
Causality Based Generation Of Directed Test Cases

Nina Saxena Jacob A. Abraham Avijit Saha

Comp. Eng. Res. Ctr. Comp. Eng. Res. Ctr. IBM, Austin

University Of Texas At Austin University Of Texas At Austin 11400 Burnet Rd.

Austin, TX 78712 Austin, TX 78712 Austin, TX 78758

saxena@cerc.utexas.edu jaa@cerc.utexas.edu saha@austin.ibm.com

Abstract| Simulation is considered to be the irre-

placeable part of design veri�cation. However, the e�-

ciency of this method depends greatly on the test cases

used. Random test cases can be generated quickly

but have poor coverage. Directed test cases on the

other hand require time and manual e�ort. This paper

presents a method for generating directed test cases

automatically by making use of signal relationships in

the speci�cation. An algorithm is presented that was

applied to the GL85 microprocessor, a clone of Intel's

8085. The results are compared with other methods

to see the gain with the proposed method.

I. Introduction

The outcome of simulation greatly depends on the test

cases used to validate the design. Test cases can be

random and generated using automatic methods or they

could be directed and generated manually. Random test

cases, though easy to generate, do not give a good cover-

age as they do not exercise di�erent paths or simulation

runs very e�ectively. This means that it is harder to catch

bugs using randomly generated test cases. Directed test

cases, on the other hand, require time and expertise, thus

adding to the overall veri�cation time.

The problem, therefore, remains of being able to gener-

ate directed test cases in as little time as possible. Some-

times this is done by using a set of parameters to generate

test cases targetting the relevant logic. This system how-

ever still requires manual interaction since the veri�cation

engineer has to analyse properties and supply the param-

eters to the generator.

II. Causality Based Biasing

Directed test cases are developed manually and require

several days to generate. Therefore the generally accepted

technique in industry is to use random tests biased by con-

straints or parameters. These constraints are often coded

manually and do not correspond to any particular bug.

Our approach in this work is to utilize the information

encoded in formal speci�cations to select the parameters

and thereby generate bug speci�c, directed tests.

A causality based approximation is used in our ap-

proach. Causality relationships between signals is dic-

tated by the implication in the formal speci�cations used

to validate the design. These speci�cations are then con-

verted to a checker for simulation as discussed in the next

section.

A mapper was developed to interpret speci�cations and

to select parameters based on the information derived

from the implications within each speci�cation. This

mapper detects causal relationships between signals and

picks parameters to exercise the part of the logic it be-

lieves the speci�cation to be targetting. These param-

eters are then provided to the test generator as input.

Since the use of parameter based test generator is fairly

common, details of any particular test generator have not

been discussed in this paper.

EFFECT

CAUSE SIGNAL1 SIGNAL2 SIGNALn

SIGNAL1

SIGNAL2

SIGNALn

PARAM5

PARAM2

PARAM3PARAM4

PARAM1

PARAM1

PARAM4

PARAM5

Fig. 1. Look-up Table For Parameters Based On Causal

Relationships Between Signals

Fig. 1 shows a lookup table for �nding param-

eters based on the causal relationship between sig-

nals. If SIGNAL1 is a signal in the causal part

of the speci�cation and SIGNAL2 is a signal in the

e�ect part of the speci�cation then the parameter

param(SIGNAL1; SIGNAL2) to be applied is stored in

the entry denoted by the column for SIGNAL1 and the

row for SIGNAL2 in the matrix shown.

Some of these parameters could correspond to sets of

biases instead of single biases. Some entries are not spec-

i�ed if the signals have no causal relationships between

them, and in that case nothing is appended to the set of

parameters. Also, the matrix is not symmetrical since the

causality relation between signals is not symmetrical.

Begin

 = {}τ

begin

χ
ε

/* set of parameters */

for each i in doχ

for each j in doε
begin

τ = τ U param(i,j);

end

end

End

= set of causal signals in rule;

= set of effect signals in rule;

Fig. 2. Test Case Generation Algorithm

Fig. 2 gives the Test case Generation Algorithm which

is used to deduce the set of parameters given to the test

case generator to generate test cases for a particular spec-

i�cation. Fig. 3 shows an example of how a signal rela-

tionship is mapped on to parameters for test generation.

Since the size of the matrix used has n2 elements, where

n is the number of signals in the design, the worst case

complexity of this algorithm is O(n2). This is the time

required to build the matrix. The time for lookup for each

parameter is constant.

AG(SIGNAL1 -> AX(! (SIGNAL1 & SIGNAL2)))

PARAM4

PARAM5

PARAM(SIGNAL1,SIGNAL1)

PARAM(SIGNAL1,SIGNAL2)

Specification

Table Lookup

Testcase GenerationGENERATE_TESTCASE -PARAM4 -PARAM5 <ARGUMENT_LIST>

Fig. 3. Example Of Test Case Generation

III. Merged Verification

For our experiments and a fair idea of the performance

of the proposed method, it was also desirable to include

formal veri�cation as part of the validation process. Usu-

ally industries apply both simulation and formal methods

to their designs [6] to reduce the chances of undetected

bugs. These e�orts, however, are usually decoupled and

carried on separate platforms by di�erent teams. Due to

this gap between the formal veri�cation e�orts and sim-

ulation e�orts, there is no way to reduce repetitions in

locating bugs. Consequently, much time is wasted and

the cost of veri�cation runs high. Combining simulation

and model checking on a common platform would not only

save time but also reduce repetitive or redundant veri�-

cation runs and make it easy to manage large designs.

One way to create such a platform is to use executable

speci�cations. These executable speci�cations can be

written to serve as an abstract model of the actual de-

sign. Speci�cations written using a hardware description

language or a programming language [4, 5, 3] could be

used. The problem with such speci�cations would be that

of uncertainty due to
exibility. The high level and
ex-

ible description language would allow for multiple ways

of expressing the same thing, which would make inter-

pretations and changes di�cult to do. Besides, though

simulation is easy using such speci�cations, formal veri�-

cation would not be possible.

The other option would be that of using a language

that preserves the formality and allows speci�cations to

be written in a concise and speci�c fashion. We used

a system where speci�cations were written in CTL-like

rules and could be used either for formal veri�cation or

as checkers for simulation. When used in simulation, the

speci�cations are used in a checker and checked every cy-

cle to see if the behavior of the simulation run is adhering

to that of the rules.

ENVIRONMENT

MODEL

EXPECTED
 OUTPUT

MODEL

EXECUTABLE
 RUNTIME

DESIGN
NETLIST

TESTCASES

PASS/FAIL

MODEL

EXECUTABLE
 RUNTIME

DESIGN
NETLIST

ENVIRONMENT
 CONSTRAINTS

SPECIFICATIONS

PASS/FAIL

TESTCASES

PASS/FAIL

SPECIFICATIONS

Fig. 4. Integrating Simulation And Model Checking

Fig. 4 depicts how the simulation and model checking

are integrated into a single uni�ed approach. In simula-

tion, the model, derived from the design netlist, is used

with test cases and the output is compared with the ex-

pected values for validity check. The runtime executable

works like an operating system with the model. It is re-

sponsible for taking in test cases, feeding them to the

model and making the output available to the checker.

Model checking uses a model, also derived from design

netlist, and checks it against the speci�cations, for the

speci�ed environment. The uni�ed approach uses all the

same material as simulation, except for the outcome com-

parisons which are substituted by behavior check at every

cycle to determine the correctness of the simulation run.

Sherlock [2, 7], a platform for writing checkers, was used

as the link between simulation and model checking. This

platform uses CTL-like rules to check the output of the

simulator. Speci�cations written in CTL could therefore

be used for both model checking as well as simulation

using Sherlock.

IV. Test Case Generation

The design used for experiments was the GL85 micro-

processor circuit which is a clone of Intel's 8085 micropro-

cessor but not pin-compatible with it. GL85 uses separate

8-bit input and output buses instead of an 8-bit bidirec-

tional ADDRESS/DATA bus used by the 8085micropro-

cessor.

Test cases for GL85 were generated in a modular fash-

ion. The method has been depicted in Fig. 5. First

vectors corresponding to each instruction were mapped

against each instruction. A mapper �le was used for this

purpose. Then multiple instructions were grouped into

sets depending on the types and categories. These sets

were mapped on to parameters. The relationship between

various signals was then noted and parameters assigned

accordingly. Each parameter corresponded to multiple

sets of instructions, belonging to the same category, but

in di�erent order.

The �rst part of each test case was a header that started

with a RESET, followed by the disabling of the RESET

and a few NOPs. This was followed by loads and stores

for each register and PUSH and POP instructions for

the stack pointer. After this general test, came the part

that di�ered according to the speci�cation being veri�ed.

For generating this part, �rst the signals in the speci�-

cation were noted and their role in the speci�cation was

obesrved. Parameters were then assigned according to the

causality relationship between signals in the speci�cation.

These parameters gave the sets of instructions to be used

which in turn translated into vectors. The length of these

test cases could be varied while mapping parameters to

sets of instructions.

V. Experimental Platform

All experiments were done on RS6000 machines, with

AIX 4.1.4 operating systems. The algorithms were imple-

mented using C and Perl. The translator for environment

and speci�cations was written using Lex and Yacc. The

veri�cation methods primarily used for experiments and

comparisons were model checking and simulation. Simu-

lation was used with both directed test cases and undi-

MVI M

CALL

STAX B

STAX D

LDA

LHLD

RST n

PUSH rp

LHLD

SHLD

INR M

DCR M

STA

SHLD

OUT

RIM

SIM

HLT

IN

NOP

EI

DI

JMP

RESET

OUT

Augmented with
different values of
INTABAR, SID,
TRAP, INTR,
RST75, RST65,
HOLD and RST55

Param ‘LDST’

Param ‘INTS’

(WRINM2, WR2)

 (WRINM3, WR2)

(MCYCLE, RD2)

(RST55, PIE)

(HOLD, TSTATE)

Fig. 5. Generating Test Cases For GL85

rected test cases. A common model or prototype of the

design was used for both simulation and model checking.

The model checking tool uses the HIS compiler for ob-

taining the model from a behavioral description of the

design.

IBM'sRulebase was used as the model checking tool and

Mvlsim, also from IBM, was used for simulation. Rulebase

was developed in Haifa Research Laboratory in Israel.

The speci�cation language for Rulebase, called Sugar is

is an extension of the Computational Tree Logic or CTL

[1]. Though it has the same expressive power as CTL, it is

more usable and accepts high-level constructs. Rulebase

has its own Environment Description Language or EDL to

describe the design environment. Mvlsim is a cycle simu-

lator. Other than the design model, test cases, parameters

and checkers, it uses a runtime-executable (RTX) that

works like the operating system for the model and feeds

the test case and parameters to it. Apart from initializing

the hardware, it also links and calls the IVPC (Implemen-

tation Veri�cation Program using C) or the checker. An

event trace and simulation statistics are generated as out-

puts. Mvlsim's user interface allows it to run test cases

individually as well as in batch mode.

VI. Results

Table I shows the speci�cations used and their brief

description.

Two bugs were found in the design. These are depicted

in Fig. 6 and are as follows.

(i) Speci�cation IIHT: If the machine is in HALT state

then a valid interrupt will always cause VINT to be reset

and the interrupt to be processed

Violation of IIHT: This did not happen if VINT was set

in the same cycle as HOLD even if before HOLD

(ii) Speci�cation IIHM: If the machine is in last machine

cycle of an instruction then a valid interrupt will always

cause VINT to be reset and the interrupt to be processed

HOLD=1? HLTAFF
RESET

HOLD FF
SET

HOLD FF
SET

HOLD=1?

HOLD FF
SET

RESET
INTEFF

T6 T5

HOLD FF
SET?

HOLD FF
RESET

VINT=1?

LAST M/C CYCLE
OF INSTR.?

RESET
INTEFF

T1

T2

T0

READY+BIMC

READY+BIMC

T7

T3

RESET

HALT

T8

HALT

RESET

READY HOLD+VINT

VINT

HOLD

T4

T9

HOLD

HOLD

HALT=1?

YES

NO

YES

NO

YES

NO

YES

NO

YES

NOYES

NO

IIHT

IIHM
(BUG 2)

(BUG 1)

Fig. 6. Bug Report

TABLE I

Specifications

Spec Description

ROIA Reset On Interrupt Ack

TOPE Trap On Priority Encoding

IOPE Intr On Priority Encoding

IELC Intr Enable Latch Check

PEOA Priority Encode On Ack

MCHK Mask Check

MUPD Mask Update

RORW Reset On Read Write

RLIT RW Low In T3

RCHK Readbar Check

LD Load

ST Store

ROTF Reset On Tstates Flow

TUPD Tstates Update

RWIO Reset While Interrupt On

ICHK Interrupt Check

ROIE Reset On Interrup Enable

ECHK Enable Check

IIHT Interrupt In Halt Tstate

IIHM Interrupt In Last Mcycle

Violation of IIHM: Design does not check VINT in the

last machine cycle of each instr.

VII. Observations

The following tables show the time taken for verify-

ing various speci�cations using the di�erent methods.

Columns named \M.C.", \R.S.", \D.S." and \Prop." re-

spectively represent model checking, simulation with ran-

dom test cases, simulation with directed test cases gen-

erated manually, and simulation using directed test cases

generated using the proposed algorithm. The GL85 im-

plementation that was used has 238
ip
ops, 10084 gates

and 18 inputs. The model checking tool, after optimiza-

tions, still had from 193 to 197
ip
ops, apart from 18 to

23 environment variables and about 8000 gates, for most

speci�cations.

The following tables depict the performance of each

method. The speci�cations corresponding to each name

are as given in Table I. Table II1 shows CPU time in sec-

onds, Table III1 shows User time in seconds, Table IV1

shows Elapsed time in seconds, Table V1 shows memory

used in MB, Table VI1 shows the overall performance of

the various methods; the second entry in case of IIHT

and IIHM corresponds to the number of cycles to catch

the bug. In the case of model checking, providing further

conditions or overspeci�cation could not be done since it

did not prune or reduce the logic any further.

It was noted that the simulation time corresponding to

failed speci�cations is much lower since the e�ect of cu-

mulative errors causes the simulation run to end before

the limiting number of cycles. The memory used in simu-

lation is �xed and hence remains constant irrespective of

the type of test case or the speci�cation being veri�ed.

VIII. Comparisons

From the tables given in the previous section, we see

that our method has about the same performance as that

of simulation with directed test cases, but uses very little

time for generating test cases. In simulation, very little

time is spent in comparing the values at each cycle com-

pared to the cycle time. Therefore the CPU and user time

remain more or less constant irrespective of the speci�ca-

tion being validated and the test case being used, as long

as the test case is longer than the MAX cycles speci�ed to

the simulator. Similarly, the memory used in simulation

also remains constant. In considering the level of man-

ual e�ort required for each method we disregarded the

time required to code speci�cations since speci�cations

and checkers were common for all methods and required

almost the same time for each method. This is why model

checking has been shown to require low e�ort as compared

to simulation with directed test case.

Given enough space and time, model checking can �nd

any bug. The same is true for simulation with directed

test case. However, our purpose was to see if the tools

1These results were approximated using time and usage

commands

TABLE II

CPU Time In Seconds

Spec M.C. R.S. D.S. Prop.

ROIA > 85.6 23.72 22.55 22.22

TOPE > 77.4 24.14 24.24 24.25

IOPE > 77.5 22.22 23.78 22.18

IELC > 77.9 18.28 19.28 19.20

PEOA > 81.0 24.12 22.29 22.22

MCHK > 81.9 22.18 21.19 20.88

MUPD > 79.2 24.18 22.28 21.30

RORW > 94.2 21.12 22.29 22.39

RLIT > 94.0 20.20 21.30 21.29

RCHK > 82.0 20.16 20.28 20.29

LD > 91.0 22.28 22.39 22.30

ST > 91.2 22.36 22.21 22.35

ROTF > 81.5 22.38 22.38 22.35

TUPD > 78.1 20.20 20.37 21.34

RWIO > 78.6 20.98 19.36 20.46

ICHK > 78.0 22.66 22.25 22.47

ROIE > 79.4 23.10 22.36 22.65

ECHK > 78.2 24.16 23.35 23.21

IIHT > 77.9 20.16 6.27 6.25

IIHM > 77.9 20.78 5.45 5.48

can �nd bugs within set time constraints. Therefore we

did not let the model checking tool run to completion but

aborted the run whenever the process slowed down to very

low speed because of the excessive memory being used.

While model checking tool continued to run rules with-

out reporting violations and simulation with random test

cases did not search the right paths, simulation with di-

rected test cases and our proposed method both reported

violations within fairly reasonable time. Over directed

test cases, however, our method has the advantage of re-

quiring less time because of the reduction in the number

of man hours required.

IX. Discussion

The GL85 design, being reasonably large when unpar-

titioned, stressed the model checking tool for even simple

speci�cations. This happened because the model check-

ing process involves a breadth �rst search of the states,

whereas most speci�cations can be proved wrong, if not

right, with a simple depth �rst search, provided we are

looking into the right paths. This is the purpose of di-

rected test cases. However, a directed search can be tax-

ing in terms of e�ort and time. Our method fetches the

advantages of directed search without the associated over-

head.

TABLE III

User Time In Seconds

Spec M.C. R.S. D.S. Prop.

ROIA > 52.1 11.48 11.49 11.46

TOPE > 46.4 11.28 11.36 12.11

IOPE > 46.6 10.00 11.49 11.53

IELC > 48.3 9.38 9.37 9.32

PEOA > 54.6 10.68 10.37 10.32

MCHK > 55.9 11.24 10.47 09.45

MUPD > 42.4 11.22 11.34 11.36

RORW > 58.1 10.10 11.39 11.39

RLIT > 59.0 11.10 10.46 9.39

RCHK > 46.1 9.48 9.35 10.37

LD > 56.7 12.66 12.58 12.58

ST > 57.9 12.90 12.58 12.5

ROTF > 48.9 10.24 11.49 11.38

TUPD > 49.6 12.68 9.38 9.47

RWIO > 50.4 10.88 9.37 10.38

ICHK > 48.4 12.50 11.47 11.47

ROIE > 48.3 10.68 11.46 11.36

ECHK > 48.4 11.90 12.48 11.36

IIHT > 48.3 12.12 4.18 3.99

IIHM > 48.4 12.14 4.78 3.98

The consistency checking and troubleshooting methods

were applied to the speci�cations in trying to come up

with the right rules for the speci�cations. An ad hoc

method was used for biasing test cases for the GL85 de-

sign. However, somewhat more mature test case gener-

ators are expected to be available, for verifying large in-

dustrial designs. Hence in an actual life scenario it is ex-

pected to be fairly easy to bias the test cases using signal

information as discussed earlier.

X. Conclusion

An algorithm was presented for automatically generat-

ing directed test cases using speci�cations. The method

uses signal relationships and causality to generate the test

cases. The technique was applied to the GL85 micropro-

cessor and the results presented. These were compared

with the results obtained by using other methods.

Acknowledgement

This work was supported in part by IBM under Project

No. 08503. The speci�cations for GL8085 were provided

by Alexander Miczo.

TABLE IV

Elapsed Time In Seconds

Spec M.C. R.S. D.S. Prop.

ROIA > 432837 98.14 96.12 94.12

TOPE > 455638 102.57 103.57 105.99

IOPE > 454778 101.28 102.04 105.40

IELC > 455050 84.68 82.35 82.46

PEOA > 466960 98.28 97.44 95.66

MCHK > 432666 94.24 93.44 93.44

MUPD > 444160 92.48 98.66 98.10

RORW > 429469 96.34 97.39 96.39

RLIT > 459421 94.90 94.98 95.99

RCHK > 465998 90.12 92.15 91.17

LD > 465896 92.18 94.58 93.77

ST > 456322 92.38 92.66 93.44

ROTF > 444112 93.46 94.26 93.76

TUPD > 432000 93.20 91.38 92.11

RWIO > 442180 92.10 91.22 91.20

ICHK > 436118 93.80 94.25 94.66

ROIE > 408108 97.88 96.66 96.49

ECHK > 432567 102.48 102.10 102.0

IIHT > 467124 108.28 57.78 57.44

IIHM > 467927 110.26 48.14 48.10

References

[1] Ilan Beer, Shoham Ben-David, Cindy Eisner and Avner Land-

ver, \Rulebase: An Industry-oriented Formal Veri�cation

Tool", Design Automation Conference, 1996.

[2] W. Can�eld, E. A. Emerson and A. Saha, \Checking Formal

Speci�cations Under Simulation", IEEE International Confer-

ence on Computer Design, October 1997.

[3] Y. V. Hoskote, J. A. Abraham and D. S. Fussell, \Automated

Veri�cation of Temporal Properties Speci�ed as State Machines

in VHDL", Proceedings Fifth Great Lakes Symposium on VLSI,

March 1995.

[4] Y. Hoskote, J. Abraham, D. Fussell and J. Moondanos, \Auto-

matic Veri�cation of Implementations of Large Circuits Against

HDL Speci�cations", IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, March 1997.

[5] D. Moundanos, J. Abraham and Y. Hoskote, \A Uni�ed Frame-

work for Design Validation and Manufacturing Test", Proceed-

ings IEEE International Test Conference, October 1996.

[6] S. P. Rajan and Masahiro Fujita, \Integration of High-level

Modeling, Formal Veri�cation, and High-level Synthesis in ATM

Switch Design", IEEE International Conference on VLSI De-

sign, January 1998.

[7] N. Saxena, J. Baumgartner, A. Saha and J. Abraham, \To

Model Check Or Not To Model Check", ICCD, October 1998.

TABLE V

Memory Used In MB

Spec M.C. R.S. D.S. Prop.

ROIA > 117 5.189 5.189 5.189

TOPE > 115 5.189 5.189 5.189

IOPE > 115 5.189 5.189 5.189

IELC > 115 5.189 5.189 5.189

PEOA > 117 5.189 5.189 5.189

MCHK > 117 5.189 5.189 5.189

MUPD > 116 5.189 5.189 5.189

RORW > 121 5.189 5.189 5.189

RLIT > 121 5.189 5.189 5.189

RCHK > 119 5.189 5.189 5.189

LD > 120 5.189 5.189 5.189

ST > 120 5.189 5.189 5.189

ROTF > 117 5.189 5.189 5.189

TUPD > 116 5.189 5.189 5.189

RWIO > 116 5.189 5.189 5.189

ICHK > 116 5.189 5.189 5.189

ROIE > 116 5.189 5.189 5.189

ECHK > 116 5.189 5.189 5.189

IIHT > 116 5.189 5.189 5.189

IIHM > 116 5.189 5.189 5.189

TABLE VI

Overall Comparison

Feature M.C. R.S. D.S. Prop.

CPU High Low Low Low

Time

User High Low Low Low

Time

Memory High Low Low Low

Usage

Bugs No No Yes Yes

Found

Manual Low Low High Low

E�ort

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

