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Abstract| In the rectangle packing problem, en-

coding schemes to represent the placements of rect-

angles are the key factors of e�cient algorithms. In

1995, an epoch-making encoding scheme, known as

SEQ-PAIR, was developed[2]. The solution space of

SEQ-PAIR has been considered su�ciently small. In

this paper, however, we present a simple and natural

encoding scheme of rectangle packings whose solution

space is smaller than that of SEQ-PAIR.

I. Introduction

In the physical design of VLSI, we often have to place

a set of modules on a small chip. This naturally leads us

to the following problem.

Rectangle Packing Problem (RP) : For given set of

n rectangles fr1; r2; . . . ; rng, �nd a packing of minimum

area under the condition that the orientation of each rect-

angle is �xed.

A packing is a non-overlapping placement of all rect-

angles in S. In our RP, each rectangle ri has width wi

and height hi in real numbers and the area of a packing

is de�ned as the area of its bounding rectangle. Fig.1

shows an example of a packing. (The bounding rectangle

encloses all the shaded rectangles.) RP is known to be

NP-hard[1, 2].

A code is a representation of a packing under some en-

coding scheme. The solution space of an encoding scheme

is de�ned as the set of all codes.

For example, consider a straightforward encoding

scheme which represents a packing as a sequence of the

south-west corners (xi; yi) of the rectangles ri in the place-

ment. Obviously, the solution space of this encoding

scheme is an in�nite set. Note that every code does not

have the corresponding packing.
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Fig. 1. A packing and its bounding rectangle

In 1995, Murata et al. developed an epoch-making

encoding scheme of packings for combinatorial search

approach, that is SEQ-PAIR [2]. (SEQ-PAIR is pro-

nounced as \sequence-pair"). For a given set of rectan-

gles S = fr1; r2; . . . ; rng, an ordered pair of rectangle se-

quences represents a packing under SEQ-PAIR.

Therefore, SEQ-PAIR transforms RP into a combinato-

rial search problem. The size of the solution space of SEQ-

PAIR is exactly (n!)2 and a packing algorithm searches

this �nite solution space for an optimal solution.

SEQ-PAIR has reduced the size of solution space from

in�nite to �nite. In this paper, however, we present a

simple and natural encoding scheme LOT, under which

a packing is represented by a labeled ordered tree. LOT

also has good properties as SEQ-PAIR and its solution

space is smaller than that of SEQ-PAIR.



II. SEQ-PAIR

A packing is represented as an ordered pair of permuta-

tions of n rectangle names under SEQ-PAIR. For example,

(�+;��) = (abcdefgh; cbfhgaed) is a sequence-pair cor-

responding to the packing in Fig.1. We can encode any

packing into a sequence-pair[2].

A sequence-pair has information on horizontal and ver-

tical constraint for every pair of rectangles, that is,

(1) ri is placed left of rj if ri is left of rj in both �+
and �

�
,

(2) ri is placed above rj if ri is left of rj in �+ and right

of rj in �
�
.

Conversely, we can construct the corresponding pack-

ing from any sequence-pair along the horizontal and ver-

tical constraint in it. In other words, there always exist

a packing for any given sequence-pair (�+;��) satisfying

the horizontal and vertical constraints described above.

The solution space of SEQ-PAIR satis�es the following

requirements for e�ective search algorithms.

(1) The solution space is �nite : Each sequence is a

permutation of n rectangles. Thus, the size of the solution

space is exactly (n!)2.

(2) Every solution is feasible : If a code has its corre-

sponding packing, it is called feasible or a feasible solution.

As described above, every sequence-pair is feasible.

(3) Evaluation of each code ( sequence-pair ) is pos-

sible in polynomial time and so is the realization of the

corresponding packing : For a given sequence-pair, we can

calculate the value of the objective function, i.e. the area

of corresponding packing, in O(n2) time1.

(4) The packing corresponding to the best evaluated

code ( sequence-pair ) in the space coincides with an op-

timal solution of RP : There exists a sequence-pair corre-

sponding an optimal packing.

A solution space which satis�es the above four condi-

tions is called P-admissible. Requirement (2) is for exis-

tence of neighbors of every feasible solution, which most

heuristics need.

III. LOT(Labeled Ordered Tree)

In this section, we introduce an encoding scheme LOT

(the abbreviation for Labeled Ordered Tree) and show

that its solution space is also P-admissible.

First, we show how every packing is encoded into a

labeled ordered tree.

Let � be a packing for S = fr1; r2; . . . ; rng. Without

loss of generality, we assume that each rectangle has no

room on the left of it in the bounding rectangle, that

1In fact, we can evaluate a code ( sequence-pair ) in O(n log n)

time[3] .

is, each rectangle touches the right side of some other

rectangle or the left side of the bounding rectangle. (If

not, we can slide such rectangles without increasing the

area of �.)

The following procedure constructs a labeled ordered

tree from �. To begin with, place a su�ciently large

dummy rectangle r0 on the left side of the bounding rect-

angle of �. Each vertex of a labeled ordered tree corre-

sponds to a rectangle. So, we often identify rectangle ri

with a vertex with label ri.

Packing to Tree

Mark r0 and push it into STACK.

While (STACK 6= ;) do f

ri  pop().

If ri has an unmarked rectangle rj on the right, let

rj be a son of ri, mark ri, and push ri into

STACK. (If we have two or more adjacent rect-

angles, choose the lowest one as rj .)

g

Note that the procedure above is just the DFS (Depth

First Search) algorithm. We show an example of a labeled

ordered tree in Fig.2.

Conversely, we can construct a packing of S from a

labeled ordered tree T whose root has label r0:

Tree to Packing

According to the preorder of T , `drop' each correspond-

ing rectangle ri one by one into a su�ciently large bin so

that the left side of ri and the right side of its parent rect-

angle are on the same vertical line. The root rectangle r0,

which does not have a parent, is initially placed on the

left of the bin.

To clarify the dropping procedure, we show an example

of dropping for another tree in Fig.3. Note that we can
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Fig. 2. Construction of a labeled ordered tree
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Fig. 3. A labeled ordered tree and the packing given by the

dropping procedure

not always get a packing such that each rectangle touches

the right side of its parent rectangle. (In Fig.3, rectangle

e does not touch its parent rectangle f .)

From the above observations, LOT also satis�es the

following properties.

(1) The solution space is �nite : The solution space

is the set of all labeled ordered trees with n + 1 vertices

whose roots are labeled r0. (See Section IV.)

(2) Every solution is feasible : Every labeled ordered

tree with root r0 has its corresponding packing.

(3) Evaluation of each code (labeled ordered tree) is

possible in polynomial time and so is the realization of the

corresponding packing : Construction of the correspond-

ing packing can be computed by the dropping procedure

in polynomial time. (See Section V.)

(4) The packing corresponding to the best evaluated

code (labeled ordered tree) in the space coincides with an

optimal solution of RP :

Thus, the solution space of LOT is also P-admissible.

IV. The size of the solution space

How large is the solution space of LOT ? The size of

the solution space, say LOT (n), is the number of labeled
ordered trees with n+ 1 vertices whose roots are labeled

r0. The number of ordered tree with n vertices is given

by Catalan number

Cn =
1

2n+ 1

�
2n+ 1

n

�
:

(The reader can refer to many textbooks of combinatorics

about Catalan number.)

Thus, LOT (n) = cn �(n!) since the root must be labeled
r0. Remind that the size of the solution space of SEQ-

PAIR, say SEQ(n), is (n!)2.

Comparing two solution spaces, we have

lim
n!1

LOT (n)

SEQ(n)
= lim

n!1

cn

n!
= 0:

For the readers' information, we give n! and Catalan

number cn for n � 12 in Table I.

TABLE I

cn and n!

n n! cn

1 1 1

2 2 2

3 6 5

4 24 14

5 120 42

6 720 132

7 5,040 429

8 40,320 1430

9 362,880 4862

10 3,628,800 16,796

11 39,916,800 58,786

12 479,001,600 208,012

V. Representation of Trees

We have introduced an encoding scheme LOT, which

has a small and P-admissible solution space. However,

we have not given the data structure to represent the la-

beled ordered trees yet; The reason is that we have several

options.

When we adopt LOT in heuristic search algorithms, we

often need to represent labeled ordered trees in strings,for

example, in GA. Here, we represent a labeled ordered tree

as a string of balanced labeled parentheses.

It its known that there exist one-to-one correspondence

between (unlabled) ordered trees and balanced parenthe-

ses(Fig.4). Thus, the labeled ordered tree in Fig.2 can be

represented as

(c(f(hh)(gg)f)c)(bb)(a(ee)(dd)a):



((())), (()()), (())(), ()(()), ()()()

ordered trees

balanced parentheses

Fig. 4. Ordered trees and balanced parentheses

VI. Time for evaluating a code

Consider constructing a packing by dropping procedure

described in Section III. Suppose that a labeled ordered

tree is represented as a balanced labeled parentheses in

a queue. Then, the following procedure gives the corre-

sponding packing:

r = r0

While (QUEUE 6= ;) do f

Get s from QUEUE.

If s = `(ri' then drop ri on the right of r and r  ri.

If s = `ri)' then r  parent of ri.

g

This procedure is essentially same as the traverse of a

tree. Keeping track of the width and height of the pack-

ing, the procedure gives the area of the packing. Using

a doubly linked list of heights of rectangles for the rec-

tilinear envelope of the packing, the procedure calculates

the area of packing in O(n) time. Remind that the time

complexity of evaluating a sequence-pair is O(n2)[2] or

O(n log n)[3].

VII. Conclusion

We have introduced a new encoding scheme LOT. The

solution space of LOT is P-admissible as that of SEQ-

PIAR. Moreover, it is smaller and the corresponding pack-

ings can be computed faster.

However, we should note that the size of the solution

space itself is not important; LOT might discard many

quasi-optimal solutions to get the small space. We need

some experimental results to insist that LOT is a good

encoding scheme for heuristic search algorithms.

For the readers' information, we report that a straight-

forward exhaustive search algorithm gave an optimal so-

lution for seven rectangles in several minutes (Fig.5). By
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Fig. 5. An optimal packing (n = 7)

`straightforward exhaustive search,' I mean that the pro-

gram generated and evaluated 2,162,160 labeled balanced

parentheses.
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