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The most commonapproachto checkingcorrectnessof a hard-
ware or software designis to verify that a description of the design
has the proper behavior as elicited by a seriesof input stimuli. In
the caseof software, the program is simply run with the appropri-
ate inputs, and in the caseof hardware, its description written in
a hardware description language(HDL) is simulated with the ap-
propriate input vectors. In coverage-directedvalidation, coverage
metrics aredefinedthat quantitati vely measure the degreeof verifi-
cation coverageof the design.

Moti vated by recentwork on observability-based coveragemet-
rics for modelsdescribed in a hardware description language,we
developa methodthat computesan observability-based codecover-
agemetric for embeddedsoftware written in a high-level program-
ming language. Given a set of input vectors, our metric indicates
the instructions that had no effect on the output. An assignment
that wasnot relevant to generatethe output valuecannotbeconsid-
ered as being covered. Resultsshow that our method offers a sig-
nificantly more accurateassessmentof designverification coverage
than statementcoverage. Existing coveragemethodsfor hardware
canbeusedwith our methodto build a verification methodologyfor
mixed hardware/software or embeddedsystems.

I. Intr oduction

Embeddedsystemsareusedin agrowing numberof diverseapplica-
tions. Examplesincludeconsumerelectronics,automotive systemsand
telecommunications,amongothers. This prevalenceis dueto the fact
thatembeddedsystemsresultfrom amix of hardware/softwaresystems.
Thesoftwarepart,which runsonaprocessor, givesthesystemtheflex-
ibility , sinceit canbeeasilychangeddependingontheapplication.The
hardwareportion,whichexecutesmorespecializedfunctions,is usedin
time critical subsystems.

Due to their heterogeneity, embeddedsystemsposeseveral new
problemsthat, only recently, have begun to be tackled. Oneof them
is thespecificationproblem.Thespecificationlanguagehasto assume
a modelof computationfor interactinghardwareandsoftwarecompo-
nents. It is fairly commonto supportthe modelsof computationwith
languageextensionsor entirelynew languages.Thelanguageusedcan
be specificto embeddedsystems,suchasEsterel[3], Lustre[9], Sig-
nal [2], or Argos[13], amongothers. However, theselanguageshave
seriousdrawbacks. Acceptanceis low, platformsare limited, support
softwareis alsolimited, andlegacy codemustbetranslatedor entirely
rewritten. Currently, multiple general-purposelanguagesareused,for
example,hardwarelanguagessuchasVHDL, areusedto describehard-
waremodels,andsoftware languagessuchas C, areusedto describe
embeddedsoftwarecode.Thelack of a uniform specificationincreases
thedifficulty of theembeddedsystemvalidationproblem.

Techniquesfor the formal validationof suchsystemsarebeingde-
veloped [5]. Nevertheless,simulationis still thebestoptionwhentry-
ing to validatea design.As mentionedabove, validationof embedded
systemsis hardbecauseof their heterogeneity. Softwareandhardware
shouldbesimulatedsimultaneously, andfurthermorehardwareandsoft-

ware simulationsmust be kept synchronized,so that they behave as
closeaspossibleto thephysicalimplementation.Severalmethodshave
beenproposedfor co-simulation[8], [10], [12], [15], [16].

Researchdonein softwarecompilationandvalidationtechniqueshas
beenmainlydirectedatgeneral-purposesoftware,andin mostcasesthe
developedtechniquesarenot directly applicableto embeddedsoftware
(that interactswith hardware). The importanceof embeddedsoftware
hasnow beenrecognized,andresearchdonetargetinggeneral-purpose
software is being retooledto addressthe problemof embeddedsoft-
ware [11]. On the other hand,embeddedsoftware is becomingvery
complex. The demandfor more elaboratefunctionality is making it
muchmoredifficult for a singleengineerto accomplishthe validation
taskby manuallycheckingtensof kilobytesof assemblycode. As a
result,efficient automatedvalidationtechniquesarenecessarythatgive
theengineerameasureof confidencein thecorrectnessof thesoftware.

Our focushereis oncoverage-directedvalidation,whereincoverage
metricsaredefinedthatquantitatively measurethedegreeof verification
coverageof the design,be it hardware,softwareor a mixture of both.
In this paperwe proposea new metric that givesa measureof the in-
structioncoveragein thesoftwareportionof theembeddedsystem.Our
metric is basedon observability, ratherthanon controllability. Given
a setof input vectors,our metric indicatesthe instructionsthathadno
effect on the output. An assignmentthat wasnot relevant to generate
theoutputvaluecannotbeconsideredasbeingcovered. Then,thede-
signeror programmer, by looking at the statementcoverage,canadd
moretestsuntil all statementshave someeffecton theprogramoutput.

Our work is motivatedby recentwork on observability-basedcov-
eragemetricsfor hardwaremodelsdescribedin a hardwaredescription
language[6]. Our resultsshow that our methodoffers a significantly
more accurateassessmentof designverification coveragethan state-
mentcoverage. Existing coveragemethodsfor hardwarecanbe used
with our methodto build a verificationmethodologyfor mixed hard-
ware/softwareor embeddedsystems.

In SectionII, we give anoverview of thesoftwaretestingfield. Our
metricfor softwarecoverageis presentedin SectionIII. SectionIV de-
scribestheimplementationof our coveragemetric. Preliminaryresults
arepresentedin SectionV. Finally, someconclusionsandfuturework
arepresentedin SectionVI.

II. Software testing

Softwaretestinghasbecomemoreimportantsincethesizeandcom-
plexity of theprogramsincreasedin adramaticway. This importanceis
evenmorecritical sincesoftwareprogramsareerrorprone.Oneof the
waysto handlethis is to testthesoftware. On theotherhand,proving
thataprogramdoesnothavebugsis practicallyandtheoreticallyimpos-
sible. It is very difficult to prove thatevena sectionof a givensoftware
programworks,mainly becauseevery possibilityhasto betestedin or-
derto guaranteethatthesoftwarehasnoerrors.Sinceit is impossibleto
designa testthatexercisesevery possiblepathin theprogram,several
metricshave beendevelopedto give a measureof the test thorough-
ness.But first let uspresentsomeconceptson thecontrolflowgraphof
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Fig. 1. Exampleflowgraphfor theMAX function.

a program.

A. Control flowgraph
A controlflowgraphisagraphicalrepresentationof aprogram’scon-

trol structure[1]. A controlflowgraphconsistsof processes,decisions,
andjunctions. A processis a sequenceof statementssuchthat if any
statementis executed,thenall otherstatementsareexecuted.Thus,a
processblock is a sequenceof statementsuninterruptedby eitherdeci-
sionsor junctions. A decisionis a programpoint at which thecontrol
flow candiverge.A junctionis apoint in theprogramwherethecontrol
flow canmerge.Figure1 shows theflowgraphof a program.

A pathin the programis a sequenceof statementsthat startsat an
entry, junction, or decisionandendsat another, or possiblythe same,
junction, decision,or exit. A path may go throughseveral junctions,
processes,or decisions,onceor morethanonce.

B. Software path testing
Themostcommonlyusedmethodsfor softwaretestingarebasedon

path testing. Path testingcorrespondsto the input stimuli of the pro-
gram exercisinga selectedset of pathsthroughit. Thereare several
metricsthatcangive usameasureof thetestthoroughnessfor somein-
putstimuli [1]. Themostimportantonesarepath,statementandbranch
coverage.

Pathcoverageis themostcompleteof all thepathtestingmethods.
We achieve 100%pathcoveragewhenevery possiblepathin the pro-
gramis executed.Thismeansthatfrom thebeginningof theprogramall
possiblewaysof gettingto theendwerefollowedandexecuted.Reach-
ing 100%pathcoverageis very oftenimpracticaldueto thegreatnum-
berof possiblepaths.Further, somepathsmaybefalse,i.e., cannever
beexecuted.

Statementcoveragetargetsthe executionof every statementin the
program.Althoughthismetricis easilyachieved,it is a very weakone.
Many possiblebuggyconditionsarenot tested.

Betweenthetwo, in termsof testthoroughness,wehavebranchcov-
erage.Branchcoverageconsistsof exercisingall thealternativesof ev-
erybranch.Thismetricis only a little betterthanstatementcoverage.It
executesevery statementandalsotestsevery branchin eachcondition,
includingthosebranchesthatdo nothave any statement.

Variantsof branchcoveragesuchas multicondition coverageand
loopcoveragearealsousedascoveragemetrics.In multiconditioncov-
erageevery condition is requiredto take every possiblevalue. Loop
coveragerequiresthatevery loop is executedzero,oneor two times.

All thesecoveragemetricsonly take into accountthe activation of

somepath,i.e., controllability. They do not sayanything aboutobserv-
ing on theoutputstheeffectsof thoseactivations.Hence,observability
is neglectedin thesepathcoveragemetrics. We saythat we have ob-
servability when,besidesexecutingsomestatement,the resultof that
executionreachessomeoutput.Controllability without observability is
not very useful. Activatinga statementdoesnot meanthat it hasbeen
verifiedif it is notobservedat someoutput.

The pathcoveragemetric will satisfyobservability requirementsif
pathsfrom programinputsto programoutputsareexercisedandtheval-
uesof variablesaresuchthat theerroneousvalueis not masked. How-
ever, thepathcoveragemetricdoesnot explicitly evaluatewhetherthe
effect of anerroris observableat anoutput.

C. Observability metrics
Observability is takeninto accountin metricssuchassensitivity and

impactanalysis.
PIEanalysiswasproposedby Voas[17] to predictastatement’sabil-

ity to causeprogramfailure if the statementwere to containa fault.
Theprograminputsareselectedat randomconsistentwith anassumed
input distribution. The analysisgivesas results,an estimationof the
frequency with which inputs executethe statement,an estimationof
thefrequency with which mutantsof thestatementcreatedaltereddata
statesandanestimationof thefrequency with which altereddatastates
causeachangeon theprogram’s output.

Goradia[7] introducedimpactanalysis. Impactanalysisestimates
impactstrengthsof all entity instancesin an execution,in a time pro-
portionalto theexecutiontime. The impactstrengthof a statementor
variable� servesasaquantitativemeasureof theerror-sensitivity of the
pathsfrom � to theoutput.

Thesetwo metricsboth deal with the introductionof someerror
in somepart of the programand computethe probability of that er-
ror reachingtheoutput.Themetricwe proposedoesnot needto inject
errorsin theprogram.For aninputvectorit givesusthestatementsthat
hadnoeffect on theoutput,thusforcing thedesignerto getmore/better
testvectors.

III. Proposedcoveragemetric

Themetricweproposeis basedonobservability coverage.Thismet-
ric addressesnotonly whichstatementsareexecutedby aninputvector
(controllability)but alsoif thestatementshaveany influenceontheout-
put result(observability). This metricwasmotivatedby recentwork in
observability analysisfor hardwaremodels[6].

A. Hardware observability
Thecomputationof theObservability-basedCodeCOverageMetric

(OCCOM) [6] canbedonewhile simulatingan HDL design.This com-
putationis donewith thehelpof tags.A tagsignifiesa possiblechange
in thevalueof a variabledueto anerror. If a taginjectedat a statement
getspropagatedto anoutputnodethenthatstatementis relevant to the
output.Thismethodconsistsof two steps:

1. The given HDL model is modifiedby addingnew variablesand
moving statementsout of conditionalclauses.ThemodifiedHDL

modelis thensimulatedusingacommercialsimulator. Thisallows
theextractionof informationthanby justusingtheoriginalmodel.

2. A flowgraphis createdfrom themodifiedHDL modelandthere-
sultsof the simulationareusedto determinethe coverageunder
OCCOM. In this steptaginjectionis used.Tagsareinsertedin the
edgesof the graphandpropagationof the tagsis doneby selec-
tively traversingpathsfrom theedgeto theoutputnodes.



Thecomputedcoverageinformationservesasadiagnosticaid to the
designer. It helpsto debug anddesign,and/orcreatebetterfunctional
tests.

B. Software observability
In our methodto computethesoftwareobservability we do not in-

ject errorsor tagsinto the statementsof the programs. The software
programis modifiedto give usmoreinformationon theprogram.Then
themodifiedprogramis executedandanobservability coverageis com-
puted.

In order to achieve the observability target, we needto keeptrack
of all the statementsthat assigna variable. For that purpose,for each
variablein theprogramwehavealist of statementsthevariabledepends
on. When we arrive at a statementwe save the variablethat will be
assigned.For thatvariablewe build a list of dependencieswhich is the
setunion of the dependency lists of the variablesthat areat the right
handside(RHS) of theassignment.

Whenwe reachan observablestatement(in our caseeithera write
to screenor to file) wherethecontentof somevariableis passedto the
exterior of theprogramwe checkthestatementsin its list of dependen-
cies.Thestatementsthatarenotonthatlist arenotobservablefrom that
output.

After every inputvectoris testedwe endupwith asetof observable
statements.We canthengive a measureof thecoveragethoroughness
of the input vectorson theprogram.Along with this measurewe also
know which statementswerenot relevant to the output. This cangive
the designerof the programsufficient information on how to design
more/bettertestvectors.

Theconstructionof thedependency lists is donedynamicallywhile
theprogramis running.Thus,theoriginal codehasto bemodified.For
eachstatement,theinformationregardingthedependenciesthatexist in
it aresaved.

Thecoverageanalysisprocedurestartswith a programin theC lan-
guageanda setof input stimuli. Whenwe run theprogramwith input
stimuli andmonitorits behavior usingouranalysistool,ourtool detects,
for eachstimulus,thestatementsin theprogramthatdid not have any
controlin theoutputresultfor thatstimulus.

To illustrateandmotivatetheproposedmetric,considerthe simple
programgivenin Figure2. If we applythetestvectors( ��� � , ��� � )
and( ���	� � , �
�	� � ) we get 100%statementcoverageand100%
branchcoverage.With thoseinput stimuli every statementis executed
andevery branchis taken. In Figure3 we verify the observability for
thesameinput vectors.Startingwith thevector( ��� � , ��� � ) we get
that � dependsonstatement(

�
), then � dependsonstatement( � ). Since� �
� , � dependson thestatementswhich � dependedandalsoon its

own statement( � ). In line ( � ) we have that � dependsnot only on � but
alsoon � sinceexecutingthis branchsideof theconditiondependson
� . So � dependson statements(

�
), ( � ) and( � ). Theelse branchof the

conditionis not executed.Nevertheless,sincethe valueof � depends
on which branchis taken, � will dependnot only on statements( � ) and
( � ) but alsoon variable � andconsequentlyon statement(

�
). Applying

the sameprocedureto the rest of the programwe get that the output
will dependon statements(

�
), ( � ), ( � ) and( � ). Using theothervector

( ���
� � , ���
� � ) we get that thestatements(
�
), ( � ), ( � ) aretheones

on which theoutputdepends.Whenwe make thesetunionof this two
resultsweseethatstatements( � ) and( � ) have nocontrolon theoutput.
Thus,despitethefactthatthesevectorsget100%statementandbranch
coverage,in termsof observability we only get 75% coverage. The
solution is to usemoretestvectorsor usedifferentones. In Figure4
we have thesameanalysisof theprogrambut with testvectors( ��� � ,
����� � ) and ( ����� � , ��� �

). We can seethat we get not only
100%statementandbranchcoverage,but also100%of thestatements

(1) INPUT � ;
(2) INPUT � ;
(3) � = � ;

if ( ��� 0)
(4) � = � ;

else
(5) � = � + � ;

if ( ��� 0)
(6) � = � ;

else
(7) � = � ;
(8) OUTPUT � ;

Fig. 2. Exampleof a simpleprogram.

��� � , ��� �
��� (1)
��� (2)� � (2), (3)
��� (1), (2), (4)� � (1), (2), (3)
��� (1), (2), (3), (6) "!$# � (1), (2), (3), (6)

�%�&� � , ���&� �
��� (1)
��� (2)� � (2), (3)� � (1), (2), (3), (5)
��� (1), (2), (7) "!$# � (1), (2), (7)

Fig. 3. Observability coverageusing( �'� � , ��� � ) and( ���(� � ,
�$�)� � ) asinput vectors.

arerelevantto theoutput.
Whenparsingthesourceprogramwe areonly interestedin assign-

ments,conditionsandstatementsthat generatesomeoutput. Included
in theassignmentswe have the relationthatexists betweenarguments
in thecall to a functionandtheparametersof thefunction. We cansay
that the formerareassignedto the latter. Theconditionsin every con-
trol structurearetakeninto account.Thestatementsthatgeneratesome
outputaretheonesthatwrite someinformationto file or to screen,or in
anembeddedsystem,to anobservableregister.

Thismethodwe proposewill helpthedesignerin catchingbugsand
designingmore/bettertestvectors.For catchingbugs,this coverageis
morereliablethantheonesbasedon controllability only. By designing
testvectorsbasedon observability, thedesignercanguaranteethat the
statementstestedarerelevant to the output,thus,enablingthe bugsto
reachanoutputwherethey canbedetected.In thecaseof testvectors
basedon controllability, we do nothave theguaranteethatanerrorin a
statementwill show up in anoutput.

IV. Implementation

Thecoveragemetricbeingproposedwasimplementedtohandlepro-
gramsin theC language.Thealgorithmwasimplementedin a two step
process.In the first stepwe transformthe sourceprogramby adding
for eachstatementa call to a function. This function will processthe
informationextractedfrom thestatement.Then,in thesecondstepwe
compile the transformedprograminside a framework that will allow
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��� (1)
��� (2)� � (2), (3)
��� (1), (2), (4)� � (1), (2), (3)
��� (1), (2), (4), (7) "!$# � (1), (2), (4), (7)

���)� � , ��� �
��� (1)
��� (2)� � (2), (3)� � (1), (2), (3), (5)
��� (1), (2), (3), (5), (6) "!$# � (1), (2), (3), (5), (6)

Fig. 4. Observability coverageusing( �*� � , �"�+� � ) and( �
�+� � ,
�$� � ) asinputvectors.

several input vectorsto berun andobtainanoverall estimateof theob-
servability coveragefor thesevectors.

A. Parser
Theparserusedwasc2cwhichisapublic-domainsoftwareprogram.

c2c works by makingan AbstractSyntaxTree(AST) of a C program.
The AST can then be manipulatedin several ways suchas addingor
deletingnodesin it. Finally, after changingthe AST, the c2c tool pro-
ducesthe C programfor that new AST. In our case,the modifications
madeare, for eachstatement,addingone of several functionsto the
code.In thecaseof anassignment,a control functionis addedafterthe
assignment.Whenwehaveacall to afunctionthatwill sendsomething
to theoutput,anobserve functionis added.

The information regarding the dependenciesbetweenvariablesis
saved in a list of dependencies.This list of dependenciescontainsthe
list of statementson which the variabledepends.When building the
list, weareinterestedin theaddressof thevariablesandnot in its value.
What we want to know is if someposition in memorywas modified
andwhich statementsthatmodificationdependson. This allows us to
work with dynamicallyallocatedobjectsfrom simpleintegersto com-
plex structures.

A.1 Assignments
Take, for example,thesimplestatement� �,�.-/� . In this casethe

control function is calledspecifyingthat thevariable � will dependon
variables� and � ,
x=a+b; 0 x=a+b; control(&x,&a,&b);

This meansthat if � arrivesat anoutputstatement(e.g.,printf), the
statement� �
�"-1� andthestatementswhere � and � wereassigned
arerecursively covered.

If a variablethat wasalreadyassignedis reassigned,a new list of
dependenciesis built as if it wasthe variable’s first assignment.This
new list will thenreplacethe older list. This allow us to handlecases
suchas � � � -'� .

In morecomplex statementswherewehavemorethanoneoperation
in the right handside(RHS) of the statement,the statementis divided
into its partssothatwe getsimplestatements.For eachof thesesimple
statementsthecontrol functionis called.For example,

x=a+b+c; 0 temp=a+b; control(&temp,&a,&b);
x=temp+c; control(&x,&temp,&c);

The control function takes into accountwhat kind of operationis
doneon the RHS. In the caseof the multiplication the operandsare
checkedto seeif oneof themis zero.In thatcasetheassignedvariable
will only dependon the operandthat hasvalue zero, sincethe other
operanddoesnothaveany effecton theresult.Thisprocedureis similar
to all operationsthathave this property, wherea particularvaluein an
operanddefinesthe result of the operation,without needto take into
accountthevalueof theotheroperand.

A.2 Conditions
All theconditionsarereducedto a singlevariable.So,

if (x>a) 2324250 temp=x � a; control(&temp,&x,&a);
if (temp)..

Thiswaywe treattheconditionsasjustany simplestatement.Since
every statementin theblock insidethe if conditionwill dependon the
newly createdtemporaryvariablein the condition,all assignvariables
in theblock will dependon thestatementswherethatnew variablewas
assigned.The fact thatonly onevariableremainsin theconditionwill
simplify thebuilding of thedependencies.In all othercontrolstructures,
suchaswhile, do, for andswitch, thesameprocedureis applied.

A.3 Appendingdependencies
Every statementin a conditionalblock dependson the condition.

This applieseven to thosestatementsthat are in a branchthat is not
takenwhentheprogramis executed.Thus,at theendof theconditional
block, to every variablethatwasinsidetheblock we appendto its list
of dependenciesthevariablesthatwereon theconditionstatement.

A.4 FunctionCalls
Wehaveto makethecorrespondencebetweenfunctionargumentsin

the function call andthe parametersin the actualfunction. To enable
this, for eachargumentwe add anotherargumentthat is the address
of this argument.That way we do not losetheaddressof thevariable
wheninsidethefunction. In thecaseof argumentspassedasreference
or constantsthesameprocedureis appliedbut sincewe cannotpassthe
addressof a constantwe passinsteada flag indicatingthatwe arenot
passingtheaddressof avariable.Besidestheadditionof onenew argu-
mentfor eachoriginalargument,if thefunctionreturnssomevalue,we
alsoaddanothervariableto the list of arguments.This variablepoints
to the list of dependenciesof the returnedvariablewhenthe function
ends.

Sincewe are working with variableaddresses,we needto delete,
from thelist of dependencies,thevariablesthatwerecreatedin thefunc-
tion. This is becausethosevariablesareautomaticallyfreedwhenthe
functionendsandtheaddressescanbere-utilizedin thefutureby other
variables.Thereforewe needto cleanall referencesto theseaddresses.
Conflictscould arisewhenthe sameaddressis usedin morethanone
functionwhencomputingthelistsof dependencies.

A.5 Memoryallocation
Whenthe programallocatesmemorydynamically, somecautionis

necessary. Thesameproceduredescribedin theprevious paragraphis
needed.This way, whentheprogramfreesa previously allocatedblock
of memorywe deletefrom ourstructureall thevariablesthatarein that
block.

A.6 Structures,arraysandpointers
Structures,arraysand pointersare not very different from simple

variablessincewe alwaysmanipulatetheaddressof thevariable. The
differencefrom simplevariablesis that thefield that is beingaccessed
dependsalsoon thebeginningof thestructure.So,we have,

x- � a=b; 0 x- � a+b; control(&(x- � a),&x,&b);



A.7 Observablestatements

Whenthe programoutputsthe valueof somevariable,an observe
functionis called.

printf(‘‘%i’’,x); 0 printf(‘‘%i’’,x); observe(&x);

This functionchecksthelist of dependenciesfor theoutputvariable
andmarksthestatementsthatarein thelist of dependenciesascovered
accordingto the observability metric. This meansthat the statements
that are in the list of dependenciesarethe statementsuponwhich the
valueof theoutputvariabledepended.

A.8 CurrentLimitations

The major limitation in this implementationis in the handlingof
the standardC library functions. This presentsa problemsincewe do
not know which argumentsarealtered.For thosefunctionsthatarenot
supported,we assumethat the argumentsof the function call will not
change.This is not alwaystrue. However, this will changeaswe add
supportfor thosefunctions.

Anotherlimitation is in thegoto statement.We allow jumpsto any
partof thesoftwareprogram,if thejump is semanticallycorrect.How-
everwecanonlyguaranteemeaningfulresultsif thejumpismadeinside
thesameblockor if thejumpis madeto theendof theblockfrom where
it originated.

B. Calculating the coverage
Thesecondstepin the processis to compilethemodifiedprogram

andlink it with thefunctionsthatwill executetheprogram,processthe
information,anddisplaythatinformation.

Themainfunctionof themodifiedprogramis calledfrom within our
framework. Specialcaremustbetakento passtheproperargumentsto
that function. After thecall to themainfunction,theprogramwe wish
to testrunsasif it wasrunningby itself. But now, for eachstatement
executeda functionis called.

Thesefunctionsprocessthe informationon the statementand de-
pendingon the typeof statementthey canaddelementsto a list of de-
pendenciesor markthestatementasobservable.

After all theinputvectorshave beenrun,statisticson thepercentage
of observed statementsaregiven, togetherwith informationaboutthe
non-observedstatements.

V. Results

In this sectionwe show four exampleswe usedto test the observ-
ability basedmetricbeingproposed.Oneof theprogramcomputesFi-
bonaccinumbers,onematchesa streamof charactersagainsta string,
onecomputesthe Huffman codeandthe last oneimplementsthe Fast
Fourier Transform(FFT). All four wereimplementedusingthe C lan-
guage.As explainedin SectionIV, the first stepis parsingthe source
codesothatthefunctionsfor controllabilityandobservability areadded
to the program. Then the modified coderuns in a supportprogram
which gives us the measureof the coverage. We presentresultsfor
statementcoverageandobservability basedcoverageandwe compare
thetwo for thedifferentprograms.

A. Fibonaccinumbers
The programto calculateFibonaccinumbersis a very simpleone

implementedwithout using recursion. The programtakes as input a
positive integer 6 , andgivesasresulttheFibonaccinumberof 6 , 758 6:9 .
Table I shows the measureof coveragefor several input values. The
first setof input valuesis the minimumnecessaryfor achieving 100%

Input Statement Observability
Values Coverage Coverage
0, 1, 3 100% 87%

0, 1, 3, 4 100% 100%

TABLE I. Coveragefor theFibonacciprocedure.

Input Statement Observability
Values Coverage Coverage
input1 88% 0%
input2 92% 0%
input3 96% 68%
input4 96% 84%
input5 100% 100%

TABLE II. Coveragefor thestringmatchprocedure.

statementcoverage.However, it is not sufficient in termsof observabil-
ity basedcoverage.100%observability coverageis obtainedby adding
anothervalueto the setof input values. This exampleshows that ob-
servability basedcoverageis astrongermetricthanstatementcoverage.
Although with the first sequenceof threeinput vectorsall statements
areexercised,not all areobserved at theoutput. With onemoreinput
vectorwe canguaranteethatall statementsareobservable.

B. String match
The string matchprogramreadsa streamof charactersanddetects

the occurrenceof a specificstring. The programactivatesthe output
only when thereis a match. Table II shows the resultsfor different
input vectors. Eachinput correspondsto a streamof charactersbeing
feedto theprogram.Thefirst two inputsarestreamsof charactersthat
do not have the matchingstring in it. So, despitethe fact that they
cangive a high percentageof statementscovered,they do not produce
any output. Thusno statementis observablefrom theoutput. The last
threeinputsareinputswherethestreamof charactershasthematching
string in it. In thesetwo caseswe canseethat someof the statements
executedinfluencetheoutput. The inputsareorderedsuchthat input5
is a streamof characterslongerthaninput1. As canalsobeseenfrom
theresults,to reacha certainpercentageof coverage,if we wantto use
theobservability coveragewe needlongerinput vectors.Thusmaking
thetestmorecomplete.

C. Huffman code
TheHuffmanalgorithmtakesasinput a setof charactersandgives

for eachcharacterthebinarycharactercode.Thatcode,whichdepends
on the frequency eachcharacterappearsin the input, canthenbeused
to compressthatsetof characters.Theimplementationusedwasbased
on[4]. Thisexampleusesdynamicallyallocatedstructureslinkedin bi-
narytrees.Furthermore,it usesrecursiveprocedurecallsextensively. In
TableIII wepresenttheresultsfor statementandobservability coverage
for two input vectors. Vector input1 hasonly two characters.Despite
the fact that it wasa very small set, it still gave us a 99.4%statement
coverage.Theobservability coveragewasa little smallerbut still close
to the statementcoverage. This meansthat almostall executedstate-
mentshadaneffect on theoutput. input2 is a longervectorandin this
casebothstatementandobservability coveragereached100%percent.

D. FastFourier Transform
TheFastFourierTransformalgorithmwasimplementedasit appears

in [14]. This algorithm computesthe Fourier Transformof a vector
whosesizeis a power of 2. Thevectorsusedto measurethecoverage



Input Statement Observability
Values Coverage Coverage
input1 99,4% 98,8%
input2 100% 100%

TABLE III. Coveragefor theHuffmancodeprocedure.

Input Statement Observability
Values Coverage Coverage
dirac 100% 81%

constant 100% 82%
sine 100% 100%

TABLE IV. Coveragefor theFastFourierTransformprocedure.

were the dirac function which consistsof a single pulse,a constant
function andthe sine function. The resultsarepresentedin TableIV.
As it canbeseen,for thefirst two vectors,dirac andconstant functions,
despitethefactthatbothexecuteeverysinglestatementin theprogram,
almost20% of thestatementsdo not have any influencein theoutput.
Only whenweuseasinput thesine functioncanweget100%statement
coverageand100%observability basedcoverage.

This happensmainly because,asstatedin SectionIV, whenpropa-
gatingthelist of dependencieswe take into accountif we aremultiply-
ing somevalueby zero. The FFT algorithmhasnumerousmultiplica-
tions. This way, thefirst two vectorsused,which have a greatnumber
of zerosandareveryregular, donotgiveagoodobservability coverage.
So, they shouldnot be usedalonein testingthis program,despitethe
factthatthey achieve 100%statementcoverage.

E. Overhead
Since we are calling a function for eachstatementexecutedour

methodhassignificantCPU time andmemoryoverhead.That canbe
seenin TableV wherewe presentthe CPU time overhead. We only
presentresultsfor the Huffman andthe FFT proceduressincethey are
themorecomputationintensiveprocedures.Theseresultswereobtained
in a SparcUltra I runningat 170MHzwith 384M of mainmemory. In
TableV we show thetime in secondsto executetheprocedurewith and
without computingthe coverage.As it canbe seenthe time overhead
canbeveryhigh.

VI. Conclusions

Wepresentedanew softwarecoveragemetricbasedonobservability
ratherthansimply on controllability. It givesus not only which state-
mentswere executed,but also if they have any effect on the output.
Wehave shown thatstatementcoveragealonemaynotgive anaccurate
measureof the test thoroughness.The resultsshow that this metric is
strongerthanstatementcoverage.So,this metrichasgreatpotentialto
beusedin embeddedsoftwaretesting.Thereis significantoverheaddue
to thefactthatfor eachstatement,a functioncall is made.Nevertheless,
in embeddedsystemswheresoftwareis not very large this shouldnot
be a major limitation. Furthermore,it canbe usedin a co-simulation
environmentwith hardwarecoveragemetricssuchasOCCOM [6] which

Procedure Without With
Coverage Coverage

Huffman(file size= 300k) 0.23s 203s
FFT (#vectors= 10000) 0.55s 147s

TABLE V. Time overheadfor theHuffmanandFFT procedures.

usesalsoanobservability coveragemetric.
In thefuturewe will beextendingthis work for not only giving the

coveragemetric but also to generateautomaticallythe test vectorsto
increasetheobservability coverage.We arealsoinvestigatingmethods
to reducetheoverheadin coveragecomputationfor embeddedsoftware.
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