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Abstract

Global Flow Optimization (GFO) can perform the fanout/
fanin wire re-connections by modeling the problem of the wire re-
connections by a flow graph and then solving the problem using
the maxflow-mincut algorithm on the flow graph. However, the
flow graph cannot fully characterize the wire re-connections
which causes GFO to lose optimality on several obvious cases. In
addition, we find that the fanin re-connection can have more opti-
mization power than the fanout re-connection but requires more
sophisticated modeling. In this paper, we re-formulate the problem
of the fanout/fanin re-connections by a new graph called the
implication flow graph. We show that the problem of wire re-con-
nections on the implication flow graph is NP complete and also
propose an efficient heuristic on the new graph. Our experimental
results are very exciting.

1   Introduction

Unlike most ATPG algorithms [2][3][5][6] which add only one
redundant wire and remove other redundancies at one iteration,
Global Flow Optimization (GFO) [1] and dual Global Flow Opti-
mization [4] can simultaneously add and remove many redundant
wires at a time. Let s be a target node under consideration. The
GFO technique [1] attempts to re-connect the immediate fanouts
of node s to the inputs of other nodes, and the dual GFO technique
[4] re-connects the immediate fanins of node s from the outputs of
other nodes. We can consider (dual) GFO as a way of the (fanin)
fanout re-connection of node s. The basic idea of GFO introduces
the concept of “controlling sets” to broadcast the signal of node s
toward Primary Outputs (POs) or Primary Inputs (PIs). It observes
that if certain conditions in the controlling sets are met, wires can
be simultaneously added and removed. Then, the problem of min-
imizing wire re-connections is transformed to that of network flow
whose optimum solution can be solved by the maxflow minimal
cut algorithm. For example, in Fig. 1, let us consider to re-connect
the fanouts of node s. First the GFO derives a flow graph in Fig. 2.
Since nodes {n8, n9, n18} form a cutset in the flow graph, GFO
claims that the fanouts of node s can be re-connected to nodes {n8,
n9, n18}. The new circuit with fanout re-connections is shown in
Fig. 3 where the number of fanouts of node s is reduced from 6 to
3. 

In comparison to other rewiring techniques, GFO does have
some speed advantage. At each iteration in GFO, the algorithm
performs only one ATPG operation to derive the summary infor-
mation of the controlling sets, and then uses a flow graph to deter-
mine the addition and removal of wires simultaneously. On the

other hand, other rewiring techniques require to preform redun-
dancy checks for wires which are to be added or removed. In addi-
tion, the GFO’s flow graph model can provide a better-structured
view for simultaneous re-connections of multiple wires than other
rewiring techniques. 

However, despite the above GFO’s advantages, its perfor-
mance is inferior to both the traditional algebraic types of optimi-
zation and most ATPG synthesis techniques. First, we observe that
the original GFO may lose optimality on several obvious cases. In
fact, even in their demonstrated example in [1] (also in Fig. 1),
there exists a better solution than the one in the paper. The opti-
mality is lost because during the transformation to a flow graph,
some optimization freedom is not well characterized. To preserve
the optimality, we transform the optimization problem to a new
graph called the implication flow graph. Compared to the original
flow graph, the implication flow graph contains a new type of
node whose fanins can be selected from one of several candidates.
We further show that finding an optimal fanout/fanin re-connec-
tion in the implication flow graph is NP complete. 

In practice, we find that the fanin re-connection is often more
effective than the fanout re-connection. However, the dual GFO
technique [4] only considers to re-connect the fanins of node s
from nodes inside the input cone of node s. The restriction leads to
the loss of optimality because there are usually more opportunities
to re-connect from nodes outside the input cone of node s than
inside the cone. In this paper, we show the fanin re-connection
requires much more sophisticated modeling than the one shown in
[4]. By carefully modeling the fanin re-connection and solving the
problem in the implication flow graph, we obtain much larger
solution space than the original GFO algorithm. Our experimental
results are very exciting.

2   Global Flow Revisit

In this section, we briefly explain the fanout GFO technique.
The fanin GFO is similar to the fanout GFO. Before we discuss
the fanout GFO technique, we would like to have some defini-
tions. The mandatory assignments (MA) are the value assign-
ments to nodes required for a test to exist and must be satisfied by
any test vector. The process of computing these mandatory assign-
ments and checking their consistency is referred to as implication. 

Without loss of generality, let us assume that a circuit consists
of only NOR gates and consider to re-connect the immediate
fanouts of node s to the inputs of other nodes. The algorithm can
be divided into three phases. In the first phase, GFO gathers the
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information of the “forcing sets” for node s. The forcing set F10
(F11) is the set of nodes with MA of 0 (1) after setting and imply-
ing s=1. For example, in Fig. 1, if node s is set to 1, we have the
forcing sets F10={n1, n2, n3, n4, n8, n9, n12, n13, n18} with forcing
value 0 (MA of 0) and F11={s, n5, n6, n7, n10, n11, n19} with forc-
ing value 1 (MA of 1). It can be easily shown that any new con-
nection from s to a node in F10 is redundant. For example, wires s-
>n9 and s->n13 are redundant. 

A node is said to be a frontier node if from this node to any pri-
mary output, there exists a path which does not contain (or be
blocked by) a node in F10 or F11. A frontier node is the far-most
node close to PO which MA s=1 can be broadcasted to. In Fig. 1,
nodes {n8, n9, n12, n13} are frontier nodes. The GFO algorithm
observes that any re-connection is legal as long as after re-connec-
tions, the MAs of the frontier nodes are not changed. Then, in the
second phase, GFO builds a flow graph by some rules. Without
going into details, we illustrate how the graph is built by the
example in Fig. 1. First, in the flow graph (shown in Fig. 2), the
algorithm adds a source node (Src), representing node s and a sink
node (Snk). Then, for each node ni in F10={n1, n2, n3, n4, n8, n9,
n12, n13, n18}, it adds a corresponding node Ni, {N1, N2, N3, N4,
N8, N9, N12, N13, N18} with weight 1 in the flow graph. Edges are
then added with some rules [1]. Edges {N8->sink, N9->sink, N12-
>sink, N13->sink} are first added from all frontier nodes to the
sink node. According to the rules in [1], edges which are added to
the flow graph must satisfy the following condition. If two input
edges {I->M, J->M} of node M are added, it must guarantee that
the MA of m can be implied from the MA of nodes i and j. For
example, the fanin edges N1->N9 and N2->N9 are added because
MA n9=0 can be implied from n1=0 and n2=0. Also, edge N18-
>N13 is added because MA n13=0 can be implied by n18=0.

The flow graph by the rules in [1] has the property that if the
source node is re-connected to the corresponding nodes in a cut-
set, the circuit functionality is unchanged. For example, in Fig. 2,
nodes {N8, N9, N18} form a cutset of the flow graph. Therefore,

node s can be re-connected to the corresponding nodes {n8, n9,
n18} without changing the circuit functionality. Therefore, in
GFO, the problem of finding the minimum number of nodes to
which s fanouts, can be solved by finding a minimum cutset in the
flow graph. For example, re-connect the fanouts of s to the mini-
mum cutset {n8, n9, n18} can reduce the fanouts from 6 to 3,
where the new circuit is shown in Fig. 3.

3   Wire Re-connections by the Implication Flow Graph

It is not mentioned in GFO [1][4] whether the algorithm is
optimal. In fact, there exists a better solution for the example in
Fig. 1. In this section, we first show that GFO loses optimality in
its transformation to a flow graph. Then, we propose a new graph
called implication flow graph to preserve the optimality. We fur-
ther show that the fanout (fanin) re-connection problem on the
new graph is NP complete.

During the construction of a flow graph, the fanin edges of a
node are added if the MA of the node can be implied by the MAs
in its fanins. However, there are actually two types of implication.
One is the “AND” condition of implication. For example, in Fig.
2, the MA of n9=0 is implied by both its fanin MAs n1=0 AND
n2=0. Another is the “OR” condition of implication. For example,
the MA of n8=0 can be implied by either MA n2=0 OR MA n3=0.
The problem of using a flow graph is its inability to model the OR
condition of implication. To capture the OR condition, we build a
new graph called the Implication Flow Graph (IFG). The new
graph is built as follows. In the IFG, we construct two types of
nodes, one of which is the “IMP_OR’ type to model the “OR”
condition and the other is the “IMP_AND” type to model the
“AND” condition. 

The algorithm to construct an IFG is in Fig. 4. (The IFG for the
circuit in Fig. 1 is shown in Fig. 5(a).) In the first step of Fig. 4, we
add a source and a sink node. Then, in the second step, the corre-
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 Fig. 1  Example of global flow optimization.
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 Fig. 2  Flow graph for the circuit in Fig. 1.
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 Fig. 3  Result of fanout re-connections for the circuit in Fig. 1
1. Add a Src node representing the node s and a sink node Snk.

2. Add a corresponding node for a node with implication. If a node has
a controlling value, the corresponding node in IFG has an IMP_OR
type with weight 1. If a node has a non-controlling value, the corre-
sponding node has an IMP_AND type with weight infinite. 

3. Edges are added as follows. First, the IMP_AND node is connected
to all its corresponding input nodes. An IMP_OR node is con-
nected to all its corresponding nodes with controlling value to the
node. Add the edges from all the frontier nodes to the sink node. 

 Fig. 4  Procedure to build a fanout Implication Flow Graph.
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sponding nodes to all nodes with MAs are added to the IFG while
in GFO only nodes in F10 are considered. If a node has a control-
ling value, the corresponding node in the IFG has an IMP_OR
type with weight 1 such as nodes {N8, N13} in Fig. 5(a). If a node
has a non-controlling value, the corresponding node has an
IMP_AND type with weight infinite such as {N7, N11} in Fig.
5(a). Then in the third step, edges are added. An IMP_AND node
is connected from all its inputs such as {N1->N7, N2->N7} in Fig.
5(a). An IMP_OR node is connected from all its inputs with a con-
trolling value such as {N2->N8, N3->N8} in Fig. 5(a). Finally,
edges are added from the frontier nodes to the sink node.

After building the IFG, we construct a new graph called a
“degenerated” IFG by removing all but one fanin edges for each
IMP_OR node. Note that after removal, all IMP_OR nodes in a
degenerated IFG can have only one fanin. Note that the MA of an
IMP_OR node can be implied by just one fanin MA. Then, similar
to the fanout GFO, any cutset in a degenerated IFG can form a
solution for the fanout re-connection. Note that since only
IMP_OR nodes are assigned weight 1, a cutset can contain only
IMP_OR nodes. 

Theorem 1: The problem of finding the minimum fanout re-con-
nection in an IFG is NP complete.

For the same example in Fig. 1, since there are two IMP_OR
nodes {N8, N13} with two fanin edges so there are 4 degenerated
IFGs. A degenerated IFG is shown in Fig. 5(b) by removing the
dotted edges. The degenerated IFG has a cutset {N8, N9}. There-
fore, we can re-connect the fanouts of s to nodes {n8, n9}, result-
ing a better solution than [1]. Later, we discuss our heuristic to
obtain a “good” degenerated IFG having a small cutset.

4   Fanin re-connections by fanin IFG

The objective of the fanin re-connection is to re-connect the
fanins of a node from outputs of other nodes. The dual GFO algo-
rithm only considers those nodes in the fanin cone for re-connec-
tions. However, in many cases, the fanin re-connection can only
be achieved from nodes outside the fanin cone. For example, con-
sider the circuit in Fig. 6. There is no fanin re-connection of node
s from nodes inside its fanin cone but we can re-connect node s
from nodes {n11, n12} outside the fanin cone, and remove the orig-
inal fanin wires {n8->s, n9->s, n10->s}. In addition of restricting
nodes in the fanin cone, the problem of observability is not con-
sidered in the dual GFO.

We now re-formulate the problem of the fanin re-connection as
follows. Let a node s be an AND gate under consideration. The
procedure consists of three steps. First, we obtain the observability
MAs ObvMa(s) for node s, which are the assignments must be sat-
isfied for node s to be observable at POs. For any fanin re-connec-
tion, the MA set, ObvMa(s) should be preserved. For example, we
have ObvMa(s) = {n7=1} in Fig. 6. Then, we assign and propa-
gate MA s=1. Let the additional MAs derived by setting s=1
under the observability condition be ActMa(s=1). In the example,
we have ActMa(s=1)= {s=1, n8=1, n9=1, n10=1, n1=1, n2=1,
n3=1, n4=1, n5=1, n6=1, n11=1, n12=0, n13=1}. Similar to the
definition of a frontier node in the fanout GFO, a node in
ActMa(s=1) is defined to be a fanin frontier node if from any PI to
this node, there exists a path which does not contain (or be
blocked by) a node with an MA. The fanin frontier nodes are the
far-most nodes (close to PI) where MA s=1 can be broadcasted.
Moreover, any fanin re-connection must guarantee that MAs of
the fanin frontiers are the same. In the example, fanin frontiers are
{n1, n2, n3, n4, n5, n6}.

In the second step, we build a fanin IFG from the summary
information of ObvMa(s) and ActMa(s=1). The procedure is in
Fig. 7. Because it is possible to have MAs propagating forward
and backward, the ways of adding edges, assigning weights and
the types (either IMP_AND or IMP_OR) are different from the
fanout IFG. We have enumerated all possible cases of implication
and derived a set of rules in TABLE 1. Suppose an AND node ni
has an MA of val. The purpose of a rule is to describe how other
MAs can be implied from ni=val. Consider Rule 1. If MA ni=1 is
a non-controlling value, MA ni=1 can imply all its fanin MAs.
Edges are added from Ni to its inputs such as edges {N12->N3,
N12->N4, N12->N6} in Fig. 8(a). Consider another rule Rule 3,
which has one controlling fanin nk and one (the other) non-con-
trolling fanin nj. The MA of nk=0 can be implied from both nj=1
and ni=0 so edges are added from Ni->Nk and Nj->Nk. For exam-
ple in Fig. 6, node n13 satisfies the condition of Rule 3 so edges
{N13->N11, N12->N11} in Fig. 8(a) are added. We then connect all
the frontier nodes to the sink node Snk and also the source node
Src to those nodes which don’t have any input. For example, in
Fig. 8(a), the edges are added from the source node to nodes {N8,
N9, N10, N12, N13}. Finally, the type of a node is assigned by the
following. If the MA of a node can be implied by several of its
fanouts/fanins, it is assigned the IMP_OR type. This is also char-
acterized by Rule 4. For example in Fig. 6, node n1=1 can be
implied by n8=1 and n11=1, so node N1 in Fig. 8(a) is assigned the
IMP_OR type. All others are assigned the IMP_AND type. The
IFG for the circuit in Fig. 6 is shown in Fig. 8(a).

 Fig. 5  Implication flow graph and degenerated IFG for Fig. 1.
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 Fig. 6  Example of fanin GFO.
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Because there are 6 IMP_OR nodes with 2 input edges in the
fanin IFG of Fig. 8(a), we can derive 26 degenerated IFGs. One
degenerated IFG is shown in Fig. 8(b), which has a cutset {N12,
N13}. Therefore, one can re-connect the fanins of node s from
nodes {n12, n13} without changing the functionality. 

5   A heuristic to obtain an efficient degenerated IFG
Obviously, the size of a cutset depends on how a degenerated

IFG is obtained. In order to obtain a “good” degenerated IFG with
a small size cutset, we need to select one input edge and remove
all others for each IMP_OR node. Our basic idea comes from the
following observation. Let an immediate fanout of the source
node Src be SrcFanout. Note that the set of all SrcFanouts can
form a cutset. If after edge removal, all frontier nodes “depend on”
(are in the transitive fanouts of) as few as SrcFanouts, a degener-
ated IFG can have a small cutset. In Fig. 8(a). if we remove all the
edges from {N8->N1, N8->N2, N9->N3, N9->N4, N10->N5, N10-
>N6}, the frontier nodes {N1, N2, N3, N4, N5, N6} depend on {N12,
N13}. Our heuristic first assigns a cost for each SrcFanout, the
value of which calculates the number of frontier nodes which are
in its transitive fanouts. Then, an input edge of an IMP_OR node
is selected if the corresponding input node has large cost values of
SrcFanouts in its transitive fanins. In this way, we can obtain a
good degenerated IFG. We also use some heuristic to break cycles
in a fanin IFG. Once a good degenerated IFG is obtained, we can
then perform the fanin re-connection by finding a cutset in the
degenerated IFG.

6   Experimental results

We have implemented the fanin/fanout GFO algorithms based
on the fanout/fanin IFGs and preformed experiments on ISCAS
and MCNC benchmark circuits. Each circuit is first optimized by
the SIS (algebraic) script, and then decomposed into AND/OR
gates. Then, we perform further area minimization by GFO [1]
and our IFG based algorithm. The results are shown in TABLE 2.
For example, circuit alu4 has 1239 literals after SIS optimization.
After GFO, the circuit has 1231 literals while after our optimiza-
tion, the circuit has 1160 literals. On the average, we obtain

around 8% improvement in comparison to traditional GFO. It can
be clearly found that our IFG based algorithm can explore much
more optimization power than GFO.

7   Conclusion

In this paper, we have formulated the fanin/fanout re-connec-
tion problem by a graph called implication flow graph. With rea-
sonable running time, significant improvements on area
optimization can be achieved by our proposed methods. 
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1. Add a Src node representing node s and a sink node Snk.
2. Add a corresponding node for a node in ActMa(s=1).
3. The edges, the type, and the weight assignment of a node is shown

in TABLE 1. Edges are added from a frontier node to Snk and from
Src to all nodes without inputs.

4. A node is assigned the IMP_OR type if the MA can be implied by
several others. Otherwise, it is assigned IMP_AND. 

 Fig. 7  Procedure to build a fanin Implication Flow Graph.

 Fig. 8  Implication Flow Graph and Degenerated IFG for the circuit in Fig. 6.
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TABLE 1:Rules for adding edges and assigning weight.

R. # The condition of a rule wt. Edge addition rules

1 1

2 ∞

3 1

4 1

TABLE 2:Area comparison between GFO and ours.

circuit SIS
lits(SOP)

GFO
lits(SOP)

ours (IFG)
lits(SOP)

time
(sec)

alu4 1239 1231 1160 9.30u
C432 316 313 227 0.32u
C6288 4296 4265 3831 14.15u

cps 1468 1468 1395 18.68u
dalu 2041 2017 1914 12.61u

example2 482 478 443 1.10u
i8 1585 1570 1448 12.6u

mult32a 694 694 570 1.08u
sbc 1164 1148 1081 2.34u
t481 1105 1105 969 7.52u

term1 352 351 320 0.34u
ttt2 305 305 290 0.30u
x1 432 430 407 0.34u

Total 41 1 0.92
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