute the power cost by
multiplying power reduction ratio to the estimated power of the
current design obtained using DBT model [16]. The power
reduction ratio can be computed using equation (1) ~ (4). We
perform operation binding for each control step starting from
initial control step. For each control step, we compute power costs
of all the feasible bindings for each operation scheduled at current
control step. Among the feasible bindings we select the one with
minimum power cost. We repeat above procedure until all the

 135

operations at current control step are bound. When we compute
power costs of all the feasible bindings, we consider swapping of
input operands and select a solution with minimum cost.

5. Experimental Results
For automatic generation of the layout, we designed partially

guarded circuitry for Lager IV layout synthesis tool [12]. We
implemented our boundary positioning algorithm and operation
binding algorithm using C++ under UNIX environment. To
measure power consumption, we developed a power estimation
tool based on DBT model. We verified the reliability of the
estimator by comparing the estimated power with the power
obtained by IRSIM [13], a switch level simulator, running on the
simulation file extracted from the layout generated by Lager IV.
We used 1.2 micron technology for the generation of layouts. We
tested our algorithm using well know data dominated circuit
examples from HYPER [14]. We first performed behavioral
simulation by using simulation vectors given by user. We used
speech data, music data, and random data as the simulation
vectors. After we performed scheduling and binding, we
determined two parts – MSP and LSP – by using the proposed
algorithm. We set the parameter value β to 0.4 for computing
power cost. In our experiment, we applied the partially guarded
computation technique only to multipliers, because it takes more
than 50% of the total power consumption in most cases. Due to
very long IRSIM simulation time, we do not simulate the
complete circuit. Instead, we picked up functional units and
related units such as register, detection logic, and sign extension
logic from the complete circuit, and performed simulation for the
selected sub-circuit using the already obtained input data stream.

Table 1. Comparison of layout area for multiplier
w/o PGC w/ PGC Overhead Resource N

Area
(mm2)

Delay
(ns)

Area
(mm2)

Delay
(ns)

Area
(%)

Delay
(%)

+1 *3 16 6.58 94.3 8.95 96.6 36 2.4 fir11
+10, *11 16 6.58 94.3 8.95 96.6 36 2.4

wavelet +2 *4 16 6.58 80.6 8.95 82.8 36 2.7
nc +2 *4 25 15.65 140.8 20.35 143.2 30 1.7

Table 2. Comparison of estimator with IRSIM.
 Estimator IRSIM

 Resource
w/o
PGC
(nJ)

w/
PGC
(nJ)

red.
(%)

w/o
PGC
(nJ)

w/
PGC
(nJ)

red
(%).

error
in

red.
(%)

fir11 +1 *3 58.49 49.28 15.7 62.97 53.22 15.5 -1.1
 +10 *11 29.02 20.80 28.3 26.09 18.72 28.3 0
wavelet +2 *4 91.62 76.19 16.9 93.77 77.69 17.2 +1.8
nc +2 *4 280.4 251.2 10.4 270.0 240.1 11.1 +6.3

Table 1 shows the layout area and delay information of the sub-

circuit for each synthesis example. In the table, PGC stands for
our Partially Guarded Computation technique. The layout area
overhead by partially guarded circuitry is about 30-36%. The area
overhead is mainly caused by two dimensional tiling structure of
array multiplier supported by LAGER IV. Such generic structure
is assumed for the automatic generation of layout. When we

enlarged several leaf cells for the modification of the multiplier,
we had to enlarge other cells because they must have the same
height and width. If we carefully restructure the multiplier such
that the modified leaf cells do not affect the size of other cells, we
can further reduce the overhead caused by the partially guarded
computation circuitry. Moreover, such area overhead in functional
units takes relatively small portion as the complexity of the design
increases. The worst case delay overhead by our additional
circuitry is below 3%. The overhead is caused by additional input
latches and sign extension logic.

Table 2 compares the results by our power estimator with those
by IRSIM. We performed simulation using 128 samples of speech
data. The table shows our estimator is reliable in evaluating the
effect of PGC because it has up to 10% error in estimating power
and up to 6.3% error in estimating improvement by PGC.

Table 3 summarizes power consumption and resource
allocation information for the examples. The sixth column in the
table indicates the results when we applied multiple boundary
points (nD=2) and the proposed operation binding algorithm. The
value within parentheses represents the power consumption when
multiple boundary points are selected. Before we applied our
technique, we minimized power consumption in functional units
by using the power conscious scheduling and binding algorithm
proposed in [8]. For fair comparison, we implemented a multiplier
such that it does not produce output bits which will not be used.
For example, if we use only N’ < 2N output bits among 2N output
bits of a N×N multiplier, the cells for computing upper 2N - N’
bits are replaced by NOP cells which do not consume any power
at all. Moreover, we set the value of N as the maximum bit length
of input operands without allowing any margin to the design.

As simulation vectors, we used three different sets of data:
speech data with large dynamic range (speech1), speech data with
small dynamic range (speech2), and normally distributed random
data (normrand). Each set of data is composed of 128 samples.
The maximum bit length of speech1 and normrand is 14, whereas
that of speech2 is 12. We first determined the boundary location
by using only the speech1 data set. Then we apply other data sets
such as speech2 and normrand, which have different
characteristics, to the examples in order to show that our
technique is still effective when the characteristics of input data is
changed. The table shows that we can still reduce power
consumption under different input data set.

For the fir11 (11th order FIR filter) example, we measured
power consumption for two different designs: shared design and
fully parallel (or unshared) design. The shared design uses three
multipliers, where they are shared among operations in different
control steps. The fully parallel design uses eleven multipliers
which are not shared at all. For the shared design, we reduced
power consumption about 31 to 37%, whereas we can reduce
power consumption by 36 to 44% for the fully parallel design. In
general, once we have a fully parallel design, we cannot obtain
further power reduction by allocating more functional units or
changing input data correlation [9]. However, our technique can
still reduce power consumption for the fully parallel design.
Moreover, our technique can reduce substantial power

 136

consumption even though we already minimized power using the
method in [8]. From the results for speech1 and speech2 on the
designs with same word length, we expect about 5∼10% more
power reduction if we increase N by one or two in order to give
margin to the design. Note that the dynamic range of speech2 is
two bits less than that of speech1. In our experiment, we
optimized word length such that the dynamic range of the input
exactly matches that of the word length. In practical situation,
such case rarely occurs and most of data can be represented by
much smaller number of bits. Therefore, we expect much more
power reduction in practical applications.

Table 3. Comparison of power consumption in multipliers
w/o
PGC

w/
PGC

w/ BIND &
PGC (nD=2)

Reduction Resource Input Data
Set

nJ nJ nJ %
speech1 54.2 44.6 39.1 (37.4) 31.1
speech2 55.0 43.0 37.7 (34.6) 37.1

+1 *3
(shared)

normrand 54.7 43.4 37.4 (37.4) 31.8
speech1 26.1 16.8 N/A 35.5
speech2 26.4 14.8 N/A 43.9

fir11

+10, *11
(fully

parallel) normrand 25.8 15.3 N/A 40.5
speech1 82.8 76.2 75.6 (71.5) 13.6
speech2 83.4 69.9 67.0 (55.9) 20.4

Wavelet +2 *4

normrand 83.7 77.5 74.5 (69.1) 17.4
nc +2 *4 speech1 255.3 233.6 233.6 (230.2) 9.8
 speech2 263.7 229.1 229.1 (235.1) 13.1
lattice +1 *2 speech1 46.4 39.5 39.5 (37.9) 18.3
 speech2 38.1 31.0 31.0 (24.0) 34.0
 normrand 47.7 42.4 42.4 (40.7) 11.6

Average 23.87

6. Conclusion
In this paper, we proposed a partially guarded computation

(PGC) technique which disables a part of a functional unit
according to the dynamic range of input data. The technique first
divides the input data into two parts – MSP and LSP – and
accordingly divides the functional unit into two parts. We allow
only computation of LSP of the functional unit when the range of
any input data does not exceed the maximum range of the LSP.
We also propose an algorithm which systematically determines
the boundary between the two parts and an effective operation
binding algorithm for maximizing power reduction effect by PGC.
By using the proposed technique we reduced power consumption
in an array multiplier by about 10 to 44%. Our method can
effectively reduce power consumption even after we minimize
power by using high-level power minimization technique

7. References
[1] A. P. Chandrakasan, S. Sheng, and R. Brodersen, “Low

Power CMOS Digital Design,” IEEE Trans. on Solid-State
Circuits., vol. 27, No. 4, April, pp. 473-483, 1992.

[2] C. Tsui, M. Pedram, and A. Despain, “Technology
Decomposition and Mapping Targeting Low Power
Dissipation,” Proceedings of Design Automation
Conference, pp. 68-73, 1993.

[3] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low
power,” Proceedings of International Conference on
Computer Design, pp. 318-322, Oct. 1994.

[4] A. Raghunathan, S. Dey, N. K. Jha, “Controller re-
specification to minimize switching activity in controller/data
path circuits,” Proceedings of International Symposium on
Low Power Electronics and Design, pp. 301-304, Aug.
1996.

[5] E. Musoll and J. Cortadella, “High-level synthesis techniques
for reducing the activity of functional units,” Proceedings of
International Symposium on Low Power Design, pp. 99-104,
Nov. 1995.

[6] L. Benini, P. Vuillod, G. D. Micheli, and C. Coelho,
“Synthesis of low power selectively-clock systems from
high-level specification,” Proceedings of International
Symposium on System Synthesis, pp. 57-63, Nov. 1996.

[7] D. Kim and K. Choi, “Power conscious high level synthesis
using loop folding,” Proceedings of Design Automation
Conference, pp. 441-445, 1997.

[8] D. Shin and K. Choi, “Lower power high level synthesis by
increasing data correlation,” Proceedings of International
Symposium on Low Power Electronics and Design, Aug. pp.
441- 445, Aug. 1997.

[9] R. Mehra, L. M. Guerra, and J. Rabaey, “Low-power
architectural synthesis and the impact of exploiting locality,”
Journal of VLSI Signal Processing, 1996.

[10] A. Dasgupta and R. Karri, “Simultaneous scheduling and
binding for power minimization during microarchitecture
synthesis,” Proceedings of International Symposium on Low
Power Design, 1995.

[11] V. Tiwari, S. Malik, and P. Ashar, “Guarded Evaluation:
Pushing Power Management to Logic Synthesis/Design,”
IEEE Trans. on Computer Aided Design of Integrated
Circuits and Systems, vol. 17, no. 10, pp.1051-1060, Oct.
1998.

[12] Brodersen, et al, “An Integrated CAD System for Algorithm-
Specific IC Design,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 10, No. 4,
pp. 447-463, April 1991.

[13] A. Salz and M. Horowitz, "IRSIM: An Incremental MOS
Switch-Level Simulator," Proceedings of Design Automation
Conference, pp. 173-178, 1989.

[14] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, "Fast
prototyping of datapath-intensive architectures," IEEE
Design and Test of Computers, pp. 40-51, June 1991.

[15] I. Koren, Computer Arithmetic Algorithms, Prentice-Hall
International, p. 116, 1993.

[16] P. Landman and J. M. Rabaey, “Black-box capacitance
models for architectural power analysis,” Proceedings of
International Symposium on Low Power Degisn, pp. 165-
170, Apr. 1994.

	Main Page
	ISLPED'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

