
Edge Separability Based Circuit Clustering

with Application to Circuit Partitioning�

Jason Cong and Sung Kyu Lim

UCLA Department of Computer Science, Los Angeles, CA 90095

fcong,limskg@cs.ucla.edu

Abstract| In this paper, we introduce a new ef-

�cient O(n log n) graph search based bottom-up clus-

tering algorithm named ESC (Edge Separability based

Clustering). Unlike existing bottom-up algorithms

that are based on local connectivity information of the

netlist, ESC exploits more global connectivity infor-

mation \edge separability" to guide clustering process

while carefully monitoring cluster area balance. Com-

puting the edge separability for a given edge e = (x; y)

in an edge weighted undirected graph G(V;E; s; w) is

equivalent to �nding the x-y mincut. Then, we show

that a simple and e�cient algorithm CAPFOREST

[14] can be used to provide a good estimation of edge

separability for all edges in G without using any net-

work 
ow computation. Related experiments based on

large scale ISPD98 [1] benchmark circuits con�rm that

exploiting edge separability yields better quality parti-

tioning solution compared to various bottom-up clus-

tering algorithms proposed in the literature including

Absorption [18], Density [9, 11], Rent Parameter [15],

Ratio Cut [19], Closeness [17], and Connectivity [16]

method. In addition, our ESC based multiway par-

titioning algorithm LR/ESC-PM provides compara-

ble results to state-of-the-art hMetis [12] and hMetis-

Kway [13].

I. Introduction

Due to the recent advances in VLSI technology, hierar-

chical design paradigm becomes essential in coping with

today's high design complexity. Top-down partitioning is

a widely adopted method to identify natural circuit hier-

archy and thus enable divide-and-conquer design method-

ology. Since partitioning deals with the original complex-

ity of the given circuit directly, many heuristics have been

devised to solve the problem more e�ectively and e�-

ciently. Among them, clustering has been an attractive

method to reduce the problem size e�ciently at the same

time guide partitioning process successfully to obtain sat-

isfactory results.

Clustering heuristics can be classi�ed into bottom-up

�This research is partially supported by the MARCO/DARPA

Gigascale Silicon Research Center (GSRC) and Fujitsu Laboratories

of America under the California MICRO Program.

and top-down approaches. In bottom-up approaches, each

cell initially belongs to its own cluster, and clusters are

gradually grown into larger clusters from merging with

others. Bottom-up approaches can be further divided

into connectivity based [16, 15, 9, 17, 18, 11] and signal


ow based methods [4, 6]. In spite of the e�ciency from

its simple nature, bottom-up approach inherently su�ers

from the limitation that the clustering process is based

mostly on local information such as the local connectivity

to neighboring nodes. This locality in clustering decision

can lead to unnatural decomposition of the circuit. In

top-down approaches [19], the given circuit is recursively

partitioned into clusters. This method can exploit more

global information from the circuit but usually at the cost

of large computation time. A comprehensive survey of

various clustering algorithms can be found in [3].

In this paper, we introduce a new e�cient O(n log n)
graph search based bottom-up clustering algorithm

named ESC (Edge Separability based Clustering). Un-

like existing bottom-up algorithms that are based on lo-

cal connectivity information of the netlist, ESC exploits

more global connectivity information edge separability to

guide clustering process while carefully monitoring clus-

ter area balance. Computing the edge separability for

a given edge e = (x; y) in an edge weighted undirected

graph G(V;E; s; w) is equivalent to �nding the x-y min-

cut. Then, we show that a simple and e�cient algorithm

CAPFOREST [14] can be used to provide a good estima-

tion of edge separability for all edges in G without us-

ing any network 
ow computation. Related experiments

based on large scale ISPD98 [1] benchmark circuits con-

�rm that exploiting edge separability yields better quality

partitioning solution compared to various bottom-up clus-

tering algorithms proposed in the literature including Ab-

sorption [18], Density [9, 11], Rent Parameter [15], Ratio

Cut [19], Closeness [17], and Connectivity [16] method. In

addition, our ESC based multiway partitioning algorithm

LR/ESC-PM provides comparable results to state-of-the-art

hMetis [12] and hMetis-Kway [13].

The remainder of the paper is organized as follows.

Section II presents theoretical background, Section III

presents Edge Separability based Clustering. Section IV

provides experimental results. Section V concludes the

paper with our ongoing research.



II. Preliminaries

In this section, we provide theoretical background on

the general concept of edge separability, edge contractibil-

ity, and Maximum Adjacency (MA) vertex ordering for an

edge weighted undirected graph.

A. Edge Separability and Contractibility

The input netlist is transformed into edge weighted

undirected graph G(V;E; s; w) with vertex set V , edge
set E, a positive real vertex size s(x) for each x 2 V ,
and a positive real edge weight w(e) for each e 2 E. Edge
weights are computed by the standard clique method that

assigns 1=(jkj � 1) of weight to each edge in clique of size

jkj, where jkj is the number of cell net k connects. Let

n = jV j and m = jEj. A non-empty subset X � V de-

�nes a cut, and the cutsize of cut X , denoted by c(X),

is de�ned as the sum of weights of its outgoing edges. If

cut X consists of single vertex x, c(x) is used instead of

c(fxg) and alternatively call it degree of x. A cut X is

said to separate vertices x and y if x 2 X and y 2 V �X ,

or x 2 V � X and y 2 X . A cut U that minimizes

c(U) in G is called minimum cut, and cutsize of minimum

cut U is called minimum cutsize and denoted by �(G).
The minimum degree of G, denoted by �(G), is de�ned as

�(G) = minfc(x) j x 2 V g.
For given edge e = (x; y) 2 E, edge separability of e,

denoted by �(e), is de�ned as the minimum cutsize among

the cuts separating x and y in G. Then,

w(e) � �(e) � minfc(x); c(y)g (1)

The contraction of edge e is de�ned by merging x with y,
removing e from G, replacing each edge of the form (y; z)
with (x; z), and updating size of the resulting merged node

still called x with s(x) = s(x) + s(y). If this process may

create parallel edges, they are merged into a single edge

whose weight is equal to the sum of weights of the parallel

edges. The graph obtained by contracting all edges in

subset F � E is denoted G0 = G=F . Then, an edge e =
(x; y) 2 E is called contractible if and only if �(e) � �(G).
The intuition behind edge contractibility is that the two

end vertices x and y of a contractible edge e = (x; y) are
guaranteed to be on the same side of some minimum cut

U so that �(G) is preserved in G=e after the contraction
of e.

B. Tighter Lower Bound of Edge Separability

Computing the edge separability for a given edge

e = (x; y) in an edge weighted undirected graph G =

(V;E; s; w) is equivalent to �nding the maximum 
ow

between x and y. Since the currently best known

time bounds for solving the maximum 
ow problem

is O(mn log(n2=m)) due to Goldberg and Tarjan [10],

the computation of �(e) for all edges in G requires

O(m2n log(n2=m)) time. Thus, direct computation of

CAPFOREST(G)

Input: edge weighted undirected graph G = (V;E)

Output: contractible edge set Z(G) � E

1. label all v 2 V unvisited;

2. label all e 2 E unscanned;

3. r(v) = 0 for all v 2 V ;

4. while (there exists unvisited vertex)

5. choose an unvisited vertex x with largest r(x);

6. for (each y adjcnt to x by unscanned e)

7. r(y) = r(y) + w(e);

8. q(e) = r(y);

9. mark e scanned;

10. mark x visited;

11. endwhile

12. Z(G) = fe j e 2 E; q(e) � ��(G)g

Fig. 1. CAPFOREST algorithm [14] for computing contractible edge

set Z(G) in O(m+ n log n) time. The vertices are visited in MA

(Maximum Adjacency) ordering.

edge separability for all edges in G is extremely time-

consuming, even for moderate size graphs with a few thou-

sand vertices. Equation (1) indicates that w(e) serves as
a lower bound of �(e), but we found out that (i) there

exists a better approximation of �(e), (ii) it requires only
O(m+ n logn) to compute the approximation of �(e) for
all edges in E.
Recently, Nagamochi and Ibaraki presented a break-

through algorithm MINCUT [14] to compute �(G) without
using any network 
ow computation in O(mn+n2 logn).
In MINCUT, an O(m+ n logn) algorithm CAPFOREST is re-

peatedly used to identify contractible edges. CAPFOREST

computes some value q(e) for each edge e 2 E to deter-

mine contractibility of e, and they prove that q(e) � �(e).
CAPFOREST is based on traversing vertices of G according

to the Maximum Adjacency (MA) ordering. MA ordering

chooses a vertex that is most tightly connected to the ver-

tices that are already in the ordering. If set A denotes the

vertices that are already been ordered and v is a candidate
vertex, the degree of connection is measured by c(A; v),
i.e., the sum of weights of edges between A and v. Then,
CAPFOREST traverses vertices of V in MA ordering while

computing q(e) for every edge in G.1

Initially, all edges are unscanned and all vertices are un-

visited. CAPFOREST maintains variables r(v) for each ver-

tex v and q(e) for each edge e, where r(v) is c(A; v), i.e.,
the sum of the weights of the edges between v and vertices
already visited in MA ordering. q(e) for e = (x; y) is the
value of r(y) when e is scanned from x. Then, CAPFOREST
always chooses the unvisited vertex v with maximum r(v)
and scans all its unscanned outgoing edges. The descrip-

tion of CAPFOREST is shown in Figure 1. From line 7 and

1Note that Alpert and Kahng [2] used MA ordering in their for-

mulation of restricted partitioning, where a dynamic programming

technique is used to construct a partitioning solution from the MA

ordering.



8, we observed that w(e) � q(e) since r(v) � 0 for all

v 2 V for any positive edge weights. Then,

w(e) � q(e) � �(e) (2)

From Equation (1) and (2) we concluded that q(e) serves
as a better approximation to edge separability �(e) than
edge weight w(e).
The contractible edge set Z(G) is computed by com-

paring q(e) to ��(G) as shown in line 12, where �� denotes

the minimum cutsize discovered so far. CAPFOREST does

not require precomputation of �(G) in order to calculate

contractible edge set Z(G). Instead, the minimum degree

�(G) is used as a starting point to perform gradual up-

date on �(G). CAPFOREST updates �� = minf��; c0(x)g at

the contraction of e = (x; y), where c0(x) denotes updated
degree of vertex x.

III. Edge Separability based Clustering

The ESC (Edge Separability based Clustering) algo-

rithm is a bottom-up clustering algorithm, where clusters

grow from the contraction of contractible edges. Since

the clustering process is guided by q(e), a better estima-

tion of edge separability �(e) than edge weight w(e) as

shown in Equation (2), ESC exploits more global connec-

tivity information. ESC algorithm builds two-level clus-

ter hierarchy, where the bottome level corresponds to the

original netlist. Then, partitioning is performed at the

top and bottom level for global and local changes in the

partitioning solution.

A. Overview

ESC grow clusters from contraction of edges in the con-

tractible edge set Z(G) � E in a bottom-up fashion,

which is equivalent to merging two clusters that have di-

rect connection via a contractible edge. Each vertex be-

longs to its own cluster initially, and clusters grow from

greedy merging based on q(e), the estimated �(e). The

following provides overall 
ow of ESC for given netlist N ;

1. Transform N into G = (V;E; s; w) and let �� = �(G).

2. Run CAPFOREST(G) and obtain Z(G)

3. Edges in Z(G) are sorted into heap H based on their

rank (to be de�ned).

4. Remove edge e from the top of H and see if con-

traction of e violates the cluster size constraint. If

it satis�es the constraint, obtain G=e and update ��;
otherwise, discard e and examine next top element

from H . Repeat while H is not empty.

5. Go to step 2 if stopping criteria is not met (to be

discussed).

A pass covers steps from 2 to 4, and ESC might require

multiple passes before termination depending on the stop-

ping criteria.

B. Size Constrained Edge Contraction

After the computation of contractible edge set Z(G),
we heapify edges in Z(G) into edge heap H . The rank of

edge e = (x; y) in H , denoted by r(e), is determined as

follows;

r(e) =
q(e)

minfc(x); c(y)g
(3)

All edges in H are ordered in descending order of their

rank. The rank r(e) is computed in such a way that it

gives higher priority to edges with larger q(e) values and
edges whose contraction results in smaller increase of de-

gree. We use minfc(x); c(y)g instead of c(x) + c(y) to en-
courage merging of dangling vertices (e.g., vertices with

connection to only one other cluster). Ties are randomly

broken.

Our CONTRACT algorithm performs size constrained edge

contraction for given contractible edge set Z(G) and clus-

ter size limit L. CONTRACT builds and manages edge heap

H based on edge rank r(e) and updates the given graph

G upon each edge contraction to obtain correct G=Z(G)
upon its termination. One important thing to note is

that if some parallel edges are merged into single edge

e0 from edge contraction, the maximum q value among

the parallel edges is selected for q(e0) to maintain lower

bound on edge separability. This in turn causes some

edges not included in H initially to be inserted into H due

to the update of q. If t1 denotes jZ(G)j and t2 denotes

the maximum degree among vertices in G, the complex-

ity of CONTRACT is O(t1t2 log t1) due to the O(log t1) time

update of H for O(t2) number of edges, which repeats

for t1 times in total. In most cases, large nets (> 100)

such as clock nets are ignored during clustering and par-

titioning in VLSI circuit design. Then, we may assume

that the maximum degree is bounded by a constant k,
which also implies that jEj � jV j � k=2. Under such an

assumption, the time complexity of CONTRACT becomes

O(t1t2 log t1) = O(n � k=2 � k log(n � k=2)) = O(n log n).

C. Edge Separability based Clustering

Let Gi+1 denote the reduced graph obtained by ap-

plying CONTRACT on Gi for 0 � i � P , where G0 de-

notes the original netlist graph. Note that we can com-

pute a new set of contractible edges from Gi for all

0 � i � P . Intuitively, this is due to the updated edge

weight function w0 as well as updated �� during CONTRACT.

If no size constraint is imposed, we can repeatedly ap-

ply CAPFOREST+CONTRACT until the graph has only two

vertices. However, CAPFOREST+CONTRACT will eventually

terminate if cluster size limit L is imposed.

We stop the clustering process if the number of con-

tractible edges computed from the current graph Gi

is too small (jZ(Gi)j < � � jEj), or the actual num-

ber of edges contracted during CONTRACT on Gi is too

small (< � � jZ(Gi)j). We observe from related ex-

periment that a typical number of passes, i.e. num-



3

1

1 6

9

4

17

2

3

1

5

(1) (2)

(5)

(9)

3/3

1/2

1/1 6/7/1.0

9/10/.77

4/4

1/17/7/.78

2/2

3/5

1/1

5/5

3/3

1/2

1/1

4/4

2/2

3/5
1/1

5/5

1/1

3

2

1

6

1

a b c

d e f

g h i

a b c

d e f

g h i

b

d e f

g i

b

d e ff

(3)

3/3

1/2

1/1

9/10/.77

4/4

1/1

7/7/.78

2/2

3/5

1/1

5/5

a b

d e

g h i

f

(4)

3/3

1/2

1/1

9/10/.77

4/4

1/1

2/2

3/5

1/1

5/5

d e

g h i

f

b

(6)

3/3

1/2

1/1

4/4

2/3

3/6/1.0
1/3

5/5/.83

1/1

b

d e f

g i

(7)

3/3

1/2

1/1

6/4

1/3
5/5/.83

1/1

b

d e

g

f

(8)

3/3

2/3

1/1

6/4

1/1

b

ed

Fig. 2. Illustration of ESC algorithm. Contractible edges are shown

in thick lines, and arrows point to the edges contracted under the

size constraint L = 3. The minimum cut U is shown in thick

dotted line. The edge label means w(e)=q(e)=r(e), and bold edge

label denotes the updated w(e)=q(e) from contraction. (1) G0, (2)

Z(G0) based on �� = �(G0) = c(g) = 6, (4) �� = c(b) = 5, (5) G1,

(6) Z(G1) based on �� = 5, (8) G2, (9) U preserved in G2.

ber of CAPFOREST+CONTRACT calls until the termination

of ESC algorithm, ranges from 1 to 3, depending on

the circuit size. CAPFOREST takes O(m + n logn) and

CONTRACT takes O(n log n) time as discussed in Section

III-B. Therefore, the overall complexity of ESC algorithm

is O(k � (m+ n logn+ n logn)) = O(n logn). An illustra-

tion of ESC algorithm is shown in Figure 2.

D. Bottom-Up Clustering Framework

We establish the following framework based on the

netlist graph G(V;E; s; w) in order to capture many pro-

posed approaches in the literature;

1. edge contraction based bottom-up clustering : ini-

tially, each vertex in G belongs to its own cluster.

Then, we choose an edge e = (C1; C2) with the best

contraction cost. If s(C1) + s(C2) is within the spec-

i�ed size constraint L, we perform the contraction of

e to obtain larger cluster C and updated G=e. Then,
the next maximum cost edge will be considered. This

greedy selection continues until no more edge can be

contracted under the size constraint L.

2. two-phase top-down partitioning : as a way to inte-

grate clustering into partitioning, we perform parti-

tioning such as FM �rst on the clustered circuit for

global optimization and then on the declustered cir-

cuit for local re�nement.

For the given edge e = (C1; C2) whose contraction gen-

erates new larger cluster C, the following contraction cost

functions are proposed in the literature;

1. Absorption [18] (maximize): the absorption of C is

de�ned as abs(C) =
P

e
w(e) for all e = (x; y),

x; y 2 C. It measures the sum of weights of edges

\absorbed" into C.

2. Density [9, 11] (maximize): the density of C is com-

puted as abs(C)=s(C). It measures the \density" of

C by taking the ratio of the edges \absorbed" in C
to the size of C.

3. Rent Parameter [15] (minimize): the Rent parameter

of C is computed as follows;

ln(c(C)) � ln(d(C))

ln s(C)

where d(C) = 1

jCj

P
x2C

c(x) is the average degree of

vertices in C, and jCj is the number of vertices in

C. A \better" placement can be obtained from the

smaller Rent parameter associated with each cluster

according to the Rent's rule.

4. Ratio Cut [19] (minimize): the ratio cut of C is com-

puted as c(C)=s(C). It is a ratio of the sum of weights

of outgoing edges to the size of C. It tries to iden-

tify \natural" clusters by �nding cuts that minimize

c(C)=s(C).

5. Closeness [17] (maximize): the closeness between C1

and C2 is de�ned as follows;

w(e)

minfc(C1); c(C2)g
� 


s(C1) + s(C2)

ave size

where ave size denotes the average cluster size, and 

is a user-speci�ed parameter to determine the magni-

tude of penalty term for generating large clusters. It

measures the \attraction" between two clusters based

on local connectivity information.

6. Connectivity [16] (maximize): the connectivity be-

tween C1 and C2 is de�ned as follows;

f(s(C1))
w(e)

c(C1)� w(e)
+ f(s(C2))

w(e)

c(C2)� w(e)

where e = (C1; C2), and f(s(C)) = 1=s(C). It is an-
other local connectivity based method that focuses

on (i) minimizing number of edges cut after contrac-

tion, (ii) preventing early formation of large clusters.

We observe that local connectivity information w(e) plays
a major role in determining the sequence of edge con-

traction for the six schemes shown above. ESC uses r(e)
de�ned in Section III-B as the contraction cost function.

The maximum top-level cluster size limit L is set to log2 n,
where n = jV j.



IV. Experimental Result

We implemented our algorithms in C++/STL and

tested on SUN ULTRA SPARC60 at 360Mhz. We use

area skew of [.45, .55] for 2-way, and [0:49n, 0:51n] for
8-way (n = 3), 16-way (n = 4), and 32-way (n = 5) par-

titioning. We use Cost-1 metric for 2-way cutsize, and

SOED (Sum Of External Degrees) metric for all others.

The cell area is uniform, and all pads are included to

be partitioned. All partitioning results are based on the

minimum cutsize of 20 runs, and runtime is measured in

seconds. We use ISPD98 benchmark Suite [1].

Table I shows the comparison of various bottom-up

clustering algorithms introduced in Section III-D in terms

of bipartitioning results. Algorithms in comparison in-

clude Absorption [18], Density [9, 11], Rent Parameter

[15], Ratio Cut [19], Closeness [17], Connectivity [16], and

Edge Separability based method. As discussed in Section

III-D, all algorithms are based on (i) edge contraction

based bottom-up clustering, and (ii) FM based two-phase

top-down partitioning framework. Under this framework,

ESC outperforms all other algorithms that rely on local

connectivity information. Runtime results are compara-

ble in all cases.

We developed a multiway partitioning algorithm named

LR/ESC-PM that uses ESC clustering algorithm. It per-

forms LR bipartitioning algorithm [6] on top of two-level

ESC cluster hierarchy. This is then used as the bipar-

titioning engine for pairwise movement based multiway

partitioning framework PM [7]. As shown in Table II,

LR/ESC-PM obtains comparable results to state-of-the-art

hMetis [12] and hMetis-Kway [13] in terms of 2-way, 8-

way, 16-way, and 32-way partitioning results. hMetis con-

structs multiple level cluster hierarchy and performs com-

plex declustering and reclustering process called V-cycle.

We emphasize that even with simple two-level ESC clus-

ter hierarchy along with two-phase partitioning scheme,

we can identify natural clusters and obtain high quality

partitioning result.

V. Conclusion and Ongoing Work

We introduced a new e�cient bottom-up clustering al-

gorithm named ESC (Edge Separability based Clustering).

ESC exploits more global connectivity information called

edge separability to guide clustering process. In addition

to cutsize minimization, we are currently developing ef-

�cient partitioning techniques to optimize the impact of

partitioning on circuit performance with consideration of

local and global interconnects. We are exploring tech-

niques such as performance-driven clustering with retim-

ing [5] and/or relaxed acyclic partitioning [8].

References

[1] C. J. Alpert. The ISPD98 circuit benchmark suite. In

Proc. Int. Symp. on Physical Design, pages 80{85, 1998.

[2] C. J. Alpert and A. B. Kahng. A general framework for

vertex ordering with applications to netlist clustering. In

Proc. Int. Conf. on Computer-Aided Design, pages 652{

657, 1994.

[3] C. J. Alpert and A. B. Kahng. Recent directions in netlist

partitioning: a survey. Integration, the VLSI Journal,

pages 1{81, 1995.

[4] J. Cong and Y. Ding. On area/depth trade-o� in LUT-

based FPGA technology mapping. In Proc. Design Au-

tomation Conf., pages 213{218, 1993.

[5] J. Cong, H. Li, and C. Wu. Simultaneous circuit par-

titioning/clustering with retiming for performance opti-

mization. In Proc. Design Automation Conf., 1999.

[6] J. Cong, H. P. Li, S. K. Lim, T. Shibuya, and D. Xu.

Large scale circuit partitioning with loose/stable net re-

moval and signal 
ow based clustering. In Proc. Int. Conf.

on Computer-Aided Design, pages 441{446, 1997.

[7] J. Cong and S. K. Lim. Multiway partitioning with pair-

wise movement. In Proc. Int. Conf. on Computer-Aided

Design, pages 512{516, 1998.

[8] J. Cong and S. K. Lim. Performance driven multiway par-

titioning. In Proc. Asia South Paci�c Design Automation

Conf., 2000.

[9] J. Cong and M. Smith. A parellel bottom-up cluster-

ing algorithm with applications to circuit partitioning in

VLSI design. In Proc. Design Automation Conf., pages

755{760, 1993.

[10] A. V. Goldberg and R. E. Tarjan. A new approach to the

maximum 
ow problem. Journal of ACM, pages 921{940,

1988.

[11] D. J. Huang and A. B. Kahng. When clusters meet par-

titions: new density-based methods for circuit decompo-

sition. In Proc. European Design and Test Conf., pages

60{64, 1995.

[12] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.

Multilevel hypergraph partitioning: Application in VLSI

domain. In Proc. Design Automation Conf., pages 526{

529, 1997.

[13] G. Karypis and V. Kumar. Multilevel k-way hypergraph

partitioning. In Proc. Design Automation Conf., 1999.

[14] H. Nagamochi and T. Ibaraki. Computing edge connectiv-

ity in multigraphs and capacitated graphs. SIAM Journal

on Discrete Math., pages 54{66, 1992.

[15] T. K. Ng, J. Old�eld, and V. Pitchumani. Improvements

of a mincut partition algorithm. In Proc. Int. Conf. on

Computer-Aided Design, pages 470{473, 1987.

[16] D. M. Schuler and E. G. Ulrich. Clustering and linear

placement. In Proc. Design Automation Conf., 1972.

[17] H. Shin and C. Kim. A simple yet e�ective technique

for partitioning. IEEE Trans. on VLSI Systems, pages

380{386, 1993.

[18] W. Sun and C. Sechen. E�cient and e�ective placements

for very large circuits. In Proc. Int. Conf. on Computer-

Aided Design, pages 170{177, 1993.

[19] Y. C. Wei and C. K. Cheng. Ratio cut partitioning for hi-

erarchical designs. IEEE Trans. on Computer-Aided De-

sign, pages 911{921, 1992.



TABLE I

Comparison of various bottom-up clustering algorithms in terms of bipartitioning results. All algorithms use two-phase

bottom-up clustering and top-down partitioning framework explained in Section III-D. Algorithms in comparison include

Absorption (ABS) [18], Density (DEN) [9, 11], Rent Parameter (REP) [15], Ratio Cut (RTC) [19], Closeness (CLO) [17],

Connectivity (CON) [16], and Edge Separability (ESC) based method. TIME includes total clustering and partitioning time.

ckt size ABS DEN REP RTC CLO CON ESC

ibm01 12752 252 251 262 186 187 307 205

ibm02 19601 279 281 275 300 296 275 265

ibm03 23136 1038 1196 1174 1074 1081 1194 1046

ibm04 27507 598 571 618 596 570 627 567

ibm05 29347 1841 1767 1773 1751 1744 1743 1707

ibm06 32498 971 942 967 1035 994 1047 1002

ibm07 45926 956 902 952 973 1124 1322 894

ibm08 51309 1191 1183 1393 1384 1475 1490 1179

ibm09 53395 1145 979 1362 747 865 1572 690

ibm10 69429 1859 1451 1598 1477 1472 2010 1399

ibm11 70558 1534 1234 1291 1169 1490 1956 1120

ibm12 71076 2424 2134 2634 2323 2218 2810 2192

ibm13 84199 1031 1136 1245 1145 1326 2034 1152

ibm14 147605 2196 2294 3540 2287 2570 3342 2078

ibm15 161570 4414 4395 4754 4512 4427 4386 3801

ibm16 183484 2429 2247 2855 3574 2497 2216 2005

ibm17 185495 2869 3237 4134 2743 2835 3127 2545

ibm18 210613 2347 2324 3423 3723 2875 2634 2205

TOTAL - 29374 28525 34250 30999 30046 34092 26052

RATIO - 1.13 1.09 1.31 1.19 1.15 1.31 1.00

TIME - 8942 9875 12442 9435 9645 9343 9973

TABLE II

Comparison of hMetis-Kway vs LR/ESC-PM. 2-way partitioning results are based on Cost-1 metric, while others are based on

SOED (Sum Of External Degrees) metric. hMetis 2-way results are based on 100 runs, while all others use 20 runs. hMetis

2-way results are from http://vlsicad.cs.ucla.edu/�cheese/errata.html, which use Pentium Pro 4-way SMP at 200Mhz.

Other hMetis-Kway results are from [13] that use Pentium II at 300Hhz.

hMetis-Kway LR/ESC-PM

ckt size 2-way 8-way 16-way 32-way 2-way 8-way 16-way 32-way

ibm01 12752 180 1750 2883 4149 180 1777 2829 4147

ibm02 19601 262 3850 7556 11821 297 4490 8145 11787

ibm03 23136 956 5820 8205 11077 972 5737 8297 11002

ibm04 27507 542 6214 8992 12495 526 6170 9123 12341

ibm05 29347 1715 10749 15206 20020 1709 10410 14372 18898

ibm06 32498 888 5784 8661 12779 902 6468 9173 13088

ibm07 45926 853 7586 11040 15559 848 7566 11109 15224

ibm08 51309 1142 7979 10976 15327 1164 8214 11281 15646

ibm09 53395 624 5822 8634 12460 624 5918 8481 12339

ibm10 69429 1256 9144 13130 19941 1377 8795 13908 19922

ibm11 70558 960 7874 11706 17118 987 8129 11723 16941

ibm12 71076 1918 12910 17848 25228 2015 13035 17976 24161

ibm13 84199 840 6079 11819 17350 850 6866 12547 17902

ibm14 147605 1837 11258 18232 29699 1885 10992 17745 27760

ibm15 161570 2625 14586 20826 31874 2846 15565 20453 31162

ibm16 183484 1755 14616 22924 34879 1811 14877 23520 34775

ibm17 185495 2238 19930 33344 45961 2214 20468 33124 44403

ibm18 210613 1541 12177 19598 30558 1673 12885 19311 29188

TOTAL - 22132 164128 251580 370295 22880 168362 253117 360686

TIME - - - - - 10865 27035 33449 38406


	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


