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Abstract
In this paper we present a “high-level”  FPGA architecture

description language which lets FPGA architects succinctly and
quickly describe an FPGA routing architecture. We then present an
“architecture generator”  built into the VPR CAD tool [1, 2] that
converts this high-level architecture description into a detailed and
completely specified flat FPGA architecture. This flat architecture
is the representation with which CAD optimization and visualiza-
tion modules typically work. By allowing FPGA researchers to
specify an architecture at a high-level, an architecture generator
enables quick and easy “what-if”  experimentation with a wide
range of FPGA architectures. The net effect is a more fully opti-
mized final FPGA architecture. In contrast, when FPGA architects
are forced to use more traditional methods of describing an FPGA
(such as the manual specification of every switch in the basic tile of
the FPGA), far less experimentation can be performed in the same
time, and the architectures experimented upon are likely to be
highly similar, leaving important parts of the design space com-
pletely unexplored.

This paper describes the automated routing architecture gener-
ation problem, and highlights the two key difficulties — creating
an FPGA architecture that matches all of an FPGA architect’s spec-
ifications, while simultaneously determining good values for the
many unspecified portions of an FPGA so that a high quality
FPGA results. We describe the method by which we generate
FPGA routing architectures automatically, and present several
examples.

1. Introduction

In order to develop a high-quality FPGA architecture, one
must evaluate the utility of a huge number of architectural trade-
offs and decisions. Typically one “ implements”  (using a synthesis
flow) a set of benchmark circuits in each FPGA architecture (or
architecture variant) of interest, and determines the area required
and speed achieved by these circuits in each of the architectures [2,
3]. The architecture which leads to circuit implementations with

the best combination of area, delay, and perhaps other parameters
such as power, is the best FPGA architecture, and is laid out and
manufactured. 

The architecture of an FPGA specifies both the structure of its
logic block and its programmable routing; in this paper we are
focusing on the routing architecture portion of an FPGA. To imple-
ment circuits in each FPGA routing architecture of interest, one
requires both a CAD tool set incorporating sufficiently flexible
internal data structures and algorithms that it can target each of
these architectures, and a method of describing each FPGA archi-
tecture to this CAD tool set. In this paper we are concerned with
the second of these requirements — how can one conveniently and
quickly describe an FPGA routing architecture to a CAD tool. If
one cannot describe architectures quickly to a CAD tool, the num-
ber of architectures with which one can experiment will be quite
limited. The net result will be that many portions of the design
space remain unexplored, many architecture decisions are not
tested with real benchmark circuits run through a real CAD flow,
and the final FPGA is not as fully optimized as it could have been.

The most brute-force method of describing an FPGA routing
architecture to a CAD tool is to create a directed graph (which we
call a routing-resource graph) that fully specifies all the connec-
tions that may be made in the FPGA routing. This is a very general
representation of FPGA routing, and is generally the data structure
used internally by the routing tool. It is not very practical to specify
this routing-resource graph manually, however, as the routing
resource graph for a typical FPGA is 10 MBytes - 200 MBytes in
size. Essentially, this is too low-level a description for an FPGA
architect to use conveniently.

A more practical alternative is to design a basic tile (a single
logic block and its associated routing) manually, and create a pro-
gram to automatically replicate and stitch together this tile into a
routing-resource graph describing the entire FPGA.  Even the man-
ual creation of a basic tile is too time-consuming for many pur-
poses, however.  A typical tile contains several hundred
programmable switches and wires, so it can take hours or days to
describe even one tile.  Furthermore, such a hand-crafted tile is
designed for one value of routing channel width, W (the number of
tracks in a channel).  In many architecture experiments one must
vary W in order to see how routable a given FPGA architecture is,
or to determine the minimum value of W that allows some desired
fraction of application circuits (say 95%) to route successfully.
With a tile-based approach, one must hand-craft one tile for each
different value of W, for each architecture.  An FPGA designer will
often wish to investigate hundreds of different FPGA architectures,
and tens of W values for each of these architectures, resulting in
thousands or tens of thousands of these basic tiles.

There has been some prior work in describing FPGA routing
at a higher level of abstraction. In [4], Brown et al developed an
FPGA router for use with island-style FPGAs. In order to quickly
investigate FPGAs with different numbers of routing switches,
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they localized all the code that interacted with switch patterns to
two routines, Fc() and Fs(). By rewriting these two routines, a user
can target their router (CGE) to an FPGA with a different switch
pattern. The later SEGA router [5] used the same method to allow
retargeting to different FPGAs.

In the Emerald CAD system [6], an FPGA’s routing is
described by means of WireC schematics — essentially schematics
annotated with C-like code that describe switch patterns. The
Emerald system can convert these WireC schematics into routing-
resource graphs for use by its FPGA router. 

While both CGE, SEGA and Emerald reduce the labour
required to specify FPGA’s routing, they still require considerable
effort. Instead of specifying every switch in a basic tile of an
FPGA, one writes code (in either C or WireC) to generate all the
switches in a basic tile. If the user writes sufficiently general code,
it may be possible to change the channel width, W, and have the
basic tile adapt properly, but again, it is the user’s task to write this
(often non-obvious) code.

In this paper we describe a different method of specifying
FPGA routing architectures; this specification method has been
built into the Versatile Place and Route (VPR) CAD tool [1, 2]. As
Figure 1 shows, a user describes an FPGA to VPR via a concise,
easily understandable list of parameters. Essentially, the FPGA is
described to VPR in a specialized and simple FPGA architecture
description language. VPR then uses an internal “architecture gen-
erator”  to create the routing-resource graph with which the router,
graphics, and statistics routines all work. We have designed the
architecture description language such that a single architecture
description can always be used to generate an FPGA with any
value of channel width, W. We can make an analogy with the lev-
els of abstraction possible in software development: manually
describing an FPGA by specifying every switch in its basic tile is
like programming in machine code (binary), while using WireC or
CGE is akin to assembly language programming. We are propos-
ing the use of architecture descriptions that are more like high-
level languages; they are easy for humans to create and understand,
but require more interpretation by the CAD tools (compilers).

The remainder of this paper is organized as follows. In the
next section, we describe the routing architecture description lan-
guage. Section 3 describes the routing-resource graph used inter-
nally by VPR to represent a routing architecture. Section 4 shows
how we convert from the easily understood architecture descrip-
tion language input to VPR into the detailed routing-resource
graph. We highlight the two major difficulties in this procedure: (i)
it is often difficult to meet all the specifications listed by the user,
and (ii) VPR must automatically build the portions of the architec-
ture that are left unspecified in a way that results in the best overall
FPGA. In Section 5, we show some examples of automatically
generated FPGA routing architectures, and Section 6 presents our
conclusions and suggestions for future work.

2. Architecture Description and 
Parameterization

We want architecture descriptions to be easy to create, so we
tried to parameterize architectures in ways that are intuitive to
FPGA researchers.  By parameterizing architectures we also make
it easier to describe results to other FPGA architects and research-
ers, and to understand why one architecture is better than another.
(Simply showing that one 100 MB routing-resource graph is supe-
rior to most others does not allow one to describe results to others
very easily!) Indeed, the choice of parameterization is itself a key
step in architecture exploration.

Our architecture description is currently intended for use with
island-style FPGAs, although it could be extended to other types of
FPGAs. Figure 2 shows a typical island-style FPGA. The architec-
ture description file specifies:

• The number of logic block input and output pins,

• The side(s) of the logic block from which each input and out-
put is accessible,

• The logical equivalence between the various input and out-
put pins (e.g. all look-up table inputs are functionally equiva-
lent),

• The number of I/O pads that fit into one row or column of
the FPGA,

• The switch block [7] topology used to connect the routing
tracks (i.e. which tracks connect to which at a switch block),

• The number of tracks to which each logic block input pin
connects, Fc,input [7],

• The number of tracks to which each logic block output pin
connects, Fc,output,

• The Fc value for I/O pads, Fc,pad, and

• One or more wire segment types.  For each segment type,
one specifies:

• The fraction of tracks in a channel that are of this segment
type,
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• The segment length (number of logic blocks spanned by a
wire segment),

• The type of switch (pass-transistor or tri-state buffer,
drive strength, etc.) used to connect a wire segment of this
type to other routing segments,

• The switch-block internal population of this segment type
(discussed below), and

• The connection-block internal population of this segment
type (discussed below).

Note that the segmentation distribution (the fraction of rout-
ing tracks of each length), is specified as part of the wire type defi-
nitions.

Two of the parameters listed above, switch-block and connec-
tion-block internal population, may not be familiar to many FPGA
researchers. These two terms were introduced by Chow et al in [8].
They indicate whether or not routing wires and logic blocks,
respectively, can connect to the interior of a wire segment that
spans multiple logic blocks, or if connections to a wire can be
made only at its ends. In [8], a wire segment is either completely
internally populated or completely depopulated.  We allow partial
depopulation of the interior of a wire segment.  For example, a
length five segment spans five logic blocks.  If we specify a con-
nection-block population of 100%, this wire segment can connect
to all five logic blocks it passes, so it is fully internally populated.
If the connection-block population is 40%, it can only connect to
the two logic blocks at its ends, so it is internally depopulated.  If
we specify a connection-block population of 60%, however, the
wire can connect to the two logic blocks at its ends and one logic
block in its interior, so it is partially internally depopulated.  Figure
3 illustrates the four possible values of connection-block popula-
tion for a length five wire.  Switch-block population is specified in
a similar, percentage, form.

Notice that we specify the distribution of wire types as frac-
tions of the channel width, W, rather than as an absolute number of
tracks of each type.  For example, one might say there are 20%
length = 2 wires and 80% length = 5 wires.  This allows a user to
attempt routing with different W values, to determine the routabil-
ity of an architecture, without changing the architecture file.  Simi-
larly, the various Fc values can be specified either as absolute
numbers (e.g. 5 tracks), or as a fraction of the tracks in a channel
(e.g. 0.2⋅W).

The number of tracks per channel, W, and the size of the logic
block array size can be specified on the command line.  If one or
more of these parameters is not specified, the VPR router will
determine the minimum value(s) needed to fit the circuit in the
specified FPGA architecture.

Finally, to allow extraction of the delay of routed nets and
path-based timing-analysis, one must specify various timing
parameters in the architecture description file.  These include:

• The input and output capacitance, equivalent resistance, and
intrinsic delay of each type of switch used in the routing; as
many switch types as desired can be defined.

• The capacitance and resistance of each type of wire segment,

• The delays of all the combinational and sequential elements
within each logic block, and

• The delays of the I/O pads.

3. The Routing-Resource Graph

While the architecture parameters listed above are easy for
FPGA architects to understand and specify, they are not appropri-
ate for use as an internal architecture representation for a router.
Internally, VPR uses a routing-resource graph [9] to describe the
FPGA; this is more general than any parameterization, since it can
specify arbitrary connectivity.  It also makes it much faster to
determine connectivity information, such as the wires to which a
given wire segment can connect, since this information is explic-
itly contained in the graph.

Each wire and each logic block pin becomes a node in this
routing-resource graph and each switch becomes a directed edge
(for unidirectional switches, such as buffers) or a pair of directed
edges (for bidirectional switches, such as pass transistors) between
the two appropriate nodes.  Figure 4 shows the routing-resource
graph corresponding to a portion of an FPGA whose logic block
contains a single 2-input, 1-output look-up table (LUT).

Often FPGA logic blocks have logically equivalent pins; for
example, all the input pins to a LUT are logically equivalent.  This
means that a router can complete a given connection using any one
of the input pins of a LUT; changing the values stored in the LUT
can compensate for any re-ordering of which connection connects
to which input pin performed by the router.  We model this logical
equivalence in the routing-resource graph by adding source nodes
at which all nets begin, and sink nodes at which all net terminals
end.  There is one source node for each set of logically-equivalent
output pins, and there is an edge from the source to each of these
output pins.  Similarly, there is one sink node for each set of logi-
cally-equivalent input pins, and an edge from each of these input
pins to the sink node.

To reduce the number of nodes in the routing-resource graph,
and hence save memory, we assign a capacity to each node.  A
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node’s capacity is the maximum number of different nets which
can use this node in a legal routing.  Wire segments and logic block
pins have capacity one, since only one net may use each.  Sinks
and sources can have larger capacities.  For example, in a 4-input
LUT, there is one group of four logically-equivalent inputs, so we
have one sink of capacity four.  If we could not assign a capacity of
four to the sink, we would be forced to create four logically-equiv-
alent sinks and connect them to the four input pins via a complete
bipartite graph (K4,4), wasting considerable memory.

To perform timing-driven routing, timing analysis, and to
graphically display the architecture we need more information than
just the raw connectivity embodied in the nodes and edges of the
routing-resource graph.  Accordingly, we annotate each node in the
graph with its type (wire, input pin, etc.), location in the FPGA
array, capacitance and metal resistance.  Each edge in the graph is
marked with the index of its “switch type,”  allowing retrieval of
information about the switch intrinsic delay, equivalent resistance,
input and output capacitance and whether the switch is a pass tran-
sistor or tri-state buffer.

4. Automatic Routing Architecture Generation 
to Match Specified Parameters

As Section 1 described, there are compelling reasons to allow
designers to specify architectures in an understandable, parameter-
ized format, and for the routing tools to work with a more detailed,
graph-based, description. We therefore need the capability illus-
trated in Figure 1: a tool that can automatically generate a routing-
resource graph from a set of specified architecture parameters.
This is a difficult problem for two reasons:

1. We want to create a good architecture with the specified
parameters.  That is, the unspecified properties of the archi-
tecture should be set to “ reasonable”  values.

2. Simultaneously satisfying all the parameters defining the
architecture is difficult.  In some cases, the specified param-
eters conflict and overspecify the FPGA, making it impossi-
ble to simultaneously satisfy all the specified constraints.

The next section gives a brief overview of our architecture
generation approach, while Sections 4.2 and 4.3 illustrate the two
difficulties mentioned above.

4.1. Architecture Generation Approach

We generate routing architectures in two phases. First, we
build all the unique switch patterns required by the architecture,
and one vertical and one horizontal routing channel. Typically the
unique switch patterns consist of one connection box (logic block
pins to routing wires switch pattern) for each side of the logic
block, another connection box for IO blocks, and the switch block
(routing wire to other routing wire switch pattern) specified by the
user.

Next, we create the entire FPGA by replicating variants of
these basic switch patterns and the canonical channels. As Section
4.3 describes, creating the entire FPGA is more complex than sim-
ply replicating these switch patterns and the basic channels across
the FPGA; they must be stitched together in a more involved way.

4.2. Creating a Good FPGA Despite Unspecified 
Architecture Parameters

If we require a user to specify every conceivable parameter,
and every interaction between these parameters, describing an
architecture will be very time-consuming.  Instead, we want to
allow users to specify the important parameters, and have the
architecture generator automatically adjust other parameters of the
architecture so that a good FPGA results.  For example, we require
that a user specify the number of tracks to which input and output
pins can connect, Fc,input and Fc,output, rather than requiring a user
to specify the complete connection block switch pattern.  This cer-
tainly simplifies the task of describing an FPGA, but it means that
VPR must generate a good connection block switch pattern auto-
matically.

Let us consider this connection block problem in more detail.
We decided that the switch pattern chosen should:

• Ensure that each of the W tracks in a channel can be con-
nected to roughly the same number of input pins, and
roughly the same number of output pins,

• Ensure that each pin can connect to a mix of different wire
types (e.g. different length wires),

• Ensure that pins that appear on multiple sides of the logic
block connect to different tracks on each side, to allow more
routing options,

• Ensure that logically-equivalent pins connect to different
tracks, again to allow more routing options, and

• Ensure that pathological switch topologies in which it is
impossible to route from certain output pins to certain input
pins do not occur. Figure 5 shows one example of a patho-

Figure 5:  Example connection block patterns: 
(a) pathologically bad; (b) good.
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logically bad switch pattern — some logic block output pins
cannot drive any tracks that can reach certain input pins.

Clearly this is a complex problem.  In essence, the proper
connection block pattern is a function of Fc,input, Fc,output, W, the
segmentation distribution (lengths of routing wires), the logical
equivalence between pins, and the side(s) of a logic block from
which each pin is accessible.  The last condition is also a function
of the switch block topology. The architecture generator uses a
heuristic algorithm that attempts to build a connection block that
satisfies the five criteria above, but it will not necessarily perfectly
satisfy them all for all architectures.

4.3. Matching All the Architecture Specifications

The second difficulty in generating an architecture automati-
cally is simultaneously meeting all the user-defined specifications.
We will illustrate this difficulty with an example that shows it often
takes considerable thought to simultaneously satisfy the specifica-
tions.  Consider an architecture in which:

• Each channel is three tracks wide.

• Each wire is of length 3.

• Each wire has an internal switch block population of 50%.
That is, routing switches can connect only to the ends of a
wire segment (2 of the 4 possible switch block locations).

• The switch block topology is disjoint [10].  In this switch
block, wires in track 1 always connect only to other wires in
track 1, and so on.  This is the switch block topology used in
the original Xilinx 4000 FPGAs [11].

Figure 6 shows the disjoint switch block topology, and a
channel containing 3 wires of length 3.  Notice that the “start
points”  of the wire segments are staggered [12].  This enhances
routability, since each logic block in the FPGA can then reach a
logic block two units away in either direction using only one wire
segment.  It also arises naturally in a tile-based layout, so stagger-
ing the start points of the segments in this way makes it easier to
lay out the FPGA.  A tile-based FPGA layout is one in which only
a single logic block and its associated routing (one vertical channel
segment and one horizontal channel segment) have to be laid out
— the entire FPGA is created by replication of this basic tile.

The most straightforward way to create an FPGA with this
architecture is to create one horizontal channel and one vertical
channel, and replicate them across the array.  Switches are then
inserted between horizontal and vertical wire segments which the
switch block and internal population parameters indicate should be
connected.  Figure 7 shows the results of such a technique, where
only a few of the routing switches have been shown for clarity.
Notice that this FPGA does not meet the specifications.  By insert-
ing routing switches at the ends of the horizontal segments, we are
allowing connections into the middle of vertical segments.  How-
ever, our specifications said that segments should have routing
switches only at their ends.  If we do not insert switches at the ends
of the horizontal segments, however, we cannot connect to the
ends of the horizontal segments, so the specifications are again
violated.  We call this problem a conflict between the horizontal
constraints and the vertical constraints.

The solution to this problem is shown in Figure 8.  Instead of
simply replicating a single channel, the “start points”  of the seg-
ments in each channel have to be adjusted.  As Figure 8 shows, this
allows the horizontal and vertical constraints to be simultaneously
satisfied.  The specification for the FPGA has been completely
realized — every segment connects to others only at its ends, and
the switch block topology is disjoint.  Figure 9 shows how one can
implement this architecture using a single layout tile.  This is an
additional bonus of this “segment start point adjustment”  tech-
nique — we not only meet our specifications fully, but create an
easily laid-out FPGA.

In order to describe the adjustment of the segment start points
more clearly, let us define an FPGA coordinate system.  Let the
logic block in the lower left corner of the logic block array have
coordinates (1,1).  The logic block to its right has coordinates
(2,1), and the logic block above it has coordinates (1,2), as Figure
8 shows.  A horizontal channel has the same y-coordinate as the
logic block below it, and a vertical channel has the same x-coordi-
nate as the logic block to its left.  We also number the tracks within
each channel from 0 to 2, with track 0 being the bottommost track
in a horizontal channel, or the leftmost track in a vertical channel.

The proper adjustment shifts the start point of each segment
back by 1 logic block, relative to its start point in channel j, when
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constructing channel j+1.  For example, in Figure 8, the left ends
of the wire segments in track 0, horizontal channel 0 line up with
the logic blocks that satisfy

, (1.1)

where i is the horizontal (x) coordinate of a logic block.  In channel

1, track 0, however, the left ends of the wire segments line up with
logic blocks that satisfy:

(1.2)

A similar shifting back of start points must be performed in
the vertical channels — the start point of each segment in channel
i+1 is moved back one logic block relative to its start point in chan-
nel i.

The shifting of segment start points above allows the horizon-
tal and vertical constraints on an FPGA to be met if either of the
following two conditions is met:

• The disjoint switch block topology is used.  The segmenta-
tion distribution and segment internal populations can have
any values.  Or,

• All segments are fully switch-block populated.  The segmen-
tation distribution and switch block topology can have any
values.

If either of these conditions is satisfied, the shifting of seg-
ment start points also makes a tile-based layout possible if one
additional constraint is satisfied:  the number of tracks of length L
is divisible by L, for all segment lengths L.

We have not yet found a method to simultaneously satisfy the
horizontal and vertical constraints when a switch block topology
other than disjoint is used with internally-depopulated segments.
It is an open question as to whether there is any method of satisfy-
ing both sets of constraints in this most general case.  In cases
where we cannot make the horizontal and vertical constraints
agree, there are locations in the FPGA where a vertical wire wishes
to connect to a horizontal wire, but the horizontal wire does not
want a switch there, or vice versa.  We resolve this conflict by
inserting the switch, preferring to err on the side of too many
switches in the routing, rather than too few.

5. Examples of Automatically Generated
Routing Architectures

Figure 10 shows a routing architecture description file for an
FPGA in which the logic block is a 4-input look-up table plus a
register. For a precise description of the architecture description
file format, see [13]. Notice that the file is indeed concise — only
38 non-comment lines, 12 of which specify timing and area model
information. While this is a simple FPGA architecture, even quite
complex FPGA architectures can be described in less than 100
lines with our architecture description language.

Figure 11 shows the FPGA VPR generates to match the archi-
tecture specification of Figure 10, when the desired channel width,
W, is 10 tracks. These pictures of the FPGA architecture come
directly from VPR’s built-in graphics. Figure 11a shows the entire
FPGA; in this case the FPGA generated consists of a 17 x 17 array
of logic blocks, surrounded by IO pads on all four sides. A circuit
has been mapped into this FPGA, and logic blocks that were are
being used by this circuit are shown as grey squares, while unused
logic blocks are shown as white squares. In this case, two IO pads
fit into the width or height occupied by a logic block.

Figure 11b is a close-up of a small part of this FPGA so the
switch pattern is visible.   The black lines are routing wires, while
the small black squares are logic block input and output pins.
Switches between logic block pins and routing wires are shown as
x’s.  The routing switches in switch blocks are shown as grey lines
between routing wires; a small triangle indicates the switch is a tri-
state buffer, while a circle indicates it is a pass transistor. In this
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architecture, we specified that each logic block pin is accessible
from only one side. One of the four look-up table input pins is
accessible from each side of the logic block, while the output pin
can drive routing tracks below the logic block. As specified, each
LUT input pin can be reached by every track adjacent to it and the
logic block output can drive each track adjacent to it (i.e. Fc,input =
W and Fc,output = W). Notice that there are no switches connecting
the clock pin (in the upper right corner of the logic block) to rout-
ing wires; the architecture description in Figure 10 specified that
the clock must be routed on a special dedicated resource. Also, as
we specified, 20% of the routing wires connect to each other via
pass transistor switches, while the remainder of the switches in a
switch block are tri-state buffers.

Figure 12 is a less cluttered view, in which the routing
switches are not displayed, of the same FPGA. The segmentation
distribution of the FPGA is clearly visible: 20% of the routing
tracks are length 1 wires (span one logic block before terminating),
40% are length 2 wires, and 40% are length 4 wires. Notice that the
“starting points”  of the longer wires are staggered to enhance
routability.

Figure 13 shows a small portion of an FPGA with a more
complex logic block. In Figure 13, the logic block is a “ logic clus-
ter”  [14, 15] containing four 4-input LUTs and four registers. It has
ten logic inputs, four outputs, and one clock input. In this FPGA
the connection block switch pattern is more sparse — each of the
ten “ regular”  logic block inputs can connect to only half the tracks
in the routing channel beside it, while each of the four outputs can
connect to only one-quarter of the routing tracks adjacent to it. All
ten logic inputs are logically equivalent in this logic block, as are
all four logic outputs. Notice that VPR takes advantage of this log-
ical equivalence in creating switch patterns. The switch patterns
for the outputs, for example, ensure that every track can be driven
by one of the outputs, and that each output can drive roughly the
same number of wires of each type as the other outputs can. Notice
also that while the switch pattern looks quite regular, it is not per-
fectly regular (i.e. the switch pattern for each pin is not merely an
offset version of the switch pattern for the other pins). For routing
architectures like this, perfectly regular switch patterns often result
in some input pins not being reachable from some output pins,
which reduces routability. Consequently, VPR checks if its switch
pattern generator has created perfectly regular switch patterns
which will “disconnect”  some inputs from some outputs, and per-
turbs the switch pattern to solve this problem if necessary.

The VPR routing architecture generator is CPU-efficient,
requiring only 15 seconds of CPU time on a 300 MHz UltraSparc
to build the routing-resource graph of a large (8300 4-input LUTs)
FPGA.

6. Conclusions and Future Work

We believe that the automatic generation of FPGA architec-
tures to match a set of specifications is both a key technology for
the development of high-quality FPGA architectures and a fertile
area for future research. Automatic FPGA architecture generation
allows FPGA architects to quickly and easily perform “what-if”
experiments on a huge range of FPGA architectures, resulting in a
more fully optimized final FPGA architecture to go to manufactur-
ing. Without an easy method to specify FPGA architectures, on the
other hand, FPGA architects are likely to experiment with far
fewer, and much more similar, architectural ideas, increasing their
chance of becoming trapped in a “ local minimum” in the FPGA
architecture search space.

Figure 10:  Example architecture description file.

io_rat 2   # 2 IO pads per row or column
chan_width_io 1 # All channels the same width.
chan_width_x uniform 1 
chan_width_y uniform 1

# 4-input LUT.  LUT inputs first, then output, then clock.
inpin class: 0 bottom # Equivalence class 0 is LUT inputs
inpin class: 0 left
inpin class: 0 top
inpin class: 0 right
outpin class: 1 bottom # Output. Not equivalent to anything
inpin class: 2 global top # Clock.

switch_block_type subset # Also called disjoint switch block.
Fc_type fractional # Fc values are relative to W
Fc_output 1
Fc_input 1
Fc_pad 1

# Definitions of different types of routing wires.

segment frequency: 0.2 length: 1 wire_switch: 0 opin_switch: 1 \
Frac_cb: 1. Frac_sb: 1. Rmetal: 4.16 Cmetal: 81e-15

segment frequency: 0.4 length: 2 wire_switch: 2 opin_switch: 2 \
Frac_cb: 1. Frac_sb: 1 Rmetal: 4.16 Cmetal: 81e-15

segment frequency: 0.4 length: 4 wire_switch: 2 opin_switch: 2 \
Frac_cb: 1. Frac_sb: 1 Rmetal: 4.16 Cmetal: 81e-15

# Definitions of different types of routing switches.

# Pass transistor switch.
switch 0  buffered: no  R: 196.728 Cin: 20.574e-15 \

Cout: 20.574e-15 Tdel: 0

# Logic block output buffer driving pass-transistor-switched
# wires.
switch 1  buffered: yes  R: 393.47 Cin: 7.512e-15 \

Cout: 20.574e-15 Tdel: 524e-12

# Switch used as a tri-state buffer within the routing, and also 
# as the output buffer driving tri-state buffer switched wires.
switch 2  buffered: yes  R: 786.9 Cin: 7.512e-15  \

Cout: 10.762e-15 Tdel: 456e-12

# Used only by the area model.
R_minW_nmos 1967
R_minW_pmos 3738

# Timing info below.  See manual for details.
C_ipin_cblock 7.512e-15
T_ipin_cblock 1.5e-9
T_ipad 478e-12 # clk_to_Q + 2:1 mux
T_opad 295e-12 # Tsetup
T_sblk_opin_to_sblk_ipin 0.
T_clb_ipin_to_sblk_ipin 0.
T_sblk_opin_to_clb_opin 0.

subblocks_per_clb 1
subblock_lut_size 4
T_subblock T_comb: 546e-12 T_seq_in: 845e-12 \

T_seq_out: 478e-12
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Figure 11:  Graphical view of an example FPGA routing architecture; logic block is a four-input LUT + register.
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Figure 12:  Segmentation distribution of an example FPGA; logic block is a four-input LUT + register.
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Figure 13:  Routing architecture of a more complex FPGA; each logic block contains 4 LUTs + 4 registers.



In this work, we have presented a method of parameterizing
and describing island-style FPGAs, and described the method by
which we turn these succinct architecture descriptions into a fully-
specified FPGA architecture. The two key difficulties in this archi-
tecture generation procedure are meeting all the specifications of
the FPGA architect, and choosing unspecified parameters intelli-
gently in order to create the most routable FPGA.

While our current architecture generation tool can match all
the desired specifications for a wide variety of architectures, there
are circumstances where it cannot match all the specifications.
Future research can investigate ways to ensure that the generated
FPGAs match all their specifications not only by developing better
ways of generating architectures from the parameters we have
listed in this work, but also by searching for new methods of
parameterizing FPGA architectures such that all the specifications
can always be satisfied. Similarly, much more work remains to be
done in terms of choosing unspecified architectural parameters
intelligently enough that the best routability always results.

Finally, throughout this work we have focused on homoge-
nous (one type of routing channel and function block) island-style
FPGA architectures.  Other styles of architectures can be specified
via a high-level description and automatically generated as well,
however. In fact a research project at the University of Toronto
recently enhanced the VPR architecture generator to allow it to
generate Altera-like “ long-line”  FPGAs [16].  Another important
improvement to the architecture generator described in this work
would be to allow the automatic generation of heterogeneous
FPGAs — that is, FPGAs with several different types of routing
channels, or several different types of function blocks.  For exam-
ple, the Lucent Orca FPGAs contain two different types of routing
channels [17], while many commercial FPGAs contain two differ-
ent types of function blocks:  logic blocks and RAM blocks.
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